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Maximum independent set on diluted triangular lattices
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Core percolation and maximum independent set on random graphs have recently been characterized using
the methods of statistical physics. Here we present a statistical physics study of these problems on bond diluted
triangular lattices. Core percolation critical behavior is found to be consistent with the standard percolation
values, though there are strong finite size effects. A transfer matrix method is developed and applied to find
accurate values of the density and degeneracy of the maximum independent set on lattices of limited width but
large length. An extrapolation of these results to the infinite lattice limit yields high precision results, which are
tabulated. These results are compared to results found using both vertex based and edge based local probability
recursion algorithms, which have proven useful in the analysis of hard computational problems, such as the

satisfiability problem.
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I. INTRODUCTION

Relationships between statistical physics and computa-
tional complexity have been of interest for some time [1] and
have recently proven fruitful [2], particularly the application
of the cavity and replica methods to NP-complete problems
[3-5] and extensions of computer science probability recur-
sion methods, such as belief propagation, to glassy problems
[3,6,7]. The broad NP-complete class of problems [8] lie at
the nexus of interdisciplinary discussions, and includes prob-
lems such as the traveling salesman problem and the spin
glass problem. Exact solvers for these NP-complete graph
problems are often restricted to a few hundred nodes or less,
which severely limits their utility. Quantum computing [9]
offers hope that this new paradigm will significantly improve
the efficiency with which NP-complete problems can be
solved, though progress in algorithm development has been
dissappointing.

Finding a maximum independent set (MIS), or the mini-
mum vertex cover(MVC) to which it is trivially related, is
one of the six fundamental NP-complete problems [8], and is
NP-complete even on planar graphs. An independent set (IS)
in a graph is a set of vertices such that no two sites share an
edge. The MIS is an independent set that contains the maxi-
mum number of sites [8]. In statistical physics, an MIS cor-
responds to the maximum packing state of a hard core lattice
gas [10]. The hard core lattice gas Hamiltonian for the MIS
is

H:JE fijninj—,uz nj, (1)
ij i

where n;=1 if a site is part of the MIS and n;=0 if a site is
part of the minimum vertex cover (MVC). In order to find
the MIS, we take the limit J— oo to ensure that no bond has
an MIS site at both of it’s ends and €;=1 if a bond exists
between sites i and j. The chemical potential p weighs the
cardinality of an independent set. In order to find the MIS,
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we take the limit Bu— %, with J/u— to ensure that the
independent set (hard core) condition is preserved. We study
MIS on diluted triangular lattices as a function of bond con-
centration p, which is then the dense packing density of the
hard core lattice gas, Eq. (1), as a function of p. The average
connectivity of a graph, c, is related to p through p=c/z,
where z is the lattice co-ordination which is six for a trian-
gular lattice.

Recently, statistical physics methods have been applied to
the MIS problem on random graphs, which is a classic prob-
lem in graph theory [11]. Bauer and Golinelli [12] showed
that a nontrivial percolation process called core percolation
occurs at connectivity c=e=2.718 and heralds the failure of
the replica symmetric solution [5,10] for finding the MIS.
They also suggested that though the core percolation expo-
nents are close to those of conventional percolation, there are
significant deviations. More recently replica symmetry-
breaking calculations and other analytic methods have been
introduced to go beyond the replica symmetric solution
[13,14]. In a broader context local probability recursion
(LOPR) algorithms [3,6,7] based on the cavity method and
message passing algorithms have been developed for several
problems in the NP-complete class.

In this contribution we analyse the MIS problem on bond
diluted triangular lattices. First, we analyze the core percola-
tion process on these lattices and find that the data is consis-
tent with the conventional percolation universality class. We
then study the MIS problem itself by carrying out transfer
matrix calculations in strip geometries. These calculations
yield accurate results for the average density of the MIS and
also its degeneracy. We develop and apply LOPR algorithms
to find approximate results for the MIS and compare them to
the transfer matrix results and with a replica symmetric so-
lution.

The paper is organized as follows. Section II introduces
the methods that we use to analyze core percolation and the
MIS on diluted triangular graphs. A numerical study of core
percolation is presented in Sec. III, while in Sec. IV the
results of transfer matrix and LOPR calculations of the MIS
on diluted triangular lattices are presented. Section V con-
tains a brief summary.
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FIG. 1. 100 Node planar triangular graphs before and after core
percolation. The dashed edges were originally present, but were
removed during the leaf removal process. (a) Initial bond concen-
tration of ¢=1.0 (i.e., p=1/6). Leaf removal removes all bonds
from the graph. (b) Initial concentration of ¢=3.0 (i.e., p=1/2).
After leaf removal, a percolating core remains; thus, p>p.. (c)
Initial concentration of ¢=4.5 (i.e., p=3/4). There are no singly
connected bonds; thus, leaf removal is ineffective in reducing the
graph.

II. METHODS

A. Iterative leaf removal

It is always possible to find an MIS on a graph by first
placing all disconnected and singly connected vertices in the
graph in the MIS [11,15]. Once a singly connected vertex has
been placed in the MIS, we must exclude its connected
neighbor from the MIS. The original singly connected site
and its connected neighbor, and all of the edges incident on
these two vertices, may then be removed from the graph
[15]. The deletion of these vertices may produce a new sin-
gly connected site, which may then be treated in the same
way. This process of iteratively removing singly connected
vertices and their neighbors is called leaf removal, as illus-
trated in Fig. 1. Once leaf removal has been carried out to
completion, the graph that remains is called the core of the
graph. The iterative leaf-removal process can be carried out
in polynomial time, so that if the core is small, the MIS can
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be found efficiently. The core percolation threshold is the
bond concentration at which an extensive core cluster
emerges (as illustrated in Fig. 1) and at this point finding the
MIS on this extensive cluster becomes computationally hard,
using conventional methods. In Sec. III, we present an analy-
sis of the scaling behavior of the core percolation process on
bond diluted triangular lattices.

B. Transfer matrix method

Finding the cardinality of a MIS is NP-complete [8] while
counting MIS is in #P [16,17], even on planar graphs. The
transfer matrix method we develop may be used to solve
both the cardinality and counting variants of MIS on arbi-
trary graphs. To illustrate the method, we first solve these
problems analytically on one-dimensional bond-diluted
chains. We then extend the method to the triangular lattice,
focusing on the strip geometry that is the most efficient for
transfer matrix methods.

The transfer matrix (TM) method is a standard technique
in statistical physics. It was used by Onsager to analyze the
finite temperature phase transition of the two-dimensional
Ising model [18]. To analyze NP-complete and #P-complete
MIS problems we need to take the zero temperature limit of
the usual transfer matrix of statistical physics. To do this
exactly, we use the transfer matrix to construct a generating
function G(z), which keeps account of the number of inde-
pendent sets with a given cardinality. Using the TM method,
we find

G(z)= > az, (2)
]

where z=eP* and q, is the degeneracy of an independent set
and [ is its cardinality. The MIS is the highest order term in
the “independence polynomial” G(z), and the prefactor of
this term is the degeneracy of the MIS. The transfer matrix
for a chain with Hamiltonian (1) is

Ti(n,n") =exp[- Blenn' + Bun] (3)

where n=0,1, n'=0,1. =1 if the bond between sites i+ 1
and i is present while €;=0 otherwise. The transfer matrix 7;
takes the calculation from site i to site i+ 1. The partition
function for an L site chain is given by

L-1

Z(B,,LL,J): f HTI 1 s (4’)

i=1
where |1) is determined by the boundary conditions at the
end of the chain and the state (f] is determined by the bound-
ary conditions at the beginning of the chain. For a one-
dimensional bond-diluted chain, only two matrices occur,
corresponding to the cases €=1 and €=0. In appropriate
limits, i.e., Bu—o0, J/u— oo, and defining z=FExp[Bu] the

two matr l.CeS are
Z 0

for the case €;=1 and
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FIG. 2. (Color online) Plots
of the raw data for core percola-
tion on a bond diluted triangular
lattice. (a) The spanning probabil-
ity, Py as a function of the bond
concentration, p, for a range of
values of number of sites in
the graph, N. (b) The infinite
cluster probability, P, as a

function of p for a range of values
of the sample size N. In this
figure the data for sample

size (number of configurations)
are as follows:  10°(100),
5X103(1000),  2.5X10°(100),
10°(10000), 5 X 10*(10000),
4 10*(1000), 10%(2 X 10%),
5000(10%), 3025(10%), and
1000(2 X 10*). The data are or-
dered according to increasing
sample size, starting from the top,
on the low concentration sides of
the graph.

11
T = ( ) (6)
z z

for €;,=0. The initial vector for a chain with free boundaries
includes two possibilities: the last site is unoccupied (not part
of MIS), and the last site occupied (part of MIS) so that

[1)=(1,2). (7)

The final state is |[f)=(1,1) as we seek the maximum inde-
pendent set over all possible configurations of the first site in
the chain.

As an example consider a chain consisting of four con-
nected sites. We then expect G(z)=(f|T°|1). The generating
function is found iteratively by acting on the state |1) with
matrix 7. For example the first iteration T'|1) yields, |2)
=(1+z,2). A key reduction in complexity occurs in searching
for the MIS as in that case, we need only keep the highest-
order terms in each element of 7’| 1). Using this reduction, we
find [2)=(z,z). This reduction preserves both the exact cal-

culation of the MIS and its degeneracy. Continuing this pro-
cedure, we find, [3)=T|2)=(2z,7%), |4)=T|3)=(z%,27%). In
carrying out this process, we find a generating function that
has the correct highest-order term but that omits many of the
lower-order terms. This reduced generating function, Gg(z),
for the case of four sites in a chain is

Gr(z) = (fl4) =32 (8)

From this we find that the four site chain has MIS of cardi-
nality two, with degeneracy three. From the vector |4), we
deduce that two of the three degenerate states corresponds to
the site m=4 being part of the MIS, while one of the three
degenerate states corresponds to the site m=4 not being part
of the MIS. With this information it is possible to iterate
backwards to find the three degenerate states: (1010),
(0101),(1001).

In order to check the calculations of Sec. II C, it is useful
to also calculate the average cardinality and entropy of di-
luted chains analytically. This is carried out as follows. For
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FIG. 3. (Color online) Analy-
sis of spanning probability. (a) A
plot of the quantity dP,/dp as a
function of p using the data of
Fig. 2. (b) A plot of &p’=(p?
—(p.)* as a function of lattice size
L on a double logarithmic graph.
The dashed line is a line of best to
all of the data, from which we ex-
tract the estimate v=1.37(3). A fit
to the largest five sample sizes
yields v=1.34(2). (c) Plot of the
average value of p. as a function
of dp.. That is, for each sample
size we find p.(L) and &p.(L)
from the data in (a). Extrapolation
to find the intercept of this graph
yields an unbiased estimate of the
percolation threshold and from
this analysis we find,
p.=0.4690(4).
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bond probability p, the number of times n(s,p,L) a sequence
of s connected sites occurs in a system containing L sites is

n(s,p,L) =Lp* (1 - p)*. )

The maximum independent set for s even and s odd are given
by

(s—1)
2

i,=5/2; i,= +1, (10)
respectively. The degeneracies of the MIS in each of these
cases is easily seen to be,

s
d==+1; d=1. 11
=3 A (11)

The average MIS for a bond-diluted linear chain is then

iy= 3 nls.p.L)iy= —=—. (12)
=1 (1 +P)

The average entropy of the diluted chain is given by (s)
=(In(d,)) so that

(s)=(1=p)’L2 p*Ins +1]. (13)
s=1

Equations (12) and (13) are the average MIS and the average
entropy for the bond-diluted chain.

In two-dimensional systems, the transfer matrix is studied
in “strips,” which consist of lattices of relatively small width
W, but that have a large length L. This geometry is useful in
exact calculations [18], as well as in numerical studies. The
triangular lattice is amenable to this analysis and is an inter-
esting MIS problem because it has odd loops, which lead to
geometrical frustration. We construct a strip of the triangular
lattice by taking a square lattice and placing a 45° diagonal
edge across each square. The bonds in this lattice are then
removed with probability 1—p. We have considered both pe-
riodic and free boundary conditions in the width direction
and used free boundaries in the length direction. With this
geometry, the elements of the transfer matrix are

Tk(n,n’) — e—BJ(EU_ E[-jn[-nj+2ij Eij”i"//')"'ﬁ'u’zi " (14)

The vectors n (corresponding to configurations at layer k
+1) and n’ (corresponding to configurations at layer k) now
have dimension 2%. The first and last sum in Eq. (14) are
over sites that are within the (k+ 1)th layer, whereas the sec-
ond sum is over the edges which join sites in the kth layer to
those in the (k+1)th layer.

The generating function is still of the form given in Eq.

),
m—1
G =\ rl Il 1|1 ). (15)
k=1

where for a given instance, the matrices 7, may be different.
The final state is simply (f|=(1,1,1...), while the initial
state depends on the bonds that are present in the first col-
umn of the lattice. If there are no bonds present, the initial
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state is most simply written as, |1)= ®§<=1(1 ,z), which is the
direct product of the one-dimensional initial condition (1,z).
If there are bonds in the first column of the lattice, all states
with two occupied sites at the end of a present bond have an
entry of zero in the initial state. Section IV presents results
for the MIS cardinality and degeneracy found using this
transfer matrix method.

C. Local probability recursion (LOPR) algorithms

LOPR algorithms work with continuous probabilities at
each site, instead of with the occupancy variables n;, which
are discrete, i.e., zero or one, in the hard core lattice gas. We
define the probability P; that a site is part of the MIS and
V;=1-P; is the probability that a site is not part of the MIS,
which is equivalent to the probability that a site is part of the
minimum vertex cover (MVC). If a lattice gas particle is
present P;=1, while if the site is empty, P;=0. However, in
the ensemble of possible ground states, there is the additional
possibility that some sites are occupied in some ground states
and unoccupied in others. LOPR algorithms allow this pos-
sibility by allowing the continuum of possibilities 0= P;
=< 1. If P;=0, the site i is frozen vacant because there are no
ground states in which this site is part of the MIS. Similarly
if P;=1, site i is always part of the MIS. LOPR algorithms
are an improved approximation as they take into account the
possibility of degeneracy; however, they are not exact as
they treat the correlations in the ground state using local
procedures which may converge to a local optimum instead
of the global optimum that we seek.

The simplest LOPR algorithm for maximum independent
set is based on a simple update rule: A site is part of the MIS
provided all of its connected neighbors are not part of the
MIS, implying that

v(i)
Pizl_[[l_Pn(j)] (16)
j=1

where i is the site which is being updated, v(i) is the number
of sites to which it is connected, and n(i) is the set of neigh-
boring sites. The vertex LOPR algorithm then consists of
simple iteration of Eq. (16). The computational time required
is then O(Nv,,,n;;), where N is the number of nodes in the
graph, v, i the number of neighbors of the most highly
connected node in the graph, and n;, is the number of sweeps
of the lattice required for convergence of the site probabili-
ties P;. We find that n;, is at most a few thousand even for
lattices of N=50 000 sites.

Our implementation of the vertex LOPR algorithm is as
follows. We generate a graph and initialize the algorithm by
assigning continuous random values of 0=<P;=<1 to each of
the sites of the graph. We then sweep through all of the sites
of the graph, in a randomized order, updating P; at each site
using Eq. (16). We find that after several hundred sweeps of
the lattice, the LOPR procedure leads to a steady-state value
of P; on each site. For small lattice sizes, this procedure finds
the exact MIS; however, for larger lattices and particularly
beyond the “core percolation” threshold metastability is
more likely.
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FIG. 4. (Color online) Analy-
sis of infinite cluster probability;
(a) A finite size scaling analysis
for a range of closely spaced val-
ues of p=c/z, where ¢
=2.811,2.812,...,2.818, where
the bottom curve is for ¢=2.811.
From this data, we find that criti-
cal value of c¢ is 2.815(2) (solid
line in the figure), so that p,
=0.4692(4), and B/v=0.135(10)
from fitting to the largest five
sample sizes, without use of cor-
rections to scaling; (b) A scaling
plot of the infinite cluster prob-
ability. The best data collapse, as
presented in the figure, was found
for p.=0.4692, B/v=0.135, v
=1.35. (c) Analysis of the infinite
cluster probability data using a
next to leading order finite size
correction, as given by Eq. (29),
for B/v=0.08,0.1,0.12,0.14 for
data at p.=0.4692.
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FIG. 5. (Color online) (a) A

“ plot of the average cluster size on

N approach to p,. from below for lat-
10 tices of size N=10240000 sites.
From this plot we extract the ex-
ponent y=2.16(3). (b) A double

logarithmic plot of the cluster size
distribution at 0.4692 for a lattice
of size N=10240000 sites. The
dashed line has slope —2.09(5).
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The vertex LOPR algorithm is the simplest in a series of
probability-based algorithms. The next simplest possibility is
a bond-based algorithm, where we introduce four bond prob-
abilities, xi, x§,, x,x%, which correspond, respectively, to
occupancies 00, 01, 10, and the degenerate possibility 10 or
01 of the two sites i and j at the ends of the bond. Clearly,
configuration 11 is not allowed for the MIS. This bond-based
procedure is similar to algorithms introduced recently for
KSAT [19,20]. To simplify the formula, we introduce,

Yij = H (1-Py).

ken(i)\j

(17)

We then define the pair probabilities,

xf{o= (1 _yij)(l _yji)s xilj()=yij(1 _yji)’

Xgl =(1- yij)yji’ Xg =YiiYjis

where xg is the probability that the bond configuration is
degenerate as it may be either 10 or O1. The probability that
site i is part of the MIS is on average,

p512(%+%@ (19)
v 2

In Sec. IV, results found using Egs. (16)—(19) will be com-
pared to similar calculations using the transfer matrix
method described above.

The LOPR algorithms above allow the probabilities to
vary from site to site in the graph. It is possible to build
analytic approximations based on these algorithms by mak-
ing a symmetric approximation. In the case of the site algo-
rithm [Eq. (16)], the symmetric approximation is based on

056112-7
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the recurrence formula for the probability that a site is cer-
tainly part of the MIS (i.e., that it is frozen and occupied), Py,
which is given by

Py= (1 _pr)a, (20)
for a Bethe lattice of coordination z and with @=z—1. Simi-
larly, the probability that a site is certainly part of the mini-
mum vertex cover (i.e., frozen and unoccupied in the MIS) is
given by

Vf:l—(l—PRf)a—apr(l—PPF)a_l- (21)

Note that the second term in Eq. (21) is necessary because
when one site at the lower level is uncovered, an edge con-
necting it to the next level up may be covered by covering
either of its ends. If we assume that each end is part of the
MIS with probability 1/2, we find that the average value of
the MIS is given by

(P)= P+ 5paP (1 - pPp)*". (22)

In the random graph limit, this expression reduces to the
replica symmetric result

_WE) | W

(P 2c

(23)

c
where W(c)=cP is the Lambert function and the solution to
Eq. (20) in the random graph limit N—o, with p=c/N
[5,10].

III. CORE PERCOLATION

As outlined in Sec. II A, the core of a graph is found by
iterative leaf removal. In this section, we study the percola-
tive properties of the core found in this way. The initial state
is produced by random dilution of bonds from a triangular

056112-8
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infinite lattice behavior. The data
were generated using the same
samples as that presented in Fig.
6.
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lattice until a fraction p of the bonds remain. This corre- n(s,p) ~ s f,(s6p) L— oo, (26)
sponds to an average site connectivity of ¢=6p, for a trian-
gular lattice. The scaling behavior of the core, which remains and
after leaf removal, is analyzed using well-established meth- - v
Y g (s) ~ op~fu(SpL'"), (27)

ods [21].

We focus on three percolative properties: (i) the spanning
probability P, which is the probability that a core cluster
spans the lattice; (ii) the infinite cluster probability P.,, which
is the probability that a site is part of the core cluster that
spans the lattice; and (iii) core cluster numbers n(s,p) and
the average cluster size (s). Near the core percolation thresh-
old p,., if the transition is second order, the scaling behavior
of these quantities is expected to be

P(p) ~ f(8pL"") (24)

where Sp=|p—p.

s

P.(p) ~ LP"f.(spL""), (25)

where the scaling functions f,f..,f,.f, in Egs. (24), (25),
and (27) include the finite size scaling behaviors and enable
determination of B, v, and 7y, while Eq. (26) is the scaling
behavior in the infinite lattice limit and enables determina-
tion of 7, the cluster size exponent at p.. Only two of the
above exponents are independent, and a check on the calcu-
lations is provided by various exponent relations, for ex-
ample,

a+2B+vy=2, dv=2-a.

/537'— 1 (28)

=2’

The standard two-dimensional (i.e., d=2) percolation values
are, B=5/36(0.139), v=4/3(1.33), 7=187/91(2.05), and y

056112-9



FAY 1V, LIU, AND DUXBURY

TABLE 1. The MIS per site, (i)/N, and entropy per site, (s)/N,
for 11 values of the bond concentration p of bond diluted triangular
lattices. The results were found by linear extrapolation as a function
of 1/W [see Figs. 6(b) and 7(b)] for strips of up to width W=11 and
for strip length, L=10 000.

p (i)/N (s)/IN
0.0 1.0 0.0

0.1 0.7944 0.0937
0.2 0.6790 0.1071
0.3 0.5961 0.1053
0.4 0.5339 0.0977
0.5 0.4835 0.0875
0.6 0.4389 0.0766
0.7 0.4012 0.0632
0.8 0.3663 0.0496
0.9 0.3374 0.0262
1.0 0.3333 0.0

=43/18(2.39), and the conventional bond percolation thresh-
old on a triangular lattice occurs at p,=0.34729 [21].

Raw data for core percolation on a triangular lattice are
presented in Fig. 2, from which it is clear that the percolation
threshold is significantly higher than the conventional perco-
lation value.

A more refined analysis of the spanning probability data is
presented in Fig. 3, where Fig. 3(a) is the derivative dP,/dp,
which is the probability that a spanning cluster first appears
at p. The average value of p. is then given by (p.)
=[pdpdP,/dp and its second moment is (p?)
=[p*dpdP,/dp. An unbiased estimate of the exponent v is
found by using, dp>=(p>)—(p.)>~ L. Aplot of dp, vs L is
presented on a log-log plot in Fig. 3(b), from which we find
that v=1.34(2).

A determination of the value of the critical threshold is
presented in Fig. 3(c), where we present data for the average
value of p. as a function of the variation in the value of p..
This plot removes the dependence on the critical exponents
and gives a less biased estimate of p,., which is the intercept
of this graph and from which we find that the core percola-
tion threshold is given by p.=0.4690(4).

A double logarithmic plot of the finite size scaling behav-
ior of the infinite cluster data is presented in Fig. 4(a) for a
range of closely spaced values of the bond concentration p.
For p<p,, the infinite cluster probability approaches zero
exponentially, while for p > p.. it approaches a constant value
exponentially. However at p=p,. there is power-law scaling,
with P.,(p.) ~ L™"”. From the double logarithmic plot of Fig.
4(a), we find that power-law scaling occurs at the threshold
value p,.=0.4692(4), and B/v=0.163 from a fit to all samples
sizes and a smaller value 8/v=0.135 from a fit to the largest
five sample sizes. Both of these values are significantly
higher than the usual percolation value of 0.104; however,
the decrease in B/ v with fits to larger L suggests that anoma-
lous finite size corrections may be important. A further test of
the scaling behavior of P., is presented in the scaling plot in

PHYSICAL REVIEW E 73, 056112 (2006)

FIG. 8. The maximum independent set on bond diluted triangu-
lar lattices. (a) Site LOPR and (b) bond LOPR. Open circles are
sites where P;=1, filled circles have P;=0 and the hatched sites
have intermediate values of the probability P;.

Fig. 4(b). A very good data collapse if found for p,
=0.4692, B/v=0.135, v=1.35, though considerable variation
in these values is possible without affecting the quality of the
fit significantly. The value of 8 determined from the analysis
of Figs. 4(a) and 4(b) is significantly higher than the standard
percolation value B=5/36=0.139. However, it is well
known that determination of B in correlated percolation
problems can be strongly affected by higher-order finite size
scaling corrections [22]. An analysis of the data of Fig. 4(a)
using an anomalous scaling correction [22,23] is presented in
Fig. 4(c). We used the form

P.=aL™P"(1 +bL™) (29)

so that —In P,/In L=B/v—-Ina/ln L-bL™"/In L, where we
have assumed that »L™" is small. The value of the correction
to scaling exponent determined from this analysis lies in the
range w=0.25—0.42 for B/v=0.08 —0.14. This is a rela-
tively small correction to scaling exponent and provides un-
derstanding of why the B exponent we observe in a naive fit
[Fig. 4(b)] is higher than expected. The data is certainly con-
sistent with a conventional exponent 3/v=0.104 but with a
correction to scaling exponent w=0.35(5).

An analysis of the cluster statistics is presented in Fig. 5.
In figure 5(a), we present an analysis of the y using data on
a large lattice. The value of y we find from a naive fit is
significantly smaller than the conventional percolation value;
however, it is consistent with the larger value of 3, which
occurs on these lattices sizes. The correction to scaling ex-
ponent, which affects 3, also affects vy (e.g., via the exponent
relation a+2B+ y=2), and hence also may reconcile this dis-
crepancy. In Fig. 5(b), a double logarithmic plot of a histo-
gram of the cluster numbers at percolation is presented.
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From this data, we find that 7=2.09(5), which is consistent
with the conventional value.

From the analysis presented in Figs. 2-5, we have found
that core percolation on bond-diluted triangular lattices oc-
curs at bond concentration 0.4692(4), which is considerably
higher than that of conventional percolation, which occurs at
p.=0.34729. The transition remains continuous and has the
thermal exponent v=1.34(2), which is consistent with the
conventional value. The exponent 7 for core percolation is
also consistent with the conventional value; however, a naive
analysis of the order parameter exponent 8 and the suscep-
tibility exponent vy yield values that are considerably differ-
ent from the conventional values. These deviations may be
real in that the fractal dimension of the core may be different
from the fractal dimension of the percolative infinite cluster,
as occurs for the backbone in conventional percolation.
However, the value of B found here is quite close to the
conventional value so that the deviations can also be recon-

—_

ciled by the presence of strong corrections to scaling as in-
dicated in Fig. 4(c) for B.

IV. DENSITY AND DEGENERACY OF THE MIS

In this section, we find the MIS for bond-diluted triangu-
lar lattices, first using the exact transfer matrix method and
then using local probability recursion (LOPR) methods.

A. Transfer matrix results

The transfer matrix method gives exact results for strips
of width W and length L, with a total number of sites N
=LW. From Egs. (14) and (15), it is evident that the compu-
tational complexity of this approach, for the triangular lat-
tices studied here, scales as L2%", while the storage require-
ment increases as 22%. Because of this scaling, it is efficient
to carry out calculations for long chains (large L) but of
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limited width, W. However, we find that there is rapid con-
vergence to the infinite lattice value as a function of W, so
that accurate values of the average MIS and its degeneracy
can be found by extrapolation from relatively small values of
W.

Figures 6 and 7 present the results of the transfer matrix
calculations of the average cardinality, (i/)/N, and the average
entropy, (s)/N of the MIS for a range of values of W, for
strips of length L>W. The entropy of the MIS is (s)
=In(D), where D is the degeneracy of the MIS and is calcu-
lated exactly from the transfer matrix method for finite strips.
It is evident that the transfer matrix results converge rapidly
and uniformly to the infinite lattice limit and that a linear
extrapolation to this limit is possible [see Figs. 6(b) and
7(b)]. One notable feature of Fig. 6(b) is that for small con-
centrations p the entropy of the MIS increases with increas-
ing system size, whereas for larger p, the entropy decreases

with increasing systems size. The change in behavior be-
tween these two regimes occurs for p <p..

The results of linear extrapolations of data, such as that
presented in Figs. 6 and 7, are captured in Table I, for L
=10 000. We found that for L> W, there is little dependence
of either (i)/N or {s)/N on the strip length. The results pre-
sented in Table I are compared to approximate LOPR results
in Sec. IV B.

B. Local probability recursion (LOPR) results

The results presented below were found using Eq. (16) for
the site algorithm and Egs. (17)—(19) for the edge algorithm
using double precision on 32-bit linux PCs. The site prob-
abilities, P; were converged to an accuracy of 5X 1078, We
wrote two different codes, one in Fortran and the other in
C++. These codes give identical results, for the same set of
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graphs, initial conditions, and convergence criteria.

An illustration of the results for the probabilities P; using
the site algorithm [Eq. (16)] are presented in Fig. 8(a), while
those found using the edge algorithm [Egs. (17)—(19)] for the
same sample are presented in Fig. 8(b). In these figures, the
open circles indicate a site that has probability 1 of being in
the MIS, while those with filled circles have probability, P;
=0. The hatched sites have a probability between 0 and 1,
i.e., 0<P;<1. The most notable feature of these graphs is
the fact that the vertex based algorithm [Fig. 8(a)] has a
strong tendency to freeze the probabilities to their binary
values while the bond algorithm freezes very few sites
[see Fig. 8(b)].

A histogram of the probabilities for large lattices for three
values of the bond concentration are presented in Figs. 9(a)
(site algorithm) and 9(b) (bond algorithm). The graphs of
Fig. 9 illustrate the variability in the site probabilities that is
typical of hard computational problems and that there is a
nontrivial order parameter distribution. There are some pro-
nounced peaks in these probabilities at low-order rational
values, in addition to the sharp peaks at the binary values
P=1 and P=0. The strong peaks at 0 and 1 show that the site
algorithm finds a far greater number of integer probability
“frozen” sites as compared to the edge algorithm. As the
average coordination c¢ of the graph increases the degenerate
continuum decreases for the site algorithm; but for the bond
algorithm, the degeneracy increases with increasing c, indi-
cating a higher degeneracy. The average value of the MIS
found from the site and bond algorithms are presented in Fig.
10(a), along with the average MIS found using the transfer
matrix method, and the symmetric Bethe lattice result of Eqs.
(20)—(22). Despite the differences in the number of frozen
sites, the site and bond LOPR results for the average MIS are
remarkably similar. In addition, the LOPR results are quite
close to the transfer matrix results and are a very significant
improvement over the symmetric Bethe approximation. The
average fraction of frozen sites is presented in Fig. 10(b),
where results from the site and bond LOPR methods are
compared to the symmetric Bethe approximation and to ex-
act results on small lattices [10]. It is evident from these
results that the LOPR algorithms do not correctly capture the
fracture of frozen sites, with the site algorithm being better
but significantly higher than the true values while the bond
algorithm is remarkably poor in this regard.

PHYSICAL REVIEW E 73, 056112 (2006)

V. SUMMARY

We have explored the behavior of core percolation and the
maximum independent set on bond-diluted triangular lat-
tices. The core that remains after iterative leaf removal un-
dergoes a continuous percolative phase transition at a bond
threshold of p,=0.4692(4) with thermal exponent consistent
with conventional percolation. The order parameter and sus-
ceptibility exponents are significantly different from the con-
ventional values even on lattice of ten million sites. For ex-
ample a naive fit yields 8=0.18(1), which is significantly
higher than the conventional value of 8=5/36~0.138, but it
is much smaller than the value for the backbone in percola-
tion, which is 0.48(1). Moreover, the small deviation of the
core exponent found from the conventional percolation value
for B may be reconciled by the presence of strong correc-
tions to scaling as illustrated in Fig. 4(c).

We introduced a transfer matrix method for finding the
exact cardinality and degeneracy of the maximum indepen-
dent set. Using this method, we carried out detailed calcula-
tions of the average cardinality per site (i)/N and the average
entropy per site (s)/N of bond diluted triangular lattices, and
by extrapolation found very accurate results for the infinite
lattice values of these quantities, as presented in Table I. The
computational complexity of the transfer matrix method is
O(L exp(aW)), where a is O(1) for strips of width W and
length L, making the strip geometry favorable computation-
ally.

The transfer matrix results were compared to the results
of local probability recursion (LOPR) methods based on ver-
tex and bond schemes. LOPR methods yield values for the
average MIS that are precise for p <p,, where the symmetric
Bethe approximation is expected to be exact [10], and are
accurate at the 1-2 % level for p > p. where replica symme-
try breaking is important. LOPR methods perform poorly in
calculating the fraction of frozen sites with the bond algo-
rithm being particularly erroneous [see Fig. 10(b)]. The fact
that the site method overestimates the frozen fraction while
the bond method underestimates it suggests that hybrid site
and/or bond schemes may be promising.
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