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Generalized local-world models for weighted networks
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Based on the weighted scale-free network model proposed by Barrat, Barthélemy, and Vespignani [Phys.
Rev. Lett. 92, 228701 (2004)] and enlightened by our local-world concept [Li and Chen, Physica A 328, 274
(2003)], we propose two generalized local-world (GLW) models for weighted complex networks. Theoretical
analysis and numerical simulations show that the GLW models generate weighted networks as a crossover
between exponential and scale-free weighted networks, and exhibit an alteration from assortative networks to

disassortative networks.
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I. INTRODUCTION

From food webs [1], the Internet [2], and traffic networks
[7.8], networked structures appear in a wide array of com-
plex systems. Although Boolean structures are quite informa-
tive, which have led to a number of important progresses in
the understanding of complex systems, including small-
world and scale-free phenomena [3,4], one may put a step
forward to consider physical features more realistically. A
weighted network, in which connections between nodes in
the network display heterogeneity in the capacity and inten-
sity, is one of the most straightforward generalizations in this
direction. For example, in the scientific collaboration net-
work (SCN) [5,6], nodes are identified as authors, and
weights depend on the frequencies of their collaborations,
i.e., the number of coauthored papers. In the world-wide air-
port network (WAN) [7,8], each given weight is the number
of available seats on the direct flight between two connected
cities.

Mathematically, a weighted network is characterized
by a generalized adjacency matrix W, whose element w;;
denotes the weight of the edge between node i and node j.
Here, we restrict our interest to undirected networks
where weights are symmetric, and assume that w;=0.
Naturally, as the generalization of degree k; of node i, the
strength of node i is defined as s;==;_p(w;;, where I'(i)
denotes the set of neighbors of node i. Recently, Barrat ef al.
[4] made a detailed analysis on the structure of real-life
weighted networks, including the SCN and the WAN, and
stated that both weighted networks not only exhibit power-
law degree distributions, but also have the power-law form
of the weight distribution P(w)~w~? and the strength distri-
bution P(s)~s~® Moreover, the strengths are highly corre-
lated with the degrees, which display the scale-free property
of s~k# with B=1 [9,10]. In order to explain these promi-
nent properties, Barrat, Barthélemy, and Vespignani (BBV)
built a simple evolving network model to study the dynami-
cal evolution of weighted networks based on two basic in-
gredients of the exponential growth and preferential attach-
ment mechanism [11]. Fundamentally, the BBV model can
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be considered as a generalization of the Barabasi-Albert
(BA) unweighted scale-free network model [4], and success-
fully yields scale-free properties of degrees, weights, and
strengths.

On the other hand, although many unweighted networks
are indeed scale-free [12,13], there are several examples
of complex networks, such as the small networks of interac-
tions among plants and animals [14,15], that exhibit an
exponential truncation of the power-law behavior for large
degrees. These broad-scale networks [15] are more homoge-
neous than scale-free networks. Many explanations are
provided for such phenomena, including the small size of
networks [16,17], and the mechanisms of the addition of
edges determined by aging or connection costs [18], forbid-
dance [19], information filtering [18,20], local and global
information [21,26], and the recent “initial core” theory [15].
In particular, we presented a local-world (LW) unweighted
evolving network model [21] after the study of the
World Trade Web (WTW) [22]. Theoretical analysis and nu-
merical simulations show that the LW model represents a
crossover between exponential and power-law scalings,
which has been applied to model the Internet [25]. Can a
generalized local-world model be built for weighted
networks? How much effect does a local-world model have
on the degrees, weights, and strengths in the evolution of
weighted networks? In this work, we attempt to answer these
questions in order to understand how the local-world
phenomenon affects the dynamical evolution of weighted
networks.

The rest of this paper is organized as follows. In Sec. II,
we introduce the original local-world model, and propose
two generalized local-world (GLW) models for weighted
networks. In Secs. Il and IV, we analytically study two
GLW models with numerical simulations, whose properties
of cluster coefficients and degree correlations are further
studied in Sec. V. Finally, in Sec. VI, we conclude the whole
work.

II. THE GENERALIZED LOCAL-WORLD MODELS
A. The local-world model for unweighted networks

A local-world is a small community with a few nodes in a
network. There are numerical examples of a local-world in
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various real-life complex networks, which include, for in-
stance, the families in protein-protein interaction networks,
the regional economy cooperative organizations in the world
trading networks, and the domains in computer networks. We
argued that each node in a network only has local connec-
tions, and only has local information on the entire network.
Consequently, the preferential attachment mechanism does
not work on the global network, which was adopted in the
BA scale-free model, but does work in a local-world scale.
For example, it was observed in the WTW that many coun-
tries accelerate their economy collaborations in various re-
gional economy cooperative organizations, such as the EU,
ASEAN, and NAFTA [22]. On the Internet, a new host pre-
fers to join the network by connecting with hosts in the same
domain. In the social network, a newcomer is willing to con-
tact with his neighbors first.

The local-world model for unweighted networks starts
from an initial configuration of m, nodes connected by a few
edges, and evolves based on two dominating mechanisms:
the determination of a local world, and the topological
growth [21].

(i) Determination of a local-world. Randomly choose M
nodes from the existing network, which constitute the local-
world of the new coming node at every time step.

(ii) Topological growth. Add a new node with m edges to
m previously existing nodes in its local-world determined in
step (i), where the nodes are preferentially chosen with the
probability T .,(n—1i),

k:
I geq(n — i) =I1"(i € local-world) ————,

flocal 15

J

where I1'(i € local-world) =M/ (t+my).
After ¢ time steps, this procedure yields a network with
N=t+mgy nodes and mt edges.

B. Generalized local-world models for weighted networks

Inspired by the LW model, we first present a generalized
local-world model (GLW-I) for weighted networks based on
the BBV model, which starts from an initial configuration of
mq nodes connected by a few edges with their assigned
weights wy=1. This model evolves with three mechanisms:
the determination of a local world, the topological growth,
and the weight’s dynamics.

(I) Determination of a local-world. Randomly choose
M nodes from the existing network, which constitute
the local-world of the new coming node at every time
step.

(I1) Topological growth. Add a new node with m edges to
m nodes in its local-world, according to the probability

Mgea(n — ) =11"(i € local-world)L, (1)

jlocal s Jj

where I1'(i € local-world) =M/ (t+my).

(IIT) Weight’s dynamics-1. The weight of each new edge
(n—1i) is initially set to a given value wy=1. The creation of
this edge will introduce variations of the traffic across the
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network. For the sake of simplicity, we assume that the ad-
dition of a new edge on node i only triggers local rearrange-
ments of weights on its neighbors j € I'(i), according to the
rule

Wi — wii+ Aw;. (2)
Here, Aw;; depends on the local dynamics, which can be a
function of different parameters such as the weight w;;, the
connectivity, or the strength of node i. In the following, we
assume that the addition of a new edge induces an increase
of § (6=const) of the total outgoing traffic, where the per-
turbation is proportionally distributed among the edges ac-
cording to their weights,

Wi
Therefore, this rule yields a strength increase of 5+ w for
node i, implying that s;— s;,+ 0+ wy,.

After the weights have been updated, the growing process
is repeated by introducing a new node, and returns to step (I)
until the desired size of the network is reached.

Recently, Hu et al. [23] introduced a traffic-driven (TR)
model for technological networks. They argued that the traf-
fic as well as its dynamics plays a key role in understanding
the evolution of technological networks, which drives us to
propose another new generalized local-world model (GLW-
II) for weighted networks. The only difference between the
GLW-II model and the GLW-I model lies in the weight’s
dynamics, which is stated for the GLW-II model as follows:

(IIlr) Weight’s dynamics-II. From the start of network
growing, the traffic of all nodes in the local-world chosen in
(I) will constantly increase with the probability proportional
to the node strength s;(Zj0ca 5;)”! at every time step. We
assume that the growing speed of the total traffic in the net-
work is a discrete constant W. Therefore, at every time step,
the newly created traffic of node i is

s.
AWi = W—l (4)

2 jloc;\] s Jj

which will be preferentially arranged to those neighbors hav-
ing larger edge weights with probability w;;/s;. After the
weights have been updated, the growing process is repeated
by adding a new node, and returns to step (I) until the desired
size of the network is reached.

III. ANALYTICAL RESULTS OF THE GLW-I MODEL

At every time step 1, m =M =mg+t. There are two limit-
ing cases in the GLW-I model.

A. Case A: M=m

In this case, the new node connects to every node in its
local-world, which means the preferential attachment selec-
tion is not effective during the network evolution. In this
case, the distributions of degrees, weights, and strengths de-
cay exponentially (Fig. 1).
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FIG. 1. (Color online) (a) The cumulative strength distribution
P(s) and (b) the cumulative weight distribution P(w) of the GLW-I
model in Case A. The distributions decay exponentially. All net-
works are generated with m=3, the size of local-world M =3, and
the networks size N=4000. Each curve in the figure is the average
result of five groups of networks.

B. Case B: M=t+m,

In this case, the local-world is the same as the whole
network, which keeps growing with the time evolution.
Hence, the local-world model in this case is exactly the same
as the BBV model (Fig. 2).

When M =m, the distributions of degrees, weights, and
strengths are very close to those of Case A, and decay
exponentially. When M =m+t, the distributions of degrees,
weights, and strengths are similar to those of Case B, follow-
ing power-law distributions. Therefore, as M increases
from m to my+¢, the GLW-I model represents a crossover
between the exponential and power-law scalings, as illus-
trated in Fig. 3.

Assume that the addition of m edges at every time step ¢ is
uncorrelated. Using the mean-field method [11], we can ob-
tain an analytic result for the general case of m <M <t+my,.
Since the random selection of M nodes as the local-world at
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FIG. 2. (Color online) (a) The cumulative strength distribution
P(s) and (b) the cumulative weight distribution P(w) of the GLW-I
model in Case B. The distributions are of power-law form.
All networks are generated with m=3, the size of local-world
M =t+m, and the network size N=4000. Each curve in the figure is
the average result of five groups of networks.

time step ¢ in the network having 7+m( nodes, we can treat k,
w, s and the time ¢ as continuous variables using continuous
approximations. Therefore, the evolution of weight w;; is

dwi(1) N N
_‘CZZZ‘L = Hlocal(” - l)még(s + 1_[local(n - J)mé\sj_(f)
_ M . s(1) sVl
L+myg Elocal s(t) si(D)
SO Wi
+m o
2loc:al sl(t) sj(t)
= o Elocal Sl(t)
Considering
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FIG. 3. (Color online) Properties of the GLW-I model. (a) The cumulative degree distribution P(k), (b) the cumulative strength distri-
bution P(s), (c) the cumulative weight distribution P(w), and (d) the strength s; of node i with degree k;. Networks are generated with
M=4, 10, and 30, respectively, and m=3, 6=6, and the network size N=4000. Each curve in the figure is the average result of five groups

of networks.

(sp =20, 50/t +mg) = 2m(1 + O/t +mg),  (5)

2 local Sl(t) = <S1>M, (6)
1

we rewrite the evolution equation as

Wi _ s Wi _ g Wi )
dt (1+6)t t
where 6=6/(1+6). The edge (i—j) is created at

t;=max(i,j) with the initial condition w;;(#;;)=1. Therefore,
we have

wy(t) = (t/tij)0~ (®)
Furthermore, the evolution equations for s; and k; are
ds; aw;;
— = —Hpmll, . (n—i
dt ; d local( )
5,(t) M 5i(t)

1
5%

+ m
(140t t+m Elocalsl(t)

5 1 Si(t)
=|— 4+ —|—
1+6 2(1+6)] ¢
_25+1M
T 28+2 ¢

U ©)
t

where A=(25+1)/(26+2), and
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FIG. 4. (Color online) (a) The cumulative strength distribution
P(s) and (b) the cumulative weight distribution P(w) of the GLW-II
model in Case A. The distributions decay exponentially. All net-
works are generated with m=3, the size of local-world M =3, and
the networks size N=4000. Each curve in the figure is the average
result of five groups of networks.

dk; . 1 si(0)
oo mlljeq(n — i) = 2622 1 (10)
Considering that k;(t=i)=s;(t=i)=m, we finally obtain
5i(1) = m(1li)*, (11)
s;(t) +2mé
k(1) == 12
=" (12)

Equation (12) shows a linear relationship between the de-
grees and the strengths, whose scale-free distributions share
the same power-law exponent
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FIG. 5. (Color online) (a) The cumulative strength distribution
P(s) and (b) the cumulative weight distribution P(w) of the GLW-II
model in Case B. The distributions are of power-law form. All
networks are generated with m=3, the size of local-world M=t
+my, and the networks size N=4000. Each curve in the figure is the
average result of five groups of networks.

1 46+3
1+—= .
N 26+1

Y= (13)
That means, when m<<M <t+m, the distributions of de-
grees, strengths, and weights follow the same power law as
that of the BBV model, as portrayed in Fig. 3.

When M=m, i.e., without the mechanism of preferential
attachment, the degrees, strengths, and weights of the GLW-I
model are proportional, and the model generates a homoge-
neous weighted network with k;~<k;), s;,~(s;), and
w;j~(w;;), which becomes more heterogeneous as M in-
creases from m. Thus the GLW-I model exhibits a crossover
of weighted networks between exponential and power-law
scalings.

IV. ANALYTICAL RESULTS OF THE GLW-II MODEL

Similarly, there are also two limiting cases in the GLW-II
model.
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FIG. 6. (Color online) Properties of the GLW-II model. (a) The cumulative degree distribution P(k), (b) the cumulative strength
distribution P(s), (c) the cumulative weight distribution P(w), and (d) the strength s; of node i with degree k;. Networks are generated with
m=3, W=06, and the networks size N=4000. Each curve in the figure is the average result of five groups of networks.

A. Case A: M=m

In this case, the distributions of degrees, weights, and
strengths decay exponentially, as illustrated in Fig. 4.

B. Case B: M=t+m,

In this case, the local-world is the same as the whole
network, and the local-world model is exactly the same as
the traffic-driven model, as shown in Fig. 5.

As in the case of the GLW-I model, when M =m, the
distributions of degrees, weights, and strengths decay expo-
nentially. When M =my+t, the distributions of degrees,
weights, and strengths follow power-law distributions.
Therefore, as M increases from m to mg+t, the GLW-II
model also represents a crossover between exponential and
power-law distributions, as illustrated in Fig. 6.

We assume that the addition of m edges at every time step
is uncorrelated. Similar to that of the GLW-I model, in the
general case of m <M <t+my, we treat k, w, s, and the time

t as continuous variables. Therefore, the weight w;; evolves

as

Since
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FIG. 7. (Color online) (a) Average clustering coefficient C(k)
and (b) average nearest-neighbor degree k,,(k) of the GLW-I model.
Networks are generated with M=3,4,10,30,7+m,, respectively,
m=3, 6=6, and N=4000. Each curve in the figure is the average
result of five groups of networks.

2 jocar Si(1) = 2(W + m)Mtl(t + mo) (14)
we rewrite the evolution equation as
awij - —U_9. K’l’ (1 5)
dt - W+m t t

where 0=W/(m+W).
ty=max(i,j) with the
yields

The edge (i—j) is created at
initial condition wy(;)=1, which

(16)

Therefore, the evolution equations for s; and k; are
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FIG. 8. (Color online) (a) Average clustering coefficient C(k)
and (b) average nearest-neighbor degree ky,(k) of the GLW-II
model. Networks are generated with M=3,4,10,30,¢+m,, respec-
tively, m=3, W=6, and N=4000. Each curve in the figure is the
average result of five groups of networks.

dSl' dWi*
o 2}: 7[ +mlgeq(n — i)
2MW > Wi M si(t)
= + m
=+ o 2local sl(t) =+ o 2local S](t)
B CW+mM 5,1 _ 2W+m M
t+my Elocal sty 2W+2m 1
(1
ey (17)
1t
where A\=(2W+m)/(2W+2m), and
dk; . m_ si(t)
o mllgeq(n — i) = Wem 1 (18)

Considering that k;(t=i)=s;(t=i)=m, we finally have
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s:(t) = m(tli)*, (19)
2W+ S
k() =m> . (20)

Equation (20) shows a linear relationship between the de-
grees and the strengths, whose scale-invariant distributions
share the same power-law exponent

m
2W+m'

1
Yu=1+_-=2+ (21)
A
Therefore, when m < M <t+m,, the distributions of degrees,
strengths, and weights follow the same power law as that of
the traffic-driven model.

V. CLUSTERING AND CORRELATIONS

We now further investigate the topological properties of
the GLW models in terms of clustering and degree correla-
tions. The clustering coefficient ¢; of node i is defined as the
fraction of the neighbors of node i, which are also neighbors
of each other, and the average clustering coefficient C(k)
with degree k is defined as

L > (22)

‘W= 3w =,

For some real-life networks, C(k)~ k™%, which is associated
with the hierarchy of network structure. Here, « is the hier-
archical exponent [24].

The correlation between degrees of neighboring nodes is
another important concept. Since it is very difficult to calcu-
late the conditional distribution P(k’|k), which represents the
probability of a given node with degree k connected to an-
other node of degree k', a more convenient measurement is
to calculate the average nearest-neighbor degree (ANND) of
a given node with degree k as follows [10]:

1 A
kon(k) = 2 k' P(K'[K) = ——— >, K. 23
(k) kE (k[k) NP(k)mék (23)

A network is said to be assortative if k,,(k) increases with k,
which indicates that nodes having large degrees are prefer-
entially connected with other nodes also having large de-
grees; on the other hand, a network is said to be disassorta-
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tive if k,,(k) decreases with k, indicating those nodes having
large degrees are preferentially connected with other nodes
having small degrees.

We fix m=3 and N=4000, and investigate the clustering
and correlation properties of the GLW models with different
local-world scales. We first focus on the GLW-I model. As
shown in Fig. 7(a), for a small M, C(k) is an increasing
power-law function of k, which means low-degree nodes
have small cluster coefficients and high-degree nodes have
large cluster coefficients, i.e., high-degree nodes are close to
each other. As M increases, cluster coefficients of low-degree
nodes increase and cluster coefficients of high-degree nodes
decrease. When M =t+m, C(k) displays a power-law decay.
Therefore, the GLW-I model exhibits a clustering transition
depending on the parameter M, the scale of a local-world.

Analogous properties are observed in the spectrum of de-
gree correlations. For a small M, k,,(k) is an increasing func-
tion of k, indicating that high-degree nodes are preferentially
connected with each other, i.e., the network is asssortative.
As M increases, the ANNDs of small-degree nodes increase,
and the curve of k,,(k) becomes flat. When M=t+m,, the
disassortativeness finally emerges in the power-law k,,=k™,
as shown in Fig. 7(b). Therefore, when m <M <mgy+t, the
GLW-I model exhibits a transition of the degree correlation
between the asssortativeness and disassortativeness. Similar
transitions of C(k) and K,,(k) also exist in the GLW-II
model, as shown in Fig. 8.

VI. CONCLUSIONS

In this work, we have proposed two generalized local-
world (GLW) models for weighted networks based on a
combination of two weighted scale-free models and the
local-world concept. The GLW models exhibit a crossover
between exponential and scale-free weighted networks, and
an alteration from assortativeness to disassortativeness. The
practical applications of the GLW models to real complex
networks should be explored in the near future.
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