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Counterions at charged rodlike polymers exhibit a condensation transition at a critical temperature �or,
equivalently, at a critical linear charge density for polymers�, which dramatically influences various static and
dynamic properties of charged polymer solutions. We address the critical and universal aspects of this transi-
tion for counterions at a single charged cylinder in two and three spatial dimensions using numerical and
analytical methods. By introducing a Monte Carlo sampling method in logarithmic radial scale, we are able to
numerically simulate the critical limit of infinite system size �corresponding to the infinite-dilution limit� within
tractable equilibration times. The critical exponents are determined for the inverse moments of the counterionic
density profile �which play the role of the order parameters and represent the mean inverse localization length
of counterions� both within mean-field theory and within Monte Carlo simulations. In three dimensions �3D�,
we demonstrate that correlation effects �neglected within mean-field theory� lead to an excessive accumulation
of counterions near the charged cylinder below the critical temperature �i.e., in the condensation phase�, while
surprisingly, the critical region exhibits universal critical exponents in accordance with mean-field theory. Also
in contrast with the typical trend in bulk critical phenomena, where fluctuations become more enhanced in
lower dimensions, we demonstrate, using both numerical and analytical approaches, that mean-field theory
becomes exact for the two-dimensional �2D� counterion-cylinder system at all temperatures �Manning param-
eters�, when the number of counterions tends to infinity. For a finite number of particles, however, the 2D
problem displays a series of peculiar singular points �with diverging heat capacity�, which reflect successive
delocalization events of individual counterions from the central cylinder. In both 2D and 3D, the heat capacity
shows a universal jump at the critical point and the internal energy develops a pronounced peak. The
asymptotic behavior of the energy peak location is used to determine the critical temperature, which is also
found to be in agreement with the mean-field prediction.
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I. INTRODUCTION

Electrostatics of charged polymer solutions is often domi-
nated by small oppositely charged ions �counterions� that
maintain their global electroneutrality. Many charged poly-
mers, such as tubulin, actin, fd-viruses, and DNA, are stiff
and may be represented by straight cylinders �on length
scales smaller than the persistence length�. Neglecting many-
ion effects, a single counterion is attracted by an electrostatic
potential that grows logarithmically with the radial distance
from the central cylinder. But since the counterion confine-
ment entropy also shows a logarithmic dependence on the
radial distance, it was suggested by Onsager �1� that a coun-
terion delocalization transition occurs at a critical cylinder
charge or, equivalently, at a critical temperature. Onsager’s
argument, which is strictly valid for a single particle, was
soon corroborated by mean-field studies �1–14�, which dem-
onstrate that a charged cylinder can indeed bind or condense
a finite fraction of counterions below a critical temperature
�even in the limit of infinite system size with no confining
boundaries�, while above the critical temperature, all counte-
rions decondense and diffuse to infinity.

This counterion-condensation transition �CCT� dramati-
cally affects a whole number of static and dynamic quantities
as observed in recent experiments on charged polymers
�1,2,6,7,15–21�: upon condensation, the polymer charge is
screened, leading, for instance, to a significant reduction in
electrophoretic mobility �18,21� and conductivity �20� of
polymers. It also triggers striking phenomena such as
counterion-induced attraction between like-charged poly-
mers, which is believed to be responsible for the formation
of compact phases of F-actin �22� and DNA �23�. Since its
discovery, counterion condensation has been at the focus of
numerical �24–28� and analytical �28–50� studies.

The CCT at a charged cylinder is regulated by a dimen-
sionless control parameter �=q�B�, known as the Manning
parameter �1�, which depends on the linear charge density of
the cylinder, −�e, charge valency of counterions, +q, and the
Bjerrum length �B=e2 / �4���0kBT� accommodating the am-
bient temperature T and the medium dielectric constant �.
The Manning parameter plays the role of the inverse rescaled
temperature and can be varied experimentally by changing
the linear charge density �using synthetic chains or various
pH� �17,19–21� or by varying the medium dielectric constant
�by mixing different solvents� �18,21�. According to mean-
field theory �1–14�, condensation occurs above the critical
value �c=1. In experiments, the critical Manning parameter
appears to be about unity, but large deviations have also been
reported �20,21,51� and the precise location of the critical
point is still debated �21�.
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On the other hand, it is known that the critical tempera-
ture may in general be influenced by correlations and fluc-
tuations, which are not captured within mean-field theory
�52�. These effects typically cause deviations from mean-
field predictions in both nonuniversal and universal quanti-
ties below the upper critical dimension. Surprisingly, the
mean-field prediction for the CCT threshold, �c, has not been
questioned in the literature and apparently assumed to be
exact. Likewise, the existence of universal scaling relations
and critical exponents associated with the CCT has not been
addressed, neither on the mean-field level nor in the presence
of correlations.

Our chief goal in this paper is to address the following
issues: �i� what is the exact threshold of the CCT, �c, and �ii�
what are the critical exponents associated with this transition
in three �3D� and two �2D� spatial dimensions. We shall also
address the type of singularities that emerge in thermody-
namic quantities when the CCT occurs.

To establish a systematic analysis of the correlation ef-
fects, we employ Monte Carlo simulations for counterions at
a single charged cylinder using a sampling method �centrifu-
gal sampling�, which is realized by mapping the radial coor-
dinate to a logarithmic scale. This enables us to investigate
the critical behavior of counterions in the limit of infinite
system size �i.e., when the lateral confining boundaries tend
to infinity� within tractable equilibration times in the simula-
tions. The importance of taking a very large system size be-
comes evident by noting that the lateral finite-size effects,
which mask the critical behavior near �c, depend on the loga-
rithm of the system size in the cylindrical geometry
�1,2,4,9–13,53–57� and thus cause a quite weak convergence
to the critical limit. This will be made clear more systemati-
cally later in this paper.

Our simulations provide the first numerical results for the
asymptotic properties of the CCT and systematically incor-
porate correlation effects �a brief report of some of our re-
sults has been presented previously in Ref. �28��. Note that
the relevance of electrostatic correlations is in general iden-
tified by a dimensionless coupling parameter �=2�q3�B

2 �s,
where �s=� / �2�R� is the surface charge density and R the
radius of the charged cylinder. Mean-field theory becomes
exact in the limit �→0 �59,60�, while in the converse limit
of strong coupling, ��1, counterionic correlations typically
play an important role and lead to drastic changes �58–63�.

In order to investigate scaling properties of the CCT in
various regimes of the coupling parameter, we focus on the
inverse moments of the counterionic density profile, which
play the role of the “order parameters” for this transition;
they represent the mean inverse localization length of coun-
terions. Using a combined finite-size-scaling analysis with
respect to both the lateral size of the system and the number
of counterions, we show that the order parameters indeed
adopt a scale-invariant form in the vicinity of the critical
point. The critical exponents associated with the reduced
temperature and the size parameters are determined both
within the simulations and also analytically within two lim-
iting theories of the mean field and strong coupling. As a
main result, we find that the critical exponents of the CCT
are universal �that is, independent of the coupling parameter
varied over several decades 0.1	�	105� and appear to be

in close agreement with the mean-field prediction. Surpris-
ingly, we find that the critical Manning parameter is also
universal; it is determined as �c=1.000±0.002, which agrees
with the mean-field prediction. �This latter quantity is deter-
mined from the asymptotic behavior of the location of a
singular peak that emerges in the internal energy of the sys-
tem.� The excess heat capacity is found to vanish at small
Manning parameters �i.e., in the decondensation phase� but
exhibits a universal jump at the transition point, indicating
that the CCT may be regarded as a second-order transition as
also suggested in a recent mean-field study �40�.

As will be shown, the validity of mean-field predictions
breaks down in 3D when the Manning parameter is increased
beyond the critical value �i.e., in the condensation phase�.
Here interparticle correlations become significant at large
coupling and lead to an enhanced accumulation of counteri-
ons near the cylinder surface that agrees with the strong-
coupling theory �59–63�. The fraction of condensed counte-
rions �i.e., those counterions that remain associated with the
central cylinder in the infinite-system-size limit� is, however,
found to be unaffected by the correlations effects. It equals
the Manning limiting value at all realistic couplings.

In order to bring out possible role of fluctuations, we also
study the CCT in a 2D counterion-cylinder system �equiva-
lent to a 3D system composed of a central charged cylinder
and parallel cylindrical “counterions” with logarithmic Cou-
lomb interactions, as may be applicable to an experimental
system of oriented cationic and anionic polymers �64–67��.
For a finite number of counterions, a peculiar series of sin-
gular points emerges in the order parameters and thermody-
namic quantities that reflect successive delocalization events
of individual counterions as the Manning parameter varies.
As the number of particles increases, the singular points tend
to merge, and eventually in the thermodynamic limit, the 2D
results tend to the mean-field predictions. Therefore, in con-
trast to the typical situation in bulk critical phenomena, the
CCT in 2D is found to be in exact agreement with mean-field
theory for the whole range of Manning parameters �rescaled
temperatures� when the number of counterions tends to in-
finity. As will be shown, the simulation results in 2D can be
reproduced using an approximate analytical approach. A
more systematic theory for the 2D problem has been devel-
oped recently in Ref. �46�.

The organization of this paper is as follows: in Secs.
II–VI, we focus on the counterion-cylinder system in three
dimensions. Our model is introduced in Sec. II, where we
shall also outline the general method proposed for the inves-
tigation of the CCT. In Sec. III, we derive the scaling rela-
tions for order parameters and determine the asymptotic be-
havior of thermodynamic quantities within mean-field theory
�which is the same in all dimensions�. In Sec. IV, analytical
results are obtained within the strong-coupling theory. The
numerical analysis of the CCT for various coupling strengths
will be presented in Secs. V–VIII in three and two dimen-
sions.

II. COUNTERION-CONDENSATION TRANSITION
IN THREE DIMENSIONS

A. Cell model for charged rodlike polymers

We consider a standard, primitive cell model �53–57�,
consisting of a single charged cylinder of radius R and point-
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like neutralizing counterions of charge valency +q that are
confined laterally in an outer �coaxial� cylindrical box of
radius D—see Fig. 1. The cylinder has an infinite length L
and a uniform �surface� charge distribution −��x�e, where
��x�=�s
�r−R�. �Note that q and �s are given in units of the
elementary charge e and are positive by definition.� The cyl-
inder is assumed to be rigid and impenetrable to counterions
and the dielectric medium is represented by a uniform dielec-
tric constant �. In three dimensions, electric charges interact
via bare Coulombic interaction

v3D�x� =
1

�x�
. �1�

The electroneutrality condition holds globally inside the cell
and entails the relation

qN = �L , �2�

where N is the number of counterions in the cell and �
=2�R�s represents the linear charge density of the cylinder.
The system is described by the Hamiltonian

HN

kBT
= q2�B�

�ij�
v3D�xi − x j� − q�B�

i=1

N 	 v3D�x − xi���x�dx

+
�B

2
	 ��x�v3D�x − x����x��dx dx�, �3�

which comprises Coulomb repulsion between counterions lo-
cated at 
xi� �first term�, counterion-cylinder attraction �sec-
ond term�, and the self-energy of the cylinder �last term�. It
can be written as

HN

kBT
= q2�B�

�ij�
v3D�xi − x j� + 2��

i=1

N

ln� ri

R

 + C0, �4�

where ri= �xi
2+yi

2�1/2 is the radial distance of the ith counter-
ion from the cylinder axis �z axis� and � is the Manning
parameter of the system �1�,

� = q�B� , �5�

with �B=e2 / �4���0kBT� being the Bjerrum length �in water
and at room temperature �B�7 Å�. The additive term C0 in
Eq. �4� is related to the cylinder self-energy; it will be im-
portant in obtaining a convergent energy expression in the
simulations �Sec. V B and Appendix D�.

B. Dimensionless description

The parameter space of the system may be spanned by a
minimal set of independent dimensionless parameters given
by the ratios between characteristic length scales. These
length scales are the rescaled Bjerrum length q2�B, the Gouy-
Chapman length

� =
1

2�q�B�s
, �6�

and the radius of the charged cylinder, R, and that of the
outer boundary, D. The rescaled cylinder radius

R̃ =
R

�
= � �7�

equals the Manning parameter �. The ratio between the res-
caled Bjerrum length and the Gouy-Chapman length gives
the so-called electrostatic coupling parameter �59�,

� =
q2�B

�
= 2�q3�B

2 �s, �8�

which, in general, identifies the importance of electrostatic
correlations in a charged system �59–63�. The ratio between
the length scales D and R enters only through its logarithm
�53,54�

� � ln�D

R

 , �9�

which will be referred to hereafter as the lateral extension
parameter.

The dimensionless form of the Hamiltonian is obtained by
rescaling the spatial coordinates as x̃=x /� �59�—i.e.,

HN

kBT
= ��

�ij�
v3D�x̃i − x̃ j� + 2��

i=1

N

ln� r̃i

R̃

 + C0. �10�

The electroneutrality condition �2� in rescaled units reads

2��L̃ = 2��N , �11�

with the left-hand side being simply the rescaled area of the
cylinder covered by electric charges. The thermodynamic
limit is obtained for N→
 and L→
, but keeping N /L

=� /q �or, equivalently, N / L̃=� /�� fixed.

FIG. 1. The three-dimensional model consists of a charged cyl-
inder of infinite length L and its neutralizing counterions confined
in a cylindrical box �see the text for parameters�.
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C. CCT as a generic binding-unbinding transition

The statistical physics of the present model may be inves-
tigated using the canonical partition function

ZN =
�3N

N!
	

Ṽ
��

i=1

N

dz̃i d�i dr̃i r̃i�exp�−
HN

kBT
� , �12�

represented in cylindrical coordinates x̃i= �r̃i ,�i , z̃i�, with the

spatial integral running over the volume Ṽ of the space ac-

cessible for counterions—i.e., R̃� r̃� D̃.
Naively, one may conjecture that the partition function

�12� diverges in a certain range of Manning parameters,

when the upper boundary of the radial integrals, D̃, tends to
infinity �68�, because the logarithmic form of the counterion-
cylinder interaction gives rise to algebraic prefactors of the
form r̃i

1−2� in the integrand. The possible emergence of a
divergency in a charged cylindrical system was first pointed
out by Onsager and the connection with the counterion-
condensation transition was discussed by Manning �1�.

Here we demonstrate this peculiar point using a transfor-
mation of coordinates, which provides the basis for our nu-
merical simulations considered later in Secs. V and VI. The
radial coordinate is transformed as

y = ln� r̃

R̃

 , �13�

upon which the partition function in Eq. �12� transforms as

ZN =
�3NR̃2N

N!
	

Ṽ
��

i=1

N

dz̃i d�i dyi�exp�−
HN

*

kBT
� , �14�

where the volume integral runs over the region 0�y��
=ln�D /R� and

HN
*

kBT
= �

i=1

N

W�yi� + ��
�ij�

v3D�x̃i − x̃ j� + C0 �15�

is the transformed Hamiltonian of the system with

W�y� = 2�� − 1�y . �16�

As seen, the original partition function is now mapped to the
partition function of a system of interacting �repelling� par-
ticles in a linear potential well W�y�. This latter quantity
includes the counterion-cylinder attraction potential 2�y, as
well as a fictitious centrifugal potential −2y, from the mea-
sure of the radial integral.

For small Manning parameter �	1, the potential well
W�y� becomes purely repulsive suggesting that counterions
unbind �or “decondense”� from the central cylinder departing
to infinity as the outer boundary tends to infinity, �
=ln�D /R�→
, while for ��1, the potential well exerts an
attractive force upon counterions. This might lead to partial
binding �or “condensation”� of counterions even in the ab-
sence of confining walls. The new representation of ZN, Eq.
�14�, therefore, reflects the interplay between energetic and
entropic factors on a microscopic level.

Note that the rigorous analytical derivation of the afore-
mentioned unbinding transition �based on the full partition

function� is still missing and only limiting cases have been
examined analytically �Sec. II E�.

D. Onsager instability

As a simple illustrative case, let us consider a “hypotheti-
cal” system, in which mutual counterionic repulsions are
switched off. The partition function �12� thus factorizes as
ZN�Z1

N, where

Z1 = 	
0

�

dy e2�1−��y =
e2�1−��� − 1

2�1 − ��
�17�

is the single-particle partition function. It diverges for �	1,
when the lateral extension parameter tends to infinity, �
→
, which implies complete counterion decondensation,
because the probability P�r��exp�−2� ln r� /Z1 of finding
counterions at any finite distance r from the cylinder tends to
zero �equivalent to a vanishing density profile, ��r�=NP�r��.
But Z1 and thus the counterionic density profile remain finite
for ��1, indicating that �c=1 is the onset of the CCT on the
single-particle level, which we shall term here as the On-
sager instability �in the spirit of Onsager’s original argument
�1��. Onsager instability captures the basic features of the
CCT. It exhibits the characteristic logarithmic convergence
�via �=ln D /R� to the critical limit as the volume per poly-
mer ��D2� goes to infinity. Also as we show in Appendix A,
it displays algebraic singularities in energy and heat capacity
at �c=1, which may be characterized by a set of scaling
exponents. Such scaling properties play a crucial in our
analysis of the CCT in the following sections.

We emphasize here that the results obtained within On-
sager instability are by no means conclusive since, as will be
shown later, interparticle interactions lead to qualitative dif-
ferences. In particular, it turns out that a diverging partition
function is not necessarily an indication of the onset of the
CCT as asserted by the forgoing single-particle argument.

E. Beyond the Onsager instability: Many-body
effects and electrostatic correlations

Many-body contributions involved in the full partition
function �12� render systematic analysis of the CCT quite
difficult. The analytical results are available in the
asymptotic limits of �i� vanishing coupling parameter �
→0, which leads to mean-field or Poisson-Boltzmann �PB�
theory, and �ii� infinite coupling parameter �→
, which
leads to the strong-coupling �SC� theory �59�. In the mean-
field approximation �case �i��, statistical correlations among
counterions are systematically neglected. In the opposite
limit of strong coupling �case �ii��, the leading contribution
to the partition function takes a very simple form comprising
only the one-particle �counterion-cylinder� contributions; it
results from strong electrostatic correlations between counte-
rions near the surface �59–63,69�. We study the mean-field
predictions for the CCT in Sec. III. The SC description re-
sembles the Onsager instability and will be discussed in Sec.
IV. The perturbative improvement of these two limiting theo-
ries for finite coupling parameter is formally possible by
computing higher-order correction terms �as previously per-
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formed for planar charged walls �59,60,62,63��, but will not
be considered here.

Interestingly, in both limiting cases, the CCT threshold is
found to be the same—i.e., �c=1—which is due to the sim-
plified form of the counterionic correlations. An important
question is whether the critical Manning parameter �c varies
with the coupling parameter in the intermediate regime. Such
a behavior may be expected because the Manning parameter
represents the rescaled inverse temperature of the system
�i.e., �=T* /T with T*�q�e2 / �4���0kB��, which, as known
from bulk critical phenomena �52�, may be shifted from its
mean-field value due to interparticle correlations. Also it is
interesting to examine whether the CCT exhibits scale-
invariant properties near �c and if it can be classified in terms
of a universal class of critical scaling exponents. In general,
critical scaling relations represent the relevant characteristic
properties of continuous phase transitions �52�.

To address these issues, one has to define quantities which
can serve as order parameters of the CCT. In the following
section, we shall introduce such quantities and, by focusing
on the mean-field limit, show that the order parameters in-
deed exhibit scaling behavior near the critical point. We re-
turn to the influence of electrostatic correlations on the criti-
cal Manning parameter and scaling exponents of the CCT in
the subsequent sections.

III. MEAN-FIELD THEORY
FOR THE COUNTERION-CONDENSATION

TRANSITION

A. Nonlinear Poisson-Boltzmann equation

The mean-field theory can be derived systematically using
a saddle-point analysis in the limit �→0 �59�. It is governed
by the well-known Poisson-Boltzmann equation, which, in
rescaled units, reads �Appendix B�

�x̃
2�PB = 2�̃�x̃� − �̃2�̃�x̃�e−�PB�x̃� �18�

for the dimensionless potential field �PB�x̃�. Here

�̃�x̃� = 
�r̃ − R̃� �19�

is the rescaled charge distribution of the cylinder and

�̃�x̃� = �̃�r̃� = �1, R̃ � r̃ � D̃ ,

0, otherwise,
� �20�

specifies the volume accessible to counterions. In the canoni-
cal ensemble, one has

�̃2

2
=

2��L̃

	 dx̃ �̃�x̃�exp�− �PB�
. �21�

Assuming the cylindrical symmetry �for an infinite cylin-
der� and using Eq. �18� together with the global electroneu-
trality condition �11�, one obtains

�r̃
d�PB

dr̃



r̃=R̃

= 2�, �r̃
d�PB

dr̃



r̃=D̃

= 0, �22�

which are used to solve the PB equation �18� in the nontrivial

region R̃� r̃� D̃ �53,54�. Thereby, one obtains both the free
energy �Sec. III D� and the rescaled radial density profile of
counterions:

�̃PB�r̃� =
�̃2

2
�̃�r̃�e−�PB�r̃�. �23�

The rescaled density profile �̃PB�r̃� is related to the actual
number density of counterions, �PB�r�, through �̃PB�r̃�
=�PB�r� / �2��B�s

2� �59� �Appendix B�.
As shown by Fuoss et al. �54�, the PB solution takes

different functional forms depending on whether � lies below
or above the threshold:

�* =
�

1 + �
, �24�

that is,

�PB�r̃�

= �ln� �̃2r̃2

2�2 sinh2�� ln
r̃

R̃
+ coth−1� − 1

� 
� , � � �*,

ln� �̃2r̃2

2�2 sin2�� ln
r̃

R̃
+ cot−1� − 1

� 
� , � � �*,�
�25�

where � is given by the transcendental equations

� = �
1 − �2

1 − � coth�− ���
, � � �*,

1 + �2

1 − � cot�− ���
, � � �*.� �26�

The PB density profile of counterions, Eq. �23�, is then ob-

tained for R̃� r̃� D̃ as

�̃PB�r̃� =
�2

r̃2

� �sinh−2�� ln
r̃

R̃
+ coth−1� − 1

� 
 , � � �*,

sin−2�� ln
r̃

R̃
+ cot−1� − 1

� 
 , � � �*,�
�27�

where we have arbitrarily chosen �PB�r̃= R̃�=0 to fix the
reference of the potential. This condition also fixes �̃ in Eq.
�25� as well as the radial density of counterions at contact
with the cylinder using Eq. �23�—i.e.,

�̃2

2
= �̃PB�R̃� =

1

�2 � ��� − 1�2 − �2, � � �*,

�� − 1�2 + �2, � � �*.
� �28�

The density profiles given by Eq. �27� are normalized to the
total number of counterions, N, a condition imposed via Eq.
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�21�. Using Eq. �23�, the normalization condition in rescaled
units reads �Appendix B�

	
R̃

D̃
dr̃ r̃ �̃PB�r̃� = � . �29�

B. Threshold of the CCT within PB theory

The threshold of the counterion-condensation transition
within the PB theory, �c

PB, was investigated by several work-
ers �9–14,54�. It can be determined from the asymptotic ��
→ 
 � behavior of the density profile as briefly reviewed be-
low.

First note that for ��1, the threshold �*, Eq. �24�, tends
to unity from below, i.e.

�* = 1 −
1

�
+ O��−2� . �30�

Therefore, for Manning parameter �	1, one may use the
first relation in Eq. �26� to obtain the limiting behavior of the
integration constant � as �Appendix C 1�

� = �1 − �� + O�e−2��1−��� , �31�

when �→
. Using this in Eq. �28�, one finds that the den-

sity of counterions at contact, �̃PB�R̃�, asymptotically van-
ishes. Hence, the density profile �23� at any finite distance
from the cylinder tends to zero,

�̃PB�r̃� → 0, �32�

for ��1 and in the limit �→
, which represents the decon-
densation regime. For ��1, on the other hand, one has �
→0 as � increases to infinity �Appendix C 1�, and thus using
Eq. �28�, one obtains

�̃PB�R̃� →
�� − 1�2

�2 . �33�

Using the second relation in Eq. �27� and expanding for
small �, the radial density profile follows as �10,70�

�̃PB�r̃� →
�� − 1�2

�2 � r̃

R̃
�−2�1 + �� − 1�ln

r̃

R̃
�−2

�34�

in the limit �→
, which is finite and therefore indicates
condensation of counterions �see also Appendix C 4�. This
proves that the mean-field critical point is given by

�c
PB = 1, �35�

corresponding to the mean-field critical temperature

Tc
PB =

q�e2

4���0kB
. �36�

C. Critical scale invariance: Mean-field exponents

It is readily seen from Eqs. �33� and �34� that the
asymptotic density of counterions adopts a scale-invariant or

homogeneous form with respect to the reduced Manning pa-
rameter,

� = 1 −
�c

PB

�
, �37�

in the vicinity of the critical point. Note that the reduced
Manning parameter equals the reduced temperature of the
system, t=1− �T /Tc

PB�, when other quantities such as the di-
electric constant � and the linear charge density of the cyl-
inder, �, are fixed. �Experimentally, however, the Manning
parameter is varied by changing � �18,21� or � �17,19–21� at
constant temperature, in which case, � can be related to the
reduced dielectric constant or the reduced linear charge den-
sity.�

In a finite confining box �finite ��, such scaling forms
with respect to � do not hold because the true CCT is sup-
pressed �i.e., the counterion density does not strictly vanish
at �c

PB=1�. Yet as a general trend �52�, we expect that for
sufficiently large �, the reminiscence of such scaling rela-
tions appears in the form of finite-size-scaling relations near
the transition point. These relations would involve both � and
the lateral extension parameter � �as the only relevant pa-
rameters in the mean-field limit� in a scale-invariant fashion
as will be shown below.

As possible candidates for the CCT “order parameters,”
we use the inverse moments of the counterionic density pro-
file:

Sn �� 1

r̃n� =

	
R̃

D̃
r̃ dr̃ r̃−n�̃�r̃�

	
R̃

D̃
r̃ dr̃ �̃�r̃�

, �38�

where n�0 �71�. Note that these quantities reflect mean in-
verse localization length of counterions. In the condensation
phase �where counterions adopt a finite density profile�, one
has Sn�0, indicating a finite localization length. But at the
critical point and in the decondensation phase �with vanish-
ing counterion density�, one has Sn=0 in the limit of infinite
system size �→
, indicating a diverging counterion local-
ization length.

In order to derive the mean-field finite-size-scaling rela-
tions for Sn, we focus on the PB solution in the regime of
Manning parameters ���*, since for any finite �, we have
�*��c

PB=1 from Eq. �24�. Inserting the first relation of Eq.
�27� into Eq. �38�, we obtain

Sn
PB =

�2

�
	

R̃

D̃
dr̃ r̃−n−1sin−2�� ln

r̃

R̃
+ cot−1� − 1

� 
 . �39�

Changing the integration variable as y=ln�r̃ / R̃�, we get

Sn
PB =

�2

�n+1	
0

�

dy e−nysin−2��y + cot−1� − 1

�

 . �40�

For ��1, the above relation may be approximated by a
simple analytic expression as �Appendix C 3�
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Sn
PB��,�� �

1

n
��2 + �2��,��� �41�

for �=1−�c
PB/� being sufficiently close to the critical value

�c
PB=0.

Using the above result, we may distinguish two limiting
cases, where different scaling relations emerge: �i� when �
→
 but � is finite and close to the critical value and �ii�
when � is finite and large, but � tends toward the critical
value—i.e., �→�c

PB=0.
In the limiting case �i�, as stated before, we have �→0

for the above-threshold regime, ��0; thus, using Eq. �41�,
we obtain

Sn
PB��,� → 
 � �

�2

n
. �42�

On the other hand, Sn
PB vanishes for ��0 �Appendix C 3�.

Hence, the following scaling relation is obtained in the
infinite-system-size limit �→
:

Sn
PB��, 
 � � ���PB/n , 0 � � � 1,

0, � � 0,
� �43�

which introduces the mean-field critical exponent associated
with the reduced Manning parameter, � �or the reduced tem-
perature t� as

�PB = 2. �44�

The mean-field counterion-condensation transition is there-
fore characterized by a diverging �localization� length scale
1 /S1

PB��−2 as the critical point is approached from above.
The scaling relation �43� may also be derived in a direct way
by considering an unbounded system ��= 
 � as shown in
Appendix C 4.

In the limiting case �ii� with �→�c
PB=0, we have from Eq.

�26� that ��� / �2�� when � is finite but large, ��1 �Ap-
pendix C 1�. Therefore, Eq. �41� gives

Sn
PB�0,�� �

�2

4n�2 , �45�

which introduces a new scaling relation

Sn
PB�0,�� � �−�PB �46�

with the mean-field critical exponent

�PB = 2 �47�

associated with the lateral extension parameter �. This finite-
size relation shows that the approach to the true critical limit
�where Sn

PB vanishes at the critical point� is logarithmically
weak as the box size D increases to infinity—i.e., Sn

PB��
=0��1/ �ln D /R�2.

The scaling relations �43� and �45� indicate that Sn
PB takes

a scale-invariant form with respect to � and � as

Sn
PB��,�� � �−�PBDn����PB/�PB� �48�

for sufficiently large � and in the vicinity of the critical
point. The scaling function Dn�u� has the following
asymptotic behavior:

Dn�u� � ��const� , u → 0,

u�PB/n , u → + 
 .
� �49�

Formally, such scale-invariant relations within the PB
theory are closely connected with the fact that the integration
constant ��� ,�� takes a scale-invariant form

� � �−1B���� �50�

near the critical point. Here B�u� is a scaling function which
behaves asymptotically as �Appendix C 1�

B�u� � �const, u → 0,

�u , u → + 
 .
� �51�

Combining Eqs. �41� and �50�, the scaling function Dn�u� is
obtained in terms of B�u� as

Dn�u� �
1

n
�u2 + B2�u�� , �52�

which reproduces Eq. �49� when combined with Eq. �51�.
Note that the mean-field critical exponents �PB and �PB

are independent of the density moment index n. These expo-
nents may be used to characterize the mean-field universality
class in all dimensions, since the PB results are independent
of the space dimension �72�.

D. Mean-field energy and heat capacity

As shown in a previous work �73�, the mean-field canoni-
cal free energy of the counterion-cylinder system may be
obtained using a saddle-point analysis from the field-
theoretic representation of the partition function in the limit

�→0 �59�. The rescaled PB free energy F̃PB

�FN
PB/ �NkBT� is given �discarding the trivial kinetic energy

part� by

F̃PB = −
1

�
	 r̃ dr̃�1

4
�d�PB

dr̃

2

+ 
�r̃ − R̃��PB�r̃��
− ln�1

�
	

R̃

D̃
r̃ dr̃ e−�PB�r̃�� − ln�2Vcyl

N�

 , �53�

where Vcyl=�R2L is the actual volume of the cylinder. In the
thermodynamic limit N→
, the ratio Vcyl /N is a constant
and will be dropped in what follows.

Inserting the PB potential field, Eq. �25�, into the free
energy expression �53�, we find that, for ���*,

F̃PB = −
1

�
��1 − �2�� + ln� �� − 1�2 + �2

1 + �2 
 + ��
+ ln��� − 1�2 + �2� − ln�2�� , �54�

while for ���*, we have

F̃PB = −
1

�
��1 + �2�� + ln� �� − 1�2 − �2

1 − �2 
 + ��
+ ln��� − 1�2 − �2� − ln�2�� . �55�

These expressions �up to some additive constants� have also
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been obtained by Lifson and Katchalsky �55� using a
charging-process method.

The rescaled �excess� internal energy ẼPB�EN
PB/ �NkBT�

and the rescaled �excess� heat capacity C̃PB�CN
PB/ �NkB� can

be calculated using the thermodynamic relations

ẼPB = �
�F̃PB

��
, �56�

C̃PB = − �2
�2F̃PB

��2 , �57�

where the derivatives are taken at fixed volume, number of
particles, and also fixed charges and dielectric constant. A
closed-form expression may be obtained for the internal en-
ergy using the relation EN

PB= ���0 /2��dx���PB�2, where
�PB=kBT�PB/qe is the potential field in actual units. In res-
caled units, the result is

ẼPB =
1

4�
	

R̃

D̃
r̃ dr̃�d�PB

dr̃

2

�58�

=
1

�
� ��1 + �2�� + ln� �� − 1�2 − �2

1 − �2 � + � , � � �*,

�1 − �2�� + ln� �� − 1�2 + �2

1 + �2 � + � , � � �*.�
�59�

In general, the thermodynamic quantities can be calcu-
lated numerically using the transcendental equation �26� for
�. But in the limit �→
, the asymptotic form of � �Appen-
dix C 1� may be used to obtain the asymptotic rescaled PB
free energy �73�

F̃PB = ��� − 2�� , � � �c
PB = 1,

− �/� , � � �c
PB = 1.

� �60�

The asymptotic rescaled PB energy follows as

ẼPB = ��� , � � �c
PB,

�/� , � � �c
PB,
� �61�

and the rescaled PB heat capacity as

C̃PB = �0, � 	 �c
PB,

2�/� , � � �c
PB.
� �62�

The above results show that both the internal energy and
the heat capacity develop a singular peak at the critical Man-
ning parameter �c

PB=1 when the limit �→
 is approached.
The PB results also show that the free energy diverges with
� both above and below the critical point, indicating that, in
contrast to the behavior obtained within the single-particle
Onsager instability �1� �Sec. II D and Appendix A�, a diverg-
ing partition function is not in general an indication of the
onset of the CCT.

Another important point is that the PB heat capacity ex-
hibits a discontinuity at �c

PB=1. Therefore, the CCT may be

regarded as a second-order transition as also pointed out in a
previous mean-field study �40�. We shall return to the singu-
lar behavior of energy and heat capacity later in our numeri-
cal studies.

IV. STRONG-COUPLING THEORY

In the limit of infinite coupling parameter, �→
, the
partition function of a charged system adopts an expansion in
powers of 1 /�, the leading term of which comprises only
single-particle contributions �59,60�. This leading-order
theory, referred to as the asymptotic strong-coupling theory,
describes the complementary limit to mean-field theory,
where interparticle correlations are expected to become im-
portant �59–63�.

The rescaled SC density profile for counterions is ob-
tained as

�̃SC�r̃� = �0�̃�r̃�e−ũ�r̃�, �63�

where ũ�r̃�=2� ln�r̃ / R̃� is the single-particle interaction en-
ergy and �0 is a normalization factor which is fixed by the
total number of counterions; it reads

�0 =
2�� − 1�

�
�1 − e−2��−1���−1. �64�

Note that for �→
, �0, and therefore the whole density
profile, vanishes for ��1. But for ��1, one obtains �0
→2��−1� /� and hence a finite limiting density profile

�̃SC�r̃� →
2�� − 1�

� � r̃

R̃

−2�

. �65�

This shows that the CCT is reproduced within the SC theory
as well, and surprisingly, the critical Manning parameter is
found to be �c

SC=1 in coincidence with the mean-field pre-
diction. Note, however, that the SC profile for ��1 indicates
a larger contact density for counterions as compared with the
mean-field result; e.g., for �→
, one has

�̃SC�R̃� =
2�� − 1�

�
, �66�

which is larger than the PB contact value �33� by a factor of

�̃SC�R̃� / �̃PB�R̃�=2�1−1/��−1. The SC profile, Eq. �65�, also
decays faster than the PB profile, Eq. �34�, indicating a more
compact counterionic layer near the cylinder. This reflects
strong ionic correlations in the condensation phase ���1�
for ��1 as will be discussed further in the numerical stud-
ies below.

Using Eq. �63�, the SC order parameters can be calculated
as

Sn
SC =

2�� − 1�
�n�2� − 2 + n�

1 − e−�2�−2+n��

1 − e−2��−1�� �67�

for arbitrary � and �. For �→
, Sn
SC vanishes for ���c

SC

=1, but takes a limiting form—i.e.,
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Sn
SC →

2�� − 1�
�n�2� − 2 + n�

, �68�

for ���c
SC=1. In the vicinity of the critical point, we find the

scaling relation

Sn
SC��,� → 
 � �

2�

n
, �69�

with the reduced Manning parameter 0	�=1−�c
SC/��1,

which yields the SC critical exponent �SC=1. In a finite sys-
tem and right at the critical point, we find the finite-size-
scaling relation

Sn
SC�0,�� �

1

n�
, �70�

with the lateral extension parameter ��1, which yields the
SC critical exponent �SC=1.

These exponents are different from the corresponding
mean-field exponents, Eqs. �44� and �47�. As will be shown
later, the SC theory in general breaks down near the CCT
critical point, while it remains valid as an asymptotic ��
→ 
 � theory above the critical point.

V. MONTE CARLO STUDY IN 3D

The preceding analysis reveals a set of scaling relations
for the counterion-condensation transition within the mean-
field ��→0� and strong-coupling ��→ 
 � theories in the
limit of infinite system size. In the following sections, we
shall use numerical methods to explore various regimes of
the coupling parameter � and, thereby, examine the validity
of the aforementioned analytical results.

A. Centrifugal sampling method

A major difficulty in studying the CCT numerically goes
back to the lack of an efficient sampling technique. Poor
sampling problem arises for counterions at charged curved
surfaces in the infinite-volume limit because, contrary to
charged plates, a finite fraction of counterions always tends
to unbind from curved boundaries and diffuse to infinity as
the system relaxes toward its equilibrium state. This situation
is, of course, not tractable in simulations; hence, to achieve
proper equilibration within a reasonable time, charged cylin-
ders are customarily considered in a confining box �in lateral
directions� of practically large size. As is well known
�4,10–12,25,27�, lateral finite-size effects are quite small for
sufficiently large Manning parameters ����c�. But at small
Manning parameters ����c�, these effects become signifi-
cant and suppress the decondensation of counterions.

The mean-field results already reveal a very weak conver-
gence to the critical infinite-volume limit for ���c, which is
controlled by the logarithmic size of the confining box �
=ln�D /R�. Hence one needs to consider a confining box of
extremely large radius D to establish the large-� regime,
where the scaling �and possibly universal� properties of the
CCT emerge. For this purpose, clearly, the simple-sampling
methods within Monte Carlo or molecular dynamics schemes

�24–27,74–76� are not useful at low Manning parameter as
they render an infinite relaxation time.

Here we introduce a sampling method within the Monte
Carlo scheme, which enables one to properly span the rel-
evant parts of the phase space for large confinement vol-
umes. In three dimensions, we use the configurational
Hamiltonian �10� in rescaled coordinates. The sampling
method, which we refer to as the centrifugal sampling, is
obtained by mapping the radial coordinate r̃ to a logarithmic

scale according to Eq. �13�—i.e., y=ln�r̃ / R̃�. This leads to
the transformed partition function �14�. As explained before
�Sec. II C�, the entropic �centrifugal� factor exp�2y� is ab-
sorbed from the measure of the radial integral into the
Hamiltonian, yielding the transformed Hamiltonian HN

* in
Eq. �15�.

We thus simulate the system using Metropolis algorithm
�77�, but make use of the transformed Hamiltonian �15�. The
entropic factors, which cause unbinding of counterions, are
hence incorporated into the transition probabilities of the as-
sociated Markov chain of states that leads to equilibrium
states with the distribution function �exp�−HN

* /kBT�. The

averaged quantities—say, Q̄—follow by extracting a set of ns

values 
Q1 , . . . ,Qns
� in the course of the simulation as Q̄

=�t=1
ns Qt /ns, which, for sufficiently large ns, produces the de-

sired ensemble average �Q�—i.e.,

Q̄ =
1

ns
�
t=1

ns

Qt �
�3NR̃2N

N ! ZN
	

Ṽ
��

i=1

N

dz̃i d�i dyi�
� Q�
yi,�i, z̃i��e−HN

* /kBT = �Q� , �71�

up to relative corrections of the order 1 /�ns.

B. Simulation model and parameters

The geometry of the counterion-cylinder system in our
simulations is similar to what we have sketched in Fig. 1. We
use typically between N=25 and 300 counterions �most of
the results are obtained with N=100 and 200� and increase
the lateral extension parameter up to �=300. We also vary
the Manning parameter � and consider a wide range of val-
ues for the coupling parameter, �, from �=0.1 �close to the
mean-field regime� up to �=105 �close to the strong-
coupling regime�.

The cylindrical simulation box has a finite height L̃,

which is set by the electroneutrality condition �11�—i.e., L̃
=N� /�. In order to mimic the thermodynamic limit and re-
duce the finite-size effects due to the finiteness of the cylin-
der height, we apply periodic boundary conditions in the z
direction �parallel to the cylinder axis� by replicating the
main simulation box infinitely many times in that direction.
The long-range character of the Coulomb interaction in such
a periodic system leads to the summation of infinite series
over all periodic images. These series are not generally con-
vergent, but in an electroneutral system, the divergencies
cancel and the series can be converted to fast-converging
series. We use the summation techniques due to Lekner �78�
and Sperb �79�, which are utilized for the one-dimensionally
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periodic system considered here—see Appendix D �similar
methods have been developed in Ref. �80��. Finally, in order
to obtain reliable values for the error bars, the standard
block-averaging scheme is used �81�. The simulations typi-
cally run for �1.1�106 Monte Carlo steps per particle with
�105 steps used for the equilibration purpose.

VI. SIMULATION RESULTS IN 3D

A. Global behavior in the infinite-system-size limit

1. Distribution of counterions

Let us start with the distribution of counterions as gener-
ated by the centrifugal sampling method. In Fig. 2 typical
simulation snapshots are shown together with the counteri-
onic density profile for small coupling parameter �=0.1.
The counterion distribution is shown for large ��=100�, in-
termediate ��=25�, and small ��=10� lateral extension pa-
rameters. The counterion-condensation transition is clearly
reproduced for large � �Fig. 2�a��: counterions are “decon-
densed” and gather at the outer boundary at small Manning
parameter �shown for �=0.7�, while they partially “con-
dense” and accumulate near the cylinder surface for large
Manning parameter �shown for �=2�. The Manning param-
eter �=1, as seen, represents an intermediate situation. This
trend is demonstrated on a quantitative level by the radial

density profile of counterions �̃�r̃� �Fig. 2�c�, main set�: �̃�r̃�
tends to zero by decreasing � down to about unity. Note that
relatively large fluctuations occur at low �, making �̃�r̃� an
inconvenient quantity to precisely locate the critical Manning
parameter �c, which will be determined later. The data, more-
over, follow the mean-field PB density profile, Eq. �27�,
shown by solid curves, as expected since the chosen cou-
pling parameter is small.

The transition regime at intermediate � exhibits strong
finite-size effects. As may be seen from the snapshots in Fig.
2�b�, counterion decondensation at �=1 is strongly sup-
pressed for small logarithmic sizes �=ln�D /R�=10 and 25.
Accordingly, the density profiles �inset of Fig. 2�c�� indicate
a sizable accumulation of counterions near the cylinder sur-
face, which is in fact washed away by increasing � to infin-
ity. Such finite-size effects at low � are also observed in
previous numerical studies, which have devised simulations
in linear scale and thus considered only small confinement
volumes per polymer �typically with �	10� �25,27,74–76�.
In some studies �82�, these effects have been interpreted as
evidence for counterion condensation at small �, leading to
the incorrect conclusion that no critical transition exists.

2. Condensed fraction of counterions

Our results for large � exhibit a counterionic density pro-
file that extends continuously from the cylinder surface to

FIG. 2. Typical snapshots from the simulations on the counterion-cylinder system in 3D for �a� lateral extension parameter
�=ln�D /R�=100 and three different Manning parameters �=0.7,1.0, and 2.0 as indicated on the graph and �b� for Manning parameter
�=1.0 and smaller lateral extension parameters �=10 and 25. The snapshots show top views of the simulation box �see Sec. V B and

Fig. 1� with radial distances shown in logarithmic scale y=ln�r̃ / R̃�. Pointlike counterions are shown by black spheres and the charged
cylinder by a circle in the middle. �c� gives the simulated radial density of counterions in rescaled units, �̃�r̃�=��r� / �2��B�s

2�, as a function
of the �linear� distance from the cylinder axis. Main set shows the data for �=100 and Manning parameters �=2.0 �open squares�, 1.5 �open
up triangles�, 1.1 �open diamonds�, 1.0 �solid squares�, and 0.7 �solid circles� from top to bottom. The inset shows the same for �=1.0, but
for various lateral extension parameters �=10, 25, and 100 �top to bottom�. Solid curves represent the mean-field PB prediction, Eq. �27�.
Number of counterions here is N=100 and the coupling parameter �=0.1. Error bars are smaller than the size of symbols.
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larger distances. This indicates that making a distinction be-
tween two layers of condensed and decondensed counteri-
ons, in the sense of two-fluid models frequently used in the
literature �1–8,31,33–37,42,43�, requires a criterion.

The two-fluid description predicts a fraction

�M = �0, � � 1,

1 − 1/� , � � 1,
� �72�

of counterions to reside in the condensed layer �which is
considered as a layer with small thickness at the polymer
surface�, when the infinite-dilution limit is reached. Previous
studies �9–11,13,14,25,38,45,47� show that the Manning
condensed fraction �M may also be identified systematically
within the Poisson-Boltzmann theory. This can be done by
employing an inflection-point criterion �25,38� for the PB
cumulative density, nPB�r� �the number of counterions inside
a cylindrical shell of radius r�, which is obtained as

nPB�r�
N

=
2�L

N
	

R

r

r� dr� �PB�r�� =
1

�

� ��� − 1� − � coth��y + coth−1� − 1

�
� , � � �*,

�� − 1� − � cot��y + cot−1� − 1

�
� , � � �*,�

�73�

using Eq. �27�. For ���*, nPB�r� exhibits an inflection point
at a radial distance r* when plotted as a function of y
=ln�r /R� �25,38�. One can show that for �→
, only the
fraction of counterions that lie within the cylindrical region
r�r* remains associated with the charged cylinder and tends
to the Manning condensed fraction—i.e.,

nPB�r*�
N

→ �M. �74�

In other words, only this fraction of counterions contributes
to the asymptotic density profile and the rest �1/� of all� is
pushed to infinity �Appendix C 4�.

The simulation results for the cumulative density as a

function of the logarithmic radial distance y=ln�r̃ / R̃� are
shown in Fig. 3 for various Manning parameters �solid and
dot-dashed curves�. Here we have chosen a very large lateral
extension parameter �=ln�D /R�=300, which can exhibit the
concept of condensed fraction more clearly. The data show
an inflection point located approximately at y*=ln�r* /R�
�� /2 for large � �for �→1, the location of the inflection
point, r*, tends to R; see Appendix C 2�. The rapid increase
of n�r̃� at small �r�R� and large distances �r�D� reflects
the two counterion-populated regions at the inner and outer
boundaries separated by an extended plateau �compare with
Fig. 2�a��. �A somewhat similar behavior has also been found
in an extended two-fluid model �37�.� For small �, the in-
flection point has a nonvanishing slope and the two regions
are not quite separated �data not shown� �25,38,42,53�.

Using the inflection-point criterion, the condensed frac-
tion � may be estimated as �=n�r*� /N, roughly correspond-
ing to the plateau level in Fig. 3. Simulation results for � are
shown in Fig. 4 for �=300 �symbols�. Let us first consider
the case of small coupling parameter �=0.1, where the
simulated cumulative density n�r̃� �dot-dashed curves in Fig.
3� closely follows the PB prediction �73� �PB curves are not
explicitly shown�. In this case, the condensed fraction data
�diamonds� agree already quite well �within 	1%� with the
Manning or PB limiting value �M �solid curve in Fig. 4�.

An important question is whether the form of the cumu-
lative density profile n�r̃� and also the condensed fraction are
influenced by electrostatic correlations as the coupling pa-
rameter increases. In Fig. 3, we show n�r̃� from the simula-

FIG. 3. Cumulative density n�r̃� per total number N of counte-
rions as a function of the logarithmic distance from the charged

cylinder, ln�r̃ / R̃�. Dot-dashed curves are the simulation results for
�=0.1, N=70, and �=300 and various Manning parameters as
shown on the graph. These curves also closely represent the PB
prediction �73�, which is not explicitly shown. Solid curves show
the simulation results for large coupling parameter �=102 and for
�=3.0 and �=2.0.

FIG. 4. Main set: simulated condensed fraction of counterions,
�, as defined via the inflection-point criterion, as a function of the
Manning parameter � for �=0.1 �diamonds�. Solid curve displays
the Manning or PB limiting value �M, for �=ln�D /R�→
 �Eq.
�72��. Inset: condensed fraction as a function of the coupling pa-
rameter � for �=3.0. These data are obtained for �=300 and N
=70.
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tions for �=102 and two values of the Manning parameter
�=2.0 and 3.0 �solid curves�. This coupling strength gener-
ally falls within the strong-coupling regime for charged sys-
tems, where electrostatic correlations are expected to play a
significant role �62,63� �note that DNA with trivalent coun-
terions represents ��75, but with a larger ��12�. As seen,
n�r̃� shows a more rapid increase at small distances from the
cylinder �condensed region�, indicating a stronger accumula-
tion of counterions near the cylinder surface. A similar trend
has been observed in previous simulations �25,74–76� and in
experiments with multivalent counterions �83�. It will be
analyzed in more detail in the following sections.

However, the excessive accumulation of counterions near
the cylinder for large � does not imply a larger condensed
fraction, because, as seen in Fig. 3, the large-distance behav-
ior of the density profile is not influenced by electrostatic
correlations and so remains the condensed fraction �plateau
level� unaffected by increasing the coupling parameter. This
is demonstrated by the condensed fraction data in the inset of
Fig. 4. This result can be appreciated only when the
asymptotic behavior for ��1 is considered.

3. Order parameter Sn

The nth-order inverse moment of the counterionic density
profile may be calculated numerically using

Sn =
1

N
�
i=1

N

r̃i
−n �75�

for n�0, where r̃i is the radial distance of the ith counterion
from the central cylinder axis and the overbar denotes the
Monte Carlo �MC� time average after proper equilibration of
the system. The global behavior of S1 is shown in Fig. 5 as a
function of the Manning parameter �. Recall that a vanishing
order parameter S1=0 indicates complete decondensation of
counterions, while a finite S1�0 reflects a finite degree of

counterion binding �corresponding to a finite localization
length �1/S1�.

As seen from the figure, decondensation can occur in all
relevant regimes of the coupling parameter �. For large
Manning parameter �, electrostatic coupling effects become
important and shift the order parameter to larger values ex-
hibiting a crossover from the mean-field prediction �solid
curve�, which is thus verified for small �	1, to the strong-
coupling prediction �dashed curve� at very large values of �.
The mean-field result follows from Eq. �40�, and the strong-
coupling prediction is obtained using Eq. �67�. As seen, in
the transition regime ��1, the order parameter data remain
close to the mean-field curve and deviate from the SC pre-
diction. A close examination of the correlation effects as well
as finite-size effects in this region is essential in analyzing
the critical behavior and will be considered later. Here we
concentrate on the correlation-induced crossover observed in
the condensation phase �large ��.

4. Electrostatic correlations for large �

In Fig. 6, we plot the simulated radial density profile of
counterions, �̃�r̃�, for �=3.0 and consider several different
coupling parameters. In agreement with the preceding re-
sults, the counterionic density in the immediate vicinity of
the charged cylinder increases with �, exhibiting large de-
viations from the mean-field prediction. For a given surface
charge density �s, the observed trend is predicted, e.g., for
increasing counterion valency q, since the coupling param-
eter scales as ��q3 �Eq. �8��. The crossover from the mean-
field prediction �solid curve� to the strong-coupling predic-
tion �dashed curve� appears to be quite weak, in agreement
with the situation observed for counterions at planar charged
walls �60�. These profiles are calculated from Eqs. �27� and
�63�, respectively, and both decay algebraically with the ra-
dial distance r̃. But the SC profile shows a faster decay and

FIG. 5. Simulation data for the order parameter S1= �1/ r̃� as
a function of the Manning parameter � for coupling parameters
�=0.1 up to 105 as indicated on the graph. The mean-field �solid
line� and the strong-coupling �dashed line� curves are calculated
from Eqs. �40� and �67�, respectively. The lateral extension param-
eter is �=300, and the number of counterions is N=200 for �
=0.1, N=50 for �=105, and N=70 for other coupling parameters.

FIG. 6. Rescaled radial density of counterions, �̃�r̃�
=��r� / �2��B�s

2�, as a function of the �linear� distance from the
cylinder axis for Manning parameter �=3.0 and various coupling
parameters ��=0.1 up to 105� as shown on the graph. Here �
=300 and the number of counterions is N=50 for �=105 and N
=70 for other values of �. The mean-field �solid line� and the
strong-coupling �dashed line� curves are obtained from Eqs. �27�
and �63�, which, for �=300, roughly coincide with the asymptotic
expressions �34� and �65�.
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thus a more compact counterion layer near the cylinder for
large � �compare, e.g., Eqs. �34� and �65��.

An interesting point is that the simulated density at con-
tact shows a more rapid increase when the coupling param-
eter increases from �=10 to �=100 as compared to other
ranges of � �Fig. 6�. This is in fact accompanied by the
formation of correlation holes around counterions near the
surface as we show now.

In order to examine counterion-counterion correlations
near the cylinder surface, we consider the one-dimensional
pair distribution function of counterions, g1D�z̃�, which mea-
sures the probability of finding two counterions lined up
along z axis �i.e., along the cylinder axis with equal azi-
muthal angles �� at a distance z̃ from each other. In Fig. 7,
we plot the unnormalized pair distribution function

g1D�z̃� �
1

N
�
i�j

�
�z̃i − z̃ j − z̃�
��i − � j�� , �76�

where the sum runs only over counterions at the surface
�defined in the simulations as counterions residing in a shell
of thickness about the Gouy-Chapman length � around the
cylinder�. At small coupling ��=10, cross symbols�, the pair
distribution function only shows a very weak depletion zone
at small distances along the cylinder axis. For larger values
of �, one observes a pronounced correlation hole at small
distances around counterions, where the distribution function
vanishes over a finite range. This correlation hole develops in
the range of coupling parameters, 10	�	100, which
marks the crossover regime between the mean-field and
strong-coupling regimes �compare cross symbols and solid
up triangles�. The correlation hole appears only at suffi-
ciently large Manning parameter � �i.e., when there is a suf-
ficiently large number of condensed counterions� and is dis-
tinguishable in our simulations for ��1.2.

The small-separation correlation hole is followed by an
oscillatory behavior for elevated � indicative of a short-
ranged liquidlike order among counterions lined up along the

cylinder axis �distinguishable from the data for ��2.0 in the
large-coupling regime ��100�. The location of the first
peak of g1D gives a rough measure of the typical distance
between lined-up counterions, az, at the cylinder surface.
This distance is set by the local electroneutrality condition
az�=q. In rescaled units and using Eqs. �5�, �6�, and �8�, we
obtain

ãz �
az

�
=

�

�
, �77�

which is used to rescale the horizontal axis in Fig. 7.
Note that the correlation hole size increases with the cou-

pling parameter and thus counterions at the surface become
highly isolated, reflecting dominant single-particle contribu-
tions for ��1 �59,60�. In fact, as discussed elsewhere
�59–63,69�, the single-particle form of the SC theory �de-
rived formally in the limit �→
� is a direct consequence of
large correlation holes around counterions at the surface.
Clearly, for the counterion-cylinder system, this can be the
case only for sufficiently large Manning parameter, where a
sizable fraction of counterions can gather near the surface.
Consequently in the condensation regime, the data tend to
the strong-coupling predictions for elevated � �Figs. 5 and
6� as also verified in the simulations of charged plates �60�
�where all counterions are bound to the surface� and two
charged cylinders with large � �61�. This also explains why
the SC theory, though being able to reproduce the CCT on a
qualitative level, fails to capture the quantitative features
near the critical point, where counterions are mostly decon-
densed �except for the value of the critical Manning param-
eter, which is correctly reproduced�.

B. Critical Manning parameter �c

We now turn our attention to the critical behavior of coun-
terions and begin with determining the precise location of the
critical Manning parameter, �c.

To this end, we employ a procedure similar to the method
of locating the transition temperature in bulk critical phe-
nomena �52,84�. Namely, we expect that the transition is
reflected by a singular behavior in thermodynamic quantities
such as energy or heat capacity as already indicated by the
mean-field results obtained in Sec. III D. The �excess� inter-
nal energy EN and the �excess� heat capacity CN may be
obtained directly from the simulations and in rescaled units
as

Ẽ =
EN

NkBT
= � HN

NkBT
� , �78�

C̃ =
CN

NkB
= N�� 
HN

NkBT

2� , �79�

where the configurational Hamiltonian HN is defined through
Eq. �10� and 
HN=HN− �HN�.

Simulation results for the rescaled energy Ẽ and the res-

caled heat capacity C̃ in Fig. 8 �symbols� show a nonmono-
tonic behavior as a function of �. The energy develops a

FIG. 7. The one-dimensional pair distribution function of coun-
terions at contact with the cylinder as defined in Eq. �76�. Symbols
show the simulation data for �=105 and �=4.0 �solid diamonds�,
�=103 and �=2.0,3.0, and 4.0 �open symbols from bottom to top�
and for coupling parameters �=10 and �=100 with Manning pa-
rameter �=3.0 �cross symbols and solid up triangles respectively�.
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pronounced peak, and the heat capacity exhibits a jump at
intermediate Manning parameters, which become singular
for �→
. The global behavior of these quantities can be
understood using simple arguments as follows.

For sufficiently small �, counterions are all unbound and
the electrostatic potential in space is roughly given by the
bare potential of the charged cylinder—i.e., ��r̃�
�2� ln�r̃ / R̃�. This yields the rescaled internal energy Ẽ �via
integrating the squared electric field, Eq. �58�� as

Ẽ =
1

4�
	

R̃

D̃
r̃ dr̃�d�

dr̃

2

� �� , �80�

when �=ln�D /R��1. Intuitively, this result may be ob-
tained also by assuming that counterions experience the po-
tential of the cylinder at the outer boundary; thus, one simply

has Ẽ���D̃� /2���, which explains the linear increase of
the left tail of the energy curve with both � and � �Fig. 8�a��.
Now using the thermodynamic relation

�
�Ẽ

��
= Ẽ − C̃ , �81�

the excess heat capacity is obtained to vanish in the decon-

densation phase—i.e., C̃�0 �Fig. 8�b��. Hence, the total heat
capacity reduces to that of an ideal gas of particles.

For large �, the electrostatic potential of the cylinder is
screened due to counterionic binding. If we estimate the
screened electrostatic potential of the cylinder as ��r̃�
�2 ln�r̃ / R̃�, which can be verified systematically within the
PB theory �10,54,70�, we obtain the energy and the heat
capacity as

Ẽ � �/�, C̃ � 2�/� . �82�

These results may also be obtained by noting that only de-
condensed counterions �Sec. VI A 2� contribute to the energy

on the leading order; thus, Ẽ���D̃� / �2���� /�. The above
asymptotic estimates in fact coincide with the asymptotic
��→ 
 � PB results �61� and �62�, which are shown by solid
curves in Fig. 8.

The preceding considerations demonstrate that the non-
monotonic behavior of the energy and heat capacity results
directly from the screening effect due to condensation of
counterions as � increases. Hence, the singular peaks emerg-
ing in both quantities should give the threshold of the
counterion-condensation transition, �c, in the thermodynamic
infinite-system-size limit �N→
 and �→
�. Within the PB
theory �solid and dashed curves in Fig. 8�, the location of the
peak of energy, �*

E,PB���, tends to the mean-field critical
value �c

PB=1 from below as � increases, obeying the finite-
size-scaling relation

�c
PB − �*

E,PB��� �
1

�
, �83�

which is obtained using the full PB energy �59�. On the other
hand, the location of the peak of the PB heat capacity ap-
proaches �c

PB from above.
We locate the critical point from the asymptotic behavior

of the energy peak �*
E as N and � increase. �The heat capac-

ity peak is found to be located farther away from the critical
point as compared to the energy peak, resembling the well-
known behavior of the heat capacity peak in finite magnetic
systems �84,85�; it is therefore inconvenient for our pur-
poses.� In Fig. 9, we show the simulation results for �*

E �sym-
bols� as a function of �−1 for �=0.1 and various number of
particles �main set�. These data are obtained using the ther-
modynamic relation �81�, which enables one to calculate the

first derivative of energy, �Ẽ /��, directly from the energy
and the heat capacity data without making use of numerical
differentiation methods that typically generate large errors
near a maximum. As N increases, the data converge to and
closely follow the mean-field prediction �solid curve� within

FIG. 8. �a� The rescaled internal energy Ẽ=EN / �NkBT� and �b� the rescaled heat capacity C̃=CN / �NkB� of the counterion-cylinder system
as a function of the Manning parameter �. Open symbols show the simulation data for small coupling parameter �=0.1 and lateral extension
parameters �=100, 200, and 300 as indicated on the graph. Solid symbols are the data for large coupling parameter �=102 with �=200.
Number of counterions is N=100. Solid curves show the asymptotic PB prediction for �→
 �Eqs. �61� and �62��. Dashed curves are the full
PB results for �=100 and 300 �from bottom to top�, which are calculated numerically using Eqs. �59� and �81�. The inset shows a closer
view of the energy peak.
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the simulation error bars; for N�100, �*
E lies within about

1% of the PB critical Manning parameter �c
PB=1.

Since in the simulations we have used ��300, the be-
havior of �*

E for very small �−1→0 is not obtained; never-
theless, the excellent convergence of the data for �=0.1 to
the PB prediction gives an accurate estimate for the critical
Manning parameter as

�c = 1.000 ± 0.002. �84�

Our results for larger values of the coupling parameter �
in the inset of Fig. 9 show that the location of the energy
peak does not vary with the coupling parameter. Therefore,
the critical Manning parameter is universal and agrees with
the mean-field value �c=1.0. Recall that the same threshold
is obtained within the strong-coupling theory �Sec. IV�.

Another important result is that the CCT is not associated
with a diverging singularity in contrast to the Onsager insta-
bility prediction �1�. But the energy at any finite value of �
and, also, the heat capacity for ��1 tend to infinity �as ���
when the lateral extension parameter � increases to infinity.
As discussed above, this reflects the logarithmic divergency
of the effective electrostatic potential in a charged cylindrical
system.

Note also that the CCT exhibits a universal jump 
C̃ in
the limiting heat capacity at �c �Fig. 8�b��—i.e.,

lim
�→



C̃

�
= 2. �85�

It thus represents a second-order phase transition.

C. Scale invariance near the critical point

Now that the precise location of the critical Manning pa-
rameter is determined, a finite-size analysis, similar to what

we presented within mean-field theory, may be used to de-
termine the scaling properties of the CCT order parameters
from the simulation data.

Note that in the simulations, finite-size effects arise both
from the finiteness of the system size �via the lateral exten-
sion parameter �� and also from the finiteness of the number
of counterions, N, the latter being related to the finiteness of
the height of the main simulation box L=Nq /� �Sec. V�,
which has a sizable influence on the transition, although the
implemented periodic boundary condition in the z direction
already reduces its effects. In what follows, we present the
numerical evidence for scaling relations with respect to both
N and �. The asymptotic finite-size behavior as N and �
increase to infinity provides us with the scaling exponent
associated with the reduced Manning parameter � �or the
reduced temperature t�, identifying the CCT universality
class in 3D.

1. Finite-size effects near �c

In Fig. 10 �main set�, we show the order parameter S1
�mean inverse localization length of counterions� as a func-
tion of 1 /� and in the vicinity of the critical point �c=1
�number of counterions, N=100, is fixed�. As seen, S1 gradu-
ally decreases with decreasing 1/� as decondensation of
counterions becomes gradually more pronounced. But for
Manning parameters as large as �=1.05 �squares�, the data
quickly saturate to a finite value as �→
. For sufficiently
small Manning parameter �e.g., �	0.97�, on the other hand,
S1 converges to zero. In the vicinity of the critical point
��=1, diamonds�, a nonsaturating behavior is found, suggest-
ing a power-law decay as S1��−�, where ��0. The data at
�=1 roughly coincide for both small coupling parameter
��=0.1, open diamonds� and large coupling parameter

FIG. 9. Main set: location of the peak of energy, �*
E, as a func-

tion of the inverse lateral extension parameter, 1 /�= �ln�D /R��−1.
Open symbols are the simulation data for small coupling parameter
�=0.1 and different number of counterions �from bottom�: N=25
�down triangles�, 50 �squares�, 100 �up triangles�, 200 �circles�, and
300 �diamonds�. Solid curve shows the mean-field prediction for the
peak location obtained by numerical evaluation of the full PB en-
ergy, Eq. �59�. Inset: location of the simulated energy peak as a
function of the coupling parameter � for N=200 and �=300.

FIG. 10. Main set: order parameter S1= �1/ r̃� as a function of
the inverse lateral extension parameter 1 /�. Open symbols are the
simulation data for �=0.1 and Manning parameters �from top�: �
=1.05 �squares�, 1.01 �circles�, 1.0 �open diamonds�, 0.99 �up tri-
angles�, and 0.97 �down triangles�. Solid diamonds are the data for
large coupling parameter �=102 and �=1.0. Number of counteri-
ons, N=100, is fixed. Dot-dashed curves are the PB result �40� for
the corresponding �. Inset: simulated S1 as a function of the inverse
number of counterions, 1 /N, for �=1.0, �=300, and coupling pa-
rameters �=0.1 �open diamonds�, 102 �solid diamonds�, and 103

�open circles�. Dashed line shows the power law S1�N−2/3.
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��=102, solid diamonds�, indicating that electrostatic corre-
lations do not influence the scaling behavior �Sec. VI D be-
low�. There still remain non-negligible deviations between
the simulation data at the critical point �diamonds� and the
PB power-law prediction �45�, which is characterized by the
exponent �PB=2 �shown in the figure by a straight dot-
dashed line�. These deviations arise from the finiteness of the
number of particles.

Interestingly, the data obtained for various number of
counterions, N �at fixed lateral extension parameter ��, also
indicate a power-law decay near the critical point as S1
�N− , where  �0. This is shown in the inset of Fig. 10,
where the scaling exponent  appears to be about 2 /3 �rep-
resented by a dashed line�. In fact, for sufficiently large N,
the data deviate from this power-law behavior as the finite-
size effects due to the lateral size of the system are simulta-
neously present �data not shown�. Thus, in order to deter-
mine the exponents � and  , a more systematic approach is
required, which should incorporate both lateral-size and ion-
number effects.

2. Generalized finite-size scaling

In brief, our data suggest that at the critical point ��=�c

=0� and for a bounded system �finite �� in the thermody-
namic limit N→
, the order parameter Sn�� ,� ,N�= �1/ r̃n�
decays as

Sn�0,�, 
 � � �−�, �86�

while in an infinite system ��→ 
 � with finite number of
particles, N, it decays as

Sn�0, 
 ,N� � N− . �87�

In the thermodynamic infinite-system-size limit �N→
 and
�→
�, the critical transition sets in with Sn��	0, 
 , 
 �
=0, and we anticipate a scaling behavior with the reduced
Manning parameter �=1−�c /� as

Sn��, 
 , 
 � � �� �88�

in a sufficiently small neighborhood above �c=1.
These scaling relations may all be deduced from a general

finite-size-scaling hypothesis for Sn—i.e., by assuming that
Sn�� ,� ,N� takes a homogeneous scale-invariant form with
respect to its arguments in the vicinity of the transition point
�c when both N and � are sufficiently large. In other words,
for any positive number ��0,

Sn���,�−b�,�−cN� = �aSn��,�,N� , �89�

where a, b, and c are a new set of exponents associated with
�, �, and N, respectively. The above relation implies that
when the reduced Manning parameter � is rescaled with a
factor �, the size parameters N and � can be rescaled such
that the order parameter remains invariant up to a scaling
prefactor. Finite-size scale invariance is a common feature in
critical phase transitions �52,86� and provides an accurate
tool to estimate critical exponents in numerical simulations
�84,85�. The exponents in Eq. �89� can be calculated directly
from MC simulations. These exponents are related to and
give the values of the desired critical exponents �,  , and �,

as will be shown below. Note that these exponents may in
general depend on n �the index of Sn�, the coupling param-
eter �, and the space dimension, which are not explicitly
incorporated in the proposed scaling hypothesis, but their
influence will be examined later.

Given Eq. �89�, the following relations are obtained by
suitably choosing �. For �=N1/c, one finds

Sn��,�,N� = N−a/cCn��N1/c,�N−b/c� , �90�

where Cn�u ,v� is the scaling function corresponding to a sys-
tem with both finite N and �. The above expression is useful
for a system with finite N in the limit �→
. Thus, assuming
that Cn�u ,v� exists for v=�N−b/c→
, the relation �90� re-
duces to

Sn��, 
 ,N� = N−a/cNn��N1/c� , �91�

where the scaling function Nn�u�=Cn�u , 
 �. The critical ex-
ponent  follows by considering this relation right at the
critical point, �=0—i.e.,

Sn�0, 
 ,N� = Nn�0�N− , �92�

where  is obtained as

 =
a

c
. �93�

On the other hand, we assume that in the vicinity of the
critical point, Sn�� , 
 ,N� is a finite function of only the re-
duced Manning parameter � when the limit N→
 is taken.
Hence the scaling function Nn�u� is required to behave as
Nn�u��ua for u→
, which yields

Sn��, 
 , 
 � � ��, �94�

where the critical exponent associated with � reads

� = a . �95�

To determine the critical exponent associated with � in
terms of the exponents 
a ,b ,c�, we need to consider Eq. �89�
for �=�1/b. We thus have

Sn��,�,N� = �−a/bCn����1/b,N�−c/b� , �96�

where Cn��u ,v� is a new scaling function. This relation is
useful for a system with finite � in the limit N→
, where
assuming that Cn��u ,v� exists, we obtain

Sn��,�, 
 � = �−a/bDn���1/b� , �97�

with a new scaling function Dn�u�=Cn��u , 
 �. The critical
exponent � follows by considering this relation right at the
critical point �=0, which yields

Sn�0,�, 
 � = Dn�0��−�, �98�
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where � reads

� =
a

b
. �99�

Therefore, we have a complete set of relations �93�, �95�, and
�99� from which the critical exponents �,  , and � may be
obtained using the exponents a, b, and c. �We have assumed
that these exponents are positive as will be verified later.�

Equation �97� compares directly with the mean-field re-
sult �48� in Sec. III C, where we showed that �PB=2 and
�PB=2. Recall that the exponent  is not defined within
mean-field theory.

D. Critical exponents: The CCT universality class

1. Exponents � and �

In order to verify the generalized finite-size-scaling hy-
pothesis �89� and estimate the critical exponents numerically,
we adopt the standard data-collapse scheme �84�.

We begin with the exponents � and  , which can be cal-
culated using Eq. �90�, which involves a scaling function
Cn�u ,v� of two arguments u=�N1/c and v=�N−b/c. In our
simulations, N ranges from 25 up to 300 and � from 50 up to
300; thus, assuming that the exponent b /c is small, which
will be verified later, we deal with a typically large value for
v�10–102. Therefore the limiting relation �91� is approxi-
mately valid and yields

Na/cSn � Nn��N1/c� . �100�

Now if the simulation data for Sn are plotted as a function
of �=1−�c /� for various N �but at fixed sufficiently large ��,
Eq. �100� predicts that by rescaling the reduced Manning
parameter � by the factor N1/c and the order parameter by the
factor Na/c, all data should collapse onto a single curve. Nu-
merically, this procedure allows us to determine the expo-
nents a /c and 1/c in such a way that the best data collapse is
achieved within the simulation error bars. We show the re-
sults for S1 in Fig. 11 for various N and the coupling param-
eter �=0.1 �main set�. The collapse of the data onto each
other is indeed achieved within the numerical error bars for
exponents in the range 1/c�1/3±0.05 and a /c�2/3±0.1.
This yields the critical exponents  and � from Eqs. �93� and
�95� as

 � 2/3 ± 0.1, �101�

� � 2.0 ± 0.4, �102�

where the errors are estimated using the standard error-
propagation methods. The value obtained for � agrees with
the mean-field result, Eq. �44�.

In order to check whether the exponents vary with the
electrostatic coupling parameter �, we repeat this procedure
for a wide of range of values for �. We find the same values
for the exponents � and  for coupling parameters up to �
=105. For comparison, the results for �=103 are shown in
the inset of Fig. 11, where the data collapse is demonstrated
using 1/c=1/3 and a /c=2/3.

2. Exponent �

Given the exponents a and c as determined above and
making use of the finite-size-scaling relation �96�, we can
estimate the exponent b and, thereby, the scaling exponent �
associated with the lateral extension parameter �. In this
case, however, the second argument v=N�−c/b in the scaling
function Cn��u ,v� in Eq. �96� may not be considered as large
within our simulations �since, as shown below, the ratio c /b
is large�. But it turns out that the dependence of Cn��u ,v� on v
is quite weak such that the finite-size-scaling relation �97� is
approximately valid and can be used to determine the desired
exponent. To examine this latter property of Cn��u ,v�, we
consider relation �96� right at the critical point
��=�c=0�—i.e.,

Sn�0,�,N� = �−a/bCn��0,N�−c/b� . �103�

In Fig. 12 �main set�, S1�0,� ,N� is plotted as a function of �
in a log-log plot for increasing N from 70 up to 300 and for
�=0.1. As clearly seen, the order parameter varies quite
weakly with the number of particles and the variations are
already within the error bars �equal to or smaller than the
symbol size� for N�100.

Thus multiplying both sides of Eq. �97� with �a/b, we
have

�a/bSn � Dn���1/b� , �104�

in which the exponent a is previously determined as a=�
=2.0±0.4. We thus plot the order parameter Sn as a function
of � for various � �but at fixed sufficiently large N� and
rescale Sn and � by the scaling factors �a/b and �1/b, respec-
tively; the exponent b is chosen such that the best data col-
lapse is obtained within the error bars. The results are shown
in Fig. 13 for �a/bS1 as a function of ��1/b, where the cou-
pling parameter is chosen as �=0.1 �main set�. The collapse

FIG. 11. Rescaled order parameter Na/cS1 as a function of the
rescaled reduced Manning parameter �N1/c in the vicinity of the
critical point �c=1.0 for small and large coupling parameters �
=0.1 �main set� and �=103 �inset�. Symbols show the simulation
data for various number of particles N=50 �down triangles�, 70
�circles�, 75 �squares�, 100 �diamonds�, 200 �cross symbols�, and
300 �up triangles� at fixed �=300. Here, the exponents are chosen
as a /c=2/3 and 1/c=1/3. Error bars are smaller than the symbol
size.
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of the data onto each other is obtained only for the exponent
1 /b in the range 1/b�1.0±0.2, yielding the critical expo-
nent �, Eq. �99�, as

� � 2.0 ± 0.6, �105�

which agrees with the mean-field exponent, Eq. �47�. We find
the same value for � by repeating the above procedure for
larger coupling parameters. For instance, the results for �
=105 are shown in the inset of Fig. 13, where we have cho-
sen 1/b=1.0 and a /b=2.0.

Note that the estimated values of b and c show that the
ratio b /c is as small as 1 /3, which is consistent with the
assumption made in the foregoing data-collapse procedure.

As a main result, our numerical data confirm the existence
of critical scaling relations associated with the counterion-
condensation transition in 3D and show that the values of the
critical exponents are universal; i.e., they are independent of
the coupling parameter � and fall within the mean-field uni-
versality class.

Also, in agreement with the mean-field results, the expo-
nents are found to be independent of n, the index of the order
parameters Sn= �1/ r̃n�. In fact, we find that the higher-order
moments are related to the first-order moment S1 via

Sn �
S1

n
�106�

in the vicinity of the critical point. This indicates that nSn is
independent of n as demonstrated in the inset of Fig. 12
�compare with the mean-field relation �41��.

VII. COUNTERION-CONDENSATION TRANSITION
IN TWO DIMENSIONS

In this section, we investigate the role of space dimension
in the unbinding behavior of counterions near a charged cyl-
inder by considering a 2D counterion-cylinder model. As a
typical trend in bulk critical phenomena, effects of fluctua-
tions near a critical point are expected to grow with dimin-
ishing dimension �52�, leading to large deviations from
mean-field theory. It is therefore interesting to examine the
CCT in a lower spatial dimension.

A. Two-dimensional model

In 2D, we use a primitive cell model similar to the 3D
model described in Sec. II A. It consists of a 2D central
charged cylinder �central “disk”� of radius R confined coaxi-
ally and together with its neutralizing pointlike counterions
in an outer cylinder �outer “ring”� of radius D. In order to
construct the interaction Hamiltonian, we use the fact that
the Coulomb interaction between two elementary charges in
2D �the 2D Green’s function� is of the form

v2D�x� = − ln�x� . �107�

This follows directly from the solution of the 2D Poisson
equation for a point charge—that is,

�2v2D�x� = − 2�
2�x� . �108�

The configurational Hamiltonian of the 2D system may
thus be written as

HN

kBT
= �c�r�

i=1

N

ln� ri

R

 − �c

2�
�ij�

ln�xi − x j

R
� , �109�

with xi= �ri ,�i� being the position vector of the ith counter-
ion �in polar coordinates� and �c and �r being the dimension-
less charges of the counterions and the cylinder, respectively.
The first term gives the counterion-cylinder attraction, and
the second term gives mutual repulsions between counteri-

FIG. 12. Main set: simulated order parameter S1 as a function of
the lateral extension parameter � for increasing number of counte-
rions from N=70 up to 300 as indicated on the graph �Manning
parameter is �=1.0 and the coupling parameter �=0.1�. Dashed
line shows the PB power law, Eq. �45�. Inset: rescaled order param-
eter Sn= �1/ r̃n� as a function of the index n for Manning parameters
close to the critical value �from top�: �=1.03 �solid circles� and �
=1.01 �solid diamonds�. Here, the coupling parameter is �=0.1,
number of counterions is N=100, and �=300.

FIG. 13. Rescaled order parameter �a/bS1 as a function of the
rescaled reduced Manning parameter ��1/b in the vicinity of the
critical point �c=1.0 for small and large coupling parameters �
=0.1 �main set� and �=105 �inset�. Symbols show the simulation
data for various lateral extension parameters �=100 �circles�, 150
�cross symbols�, 200 �diamonds�, 250 �plus symbols�, and 300 �up
triangles�. Number of counterions is fixed �N=200 for the coupling
parameter �=0.1 and N=100 for �=105�, and the exponents are
chosen here as a /b=2.0 and 1/b=1.0.
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ons. Clearly, the present 2D model is equivalent to a 3D
system comprising an infinite central cylinder and mobile
parallel lines of opposite charge �“counterions”�. It may be
applicable to a system of oriented cationic and anionic poly-
mers �64–67�.

Taking the logarithmic interaction as in Eq. �107� will
also ensure that the general form of the field-theoretic repre-
sentation of the partition function remains the same as in the
3D case �72� and, in particular, that the mean-field Poisson-
Boltzmann theory, which follows from a saddle-point analy-
sis, is given exactly by the same equations and results as
discussed in Sec. III.

B. Rescaled representation

In analogy with the 3D system, the dimensionless Man-
ning parameter � and the coupling parameter � are defined
as

� = �c�r/2, �110�

� = �c
2/2. �111�

These definitions can be justified systematically when the
Hamiltonian of the system is mapped to an effective field
theory, where � and � formally appear in the same roles as
in 3D �46�. We shall conventionally rescale the spatial coor-
dinates as x̃=x /�2D using the 2D analog of the Gouy-
Chapman length �2D�R /� �see Eq. �7��. The Hamiltonian in
rescaled units reads

HN

kBT
= 2��

i=1

N

ln� r̃i

R̃

 − 2��

�ij�
ln� x̃i − x̃ j

R̃
� . �112�

The electroneutrality condition implies �r=N�c, where N is
the number of counterions in the system. This relation may
also be written as

� = N� . �113�

Thus an important consequence of electroneutrality in 2D is
that the coupling parameter and the Manning parameter are
related only via the number of counterions. In particular, in
the thermodynamic limit N→
, the coupling parameter
tends to zero, �→0, suggesting that mean-field theory be-
comes exact for any finite �.

C. Centrifugal sampling

We use a similar simulation method as devised for the 3D
system using the transformed coordinates �y ,�� with y

=ln�r̃ / R̃� being the logarithmic radial distance of particles
from the central cylinder. As explained in Sec. V, this trans-
formation leads to the centrifugal sampling method appropri-
ate for equilibration of a system with large lateral extension
parameter �=ln�D /R��1. The 2D partition function thus
reads

ZN =
R2N

N!
	

Ṽ
��

i=1

N

d�i dyi�exp�−
HN

*

kBT
� , �114�

where 0�y�� and the transformed Hamiltonian

HN
*

kBT
= �2� − 2��

i=1

N

yi − 2��
�ij�

ln� x̃i − x̃ j

R̃
� . �115�

The minimal set of dimensionless parameters in 2D is given
by the Manning parameter �, number of counterions, N, and
the lateral extension parameter �. The range of simulation
parameters and other details are consistent with those given
in Sec. V B.

VIII. SIMULATION RESULTS IN 2D

A. Order parameters

We consider the same set of order parameters Sn= �1/ r̃n�
as defined in Eq. �38� to characterize the CCT in 2D. They
can be measured in the simulations as

Sn =
1

N
�
i=1

N

r̃i
−n �116�

for n�0, where the overbar denotes the MC time average
after proper equilibration of the system. Of particular interest
is the behavior of Sn as a function of the Manning parameter
�. It identifies the two regimes of complete decondensation
�with Sn=0� and partial condensation �with Sn�0� when �
→
. Unlike in 3D, where � can be varied as an independent
parameter, various coupling regimes in 2D are spanned by
changing the number of particles, N, for a given � �see Eq.
�113��.

The 2D simulation results for the order parameter S1 are
shown in Fig. 14 for various number of particles N=1, 2, 3,
5, 10, and 100 �symbols� and for a large lateral extension
parameter �=300. As seen for N=1, the data trivially follow
the strong-coupling prediction, Eq. �67�, shown by the
dashed curve �Sec. IV�. As N increases, S1 decreases, and for
sufficiently large N, it converges to the mean-field PB pre-
diction, Eq. �40�, shown by the solid curve. This in fact oc-

FIG. 14. Order parameter S1= �1/ r̃� as a function of the Man-
ning parameter � for the 2D counterion-cylinder system. Symbols
show the simulation data for different number of particles as indi-
cated on the graph. The mean-field �solid� and the strong-coupling
�dashed� curves are obtained from Eqs. �40� and �67�, respectively,
which are valid in 2D as well. The lateral extension parameter here
is �=300. Thin dashed curves are guides to the eyes.
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curs for the whole range of Manning parameters and con-
firms the trend predicted from the 2D electroneutrality
condition �113�. Accordingly, scaling analysis of the order
parameters for large N gives identical results for the critical
exponents as in 3D �Secs. VI C and VI D� and agrees with
mean-field theory. We shall not discuss it here any further.

The result that mean-field theory for the counterion-
cylinder system is exact in 2D for N→
 is in striking con-
trast with the typical situation in bulk phase transitions �52�
and also with the results we obtained in 3D that reflect strong
correlation effects in the condensation phase ���1� for
growing � �see Sec. VI A 4�.

The order-parameter data in Fig. 14, on the other hand,
reveal a peculiar set of cusplike singularities that are quite
pronounced for small number of particles. These points be-
come strictly singular in the limit �→
 and represent the
Manning parameters at which individual counterions succes-
sively condense �or decondense�. We will demonstrate this
point using an analytical approach in Sec. VIII C. �A similar
singular behavior is found in 3D for small N, but it appears
to be more complex and will not be considered in this paper.�

B. Energy and heat capacity

The singularities found in the order parameter at small N
show up also in the internal energy and the heat capacity of
the system. In Figs. 15 and 16, we plot the rescaled �excess�
internal energy Ẽ=EN / �NkBT� and the rescaled �excess� heat

capacity C̃=CN / �NkB� obtained from the simulations using
Eqs. �78� and �79� and the 2D Hamiltonian �112�, as a func-
tion of � for N=1, 2, 3, 4, and 5. As seen, the energy curve
shows a sawtoothlike structure consisting of wide regular
regions, in which the energy almost linearly increases, and
narrow singular regions, where the energy rapidly drops

�with a diverging slope�. Recalling the thermodynamic rela-
tion

�
�Ẽ

��
= Ẽ − C̃ , �117�

it follows that the heat capacity vanishes in the regular re-
gions, but exhibits highly localized peaks in the singular re-
gions as seen in the simulation data in Fig. 16.

C. Condensation singularities in 2D: An analytical approach

In what follows, we present an approximate asymptotic
analysis of the 2D partition function in the limit �→
,
which elucidates the physical mechanism behind the singular
behavior in 2D. A rigorous analysis of the 2D problem is still
missing, and more systematic approximations have been de-
veloped very recently �46�.

1. Partition function

Suppose that the Manning parameter is such that N−m
counterions are firmly bound to the central cylinder, while m
counterions have decondensed to infinity, where m
=1, . . . ,N. Using the 2D Hamiltonian �112�, the partition
function can exactly be written as

ZN =	 � �
i=m+1

N

dxi�exp�−
HN−m

kBT
��

l=1

m

ZN
�l� �118�

in actual units, where HN−m represents interactions among
condensed counterions �labeled by i=m+1, . . . ,N� and

FIG. 15. The rescaled internal energy of the 2D counterion-

cylinder system, Ẽ=EN / �NkBT�, as a function of the Manning pa-
rameter � for �=300 and different number of particles as indicated
on the graph. Symbols show the simulation data, and dashed curves
are the analytical results obtained from Eq. �125�. Singular regions
represent successive condensation �decondensation� of counterions.

FIG. 16. The rescaled heat capacity of the 2D system, C̃
=CN / �NkB�, as a function of the Manning parameter � for �=300
and different number of particles, N, as indicated on the graph �for
clarity, the data are multiplied by N�. Symbols show the simulation
data, and dashed curves are the analytical results obtained from Eq.
�126�. The peaks represent successive condensation �decondensa-
tion� of counterions.
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ZN
�l� =	 dxl exp�− 2� ln� rl

R

 +

2�

N
�

i=l+1

N

ln�xi − xl

R
��

�119�

is the contribution from individual decondensed counterions
�labeled by l=1, . . . ,m�. Assuming that the decondensed
counterions are decorrelated from other counterions as they
diffuse to infinity for �→
 �i.e., using �xi−xl � �rl�, ZN

�l�

approximately factorizes as

ZN
�l� � 2�	

R

D

rl drl exp�− 2� ln� rl

R

 +

2�

N
�

i=l+1

N

ln� rl

R

�

= 2�R2exp�2�1 − �l/N��� − 1

2�1 − �l/N�
. �120�

In the limit �→
, ZN
�l� diverges for

� �
N

l
, �121�

which indicates decondensation of the lth counterion from
the charged cylinder �see Sec. II D for the special case N
=1�. Repeating the above argument for various number of
decondensed counterions, one finds a set of singular Man-
ning parameters,

�l
s �

N

l
for l = 1, . . . ,N , �122�

at which individual counterions decondense �condense�.
These singular points coincide with those obtained from our
simulations based on the full partition function �114� for very
large � �see Figs. 14–16 and Table I for numerical values�.

2. Energy and heat capacity

The partition function �118� can also be written as

ZN = �
l=1

N

ZN
�l�, �123�

where ZN
�l� is defined in Eq. �119�. For ��1, the dominant

contribution to the internal energy and the heat capacity
comes from the decondensed counterions. Thus, in order to
derive analytical expressions for these quantities on the lead-
ing order, we shall use Eq. �123� together with the approxi-
mate expression �120�. Hence, we obtain the leading-order

contribution to the free energy, FN / �kBT�=−ln ZN, as

F̃ �
FN

NkBT
� −

1

N
�
l=1

N

ln
e2�1−�/�l

s�� − 1

2�1 − �/�l
s�

. �124�

The rescaled internal energy Ẽ=�� F̃ /�� and the rescaled

heat capacity C̃=−�2�2F̃ /��2 read

Ẽ �
1

N
�
l=1

N � �

�l
s
� 2� exp�2�1 − �/�l

s���
exp�2�1 − �/�l

s��� − 1
−

1

1 − �/�l
s
 ,

�125�

C̃ �
1

N
�
l=1

N � �

�l
s
2� 1

�1 − �/�l
s�2 −

�2

sinh2��1 − �/�l
s���



�126�

for ��1. The above analytical expressions are shown in
Figs. 15 and 16 for �=300 and various number of particles
�dashed curves�, which as seen closely reproduce the behav-
ior obtained in the simulations �symbols�.

Note that as an individual counterion decondenses at �l
s,

the internal energy suddenly jumps, since the decondensing
counterion gains a large amount of energy due to its logarith-
mic interaction with the central cylinder. The regular regions
�between two successive jumps� in the energy curve are
dominated by decondensed counterions and thus exhibit lin-
ear scaling with �=ln�D /R�. The asymptotic form of the
energy curve for �→
 in these regions is obtained from Eq.
�125� as

lim
�→


Ẽ

�
=

l�l + 1�
N2 � for �l+1

s 	 � 	 �l
s. �127�

The singular part of the energy corresponds to a narrow
region around each �l

s, which �except for the uppermost sin-
gularity� is bounded between a local minimum �slightly
above �l

s� and a local maximum �slightly below �l
s�. The ap-

proximate location of these extrema are obtained using Eq.
�125� as

�l
min

�l
s � 1 +

1
���l − 1�

,
�l

max

�l
s � 1 −

1
���l + 1�

�128�

for large �. The energy jump 
Ẽl upon decondensation of a
counterions at �=�l

s is obtained as


Ẽl � Ẽ��l
max� − Ẽ��l

min� �
2�

N
. �129�

For �→
 but at fixed and finite N, the quantity Ẽ /� adopts
a sharp sawtoothlike form as both �l

min and �l
max tend to �l

s

producing N steplike singularities. The limiting energy jump
is then given by

lim
�→



Ẽl

�
=

2

N
, �130�

which can also be obtained directly from Eq. �127�.

TABLE I. Numerical values of the singular Manning parameters
in 2D, Eq. �122�, for different number of particles, N.

N 
�N
s , . . . ,�1

s�

1 1

2 1 2

3 1 3/2 3

4 1 4/3�1.33 2 4

5 1 5/4=1.25 5/3�1.67 5/2 5
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A close examination of Eq. �125� reveals an algebraic
contribution as ��1−�l

s /��−1 to the energy in the singular
region around �l

s that gives rise to a diverging heat capacity
for �→
. The heat capacity expression, Eq. �126�, in fact
exhibits N isolated peaks for large �. It diverges at �l

s as

C̃��=�l
s���2 / �3N� with increasing � to infinity and eventu-

ally, adopts N limiting algebraic singularities—i.e.,

lim
�→


C̃ =
1

N
�
l=1

N �1 −
�l

s

�

−2

. �131�

D. Critical point and the continuum limit

The lowermost singularity at �=�N
s is associated with the

decondensation of the “last” counterion from the charged
cylinder. As shown above, this singularity occurs at unity
��N

s =1� when �→
 and is thus independent of the number
of counterions. It therefore gives the exact location of the 2D
critical point as �c=1 when the continuum �thermodynamic�
limit N→
 is approached. This result coincides with the
mean-field prediction. �Note that in analogy with the method
used in Sec. VI B, �c can also be determined from the
asymptotic value of the energy maximum location, Eq.
�128�, for l=N, as � and N increase to infinity.�

Equations �127�–�131� represent the asymptotic results
when the system size increases to infinity but the number of
particles, N, is finite. In the converse limiting case—i.e.,
when � is large and fixed but N increases to infinity �con-
tinuum limit�—all singularities smoothen except for the one
which represents the critical point. The limiting energy curve
for N→
 may be obtained as follows. First, note that the
width of the energy jump around each singularity tends to
zero as indicated by Eq. �129�. Second, the spacing between
singular points �l

s �and thus the width of regular regions for
��1� tends to zero �as �1/N� as N increases. Therefore, the
energy at a given Manning parameter � between two succes-

sive singularities, �l+1
s 	�	�l

s, is approximately given by Ẽ

� Ẽ��=�l
s�, where the right-hand side is obtained from Eq.

�125� as Ẽ��=�l
s�=� /�l

s. This implies that

lim
N→


Ẽ =
�

�
�132�

for ��1 and sufficiently large �. For Manning parameter �
	1, there are no singularities and from Eq. �125� we obtain

lim
N→


Ẽ = 2�� lim
N→


�
l=1

N
1

N�l
s = �� . �133�

These limiting results can also be derived from Eq. �127�.
The energy curve in the continuum limit therefore coin-

cides with the universal form obtained within mean-field
theory �see Eq. �61� in Sec. III D�. The heat capacity in this
limit follows from Eq. �117� and exhibits a universal jump at
�c=1 in agreement with Eq. �62�.

E. Condensed fraction in 2D

The preceding results enable us to calculate the limiting
condensed fraction ���� of counterions when �→
 and

N→
. For a given Manning parameter � and number of
particles, N, the condensed fraction �N��� is given by the
number of singularities located below �—i.e.,

�N��� � 1 −
l

N
for �l+1

s 	 � 	 �l
s. �134�

This fraction is trivially zero for �	�c=1 as �→
. Using
Eqs. �122� and �134�, we obtain the condition

�N��� −
1

N
	 1 −

1

�
	 �N��� , �135�

which in the limit of infinite number of counterions yields

���� � lim
N→


�N��� = 1 −
1

�
. �136�

This is nothing but the mean-field or Manning condensed
fraction �M=1−1/� �Sec. VI A 2�. The finite-number correc-
tion to this limiting value follows from Eq. �135� as

0 	 �N��� − ���� 	 N−1. �137�

IX. CONCLUSION AND DISCUSSION

In this paper, we present the results of an extensive nu-
merical and analytical investigation on the critical behavior
of counterions at a charged cylinder in two and three spatial
dimensions. Analytical results are derived using the
asymptotic theories of mean field �Poisson-Boltzmann� and
strong coupling. The counterion-condensation transition is
controlled by the dimensionless Manning parameter �res-
caled inverse temperature� �=q�B� and occurs at a critical
threshold �c, below which counterions completely unbind
�decondense� to infinity, but above �c, a finite fraction of
counterions binds �or condenses� in the vicinity of the
charged cylinder. Since the CCT criticality emerges asymp-
totically in the limit of infinite system size and infinitely
many particles, we have employed Monte Carlo simulation
of a one-dimensionally periodic cylindrical cell model in the
logarithmic radial coordinate. This leads to a powerful �cen-
trifugal� sampling method for extremely large lateral system
sizes within reasonable equilibration times. It constitutes the
key part of the present numerical investigation, since the
critical and universal aspects of the CCT within the cylindri-
cal cell model can be captured only for large logarithmic
system size �=ln�D /R��1 �with D and R being the outer
boundary and the charged cylinder radii, respectively�.

As the main results, we have determined the precise loca-
tion of the critical Manning parameter �c, the scaling univer-
sality class of the CCT, and the singular behavior of the
internal energy and heat capacity on a systematic level and
without suppressing the inter-particle correlations. As shown
both the internal energy and the heat capacity become singu-
lar at the critical point. The heat capacity, which vanishes in
the decondensation phase, shows a universal discontinuity
�jump� at the critical point indicating that the CCT is a
second-order transition, as also suggested in a recent mean-
field study �40�. In a finite system, these singularities appear
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in the form of pronounced peaks; the asymptotic behavior of
the peak location is used to determine the critical Manning
parameter �c within the simulations. On the other hand, the
critical exponents associated with the CCT are obtained us-
ing a combined finite-ion-number, N, and finite-system-size,
�, analysis of the order parameters Sn= �1/ r̃n� where n�0
and r̃=r /� is the radial distance from the cylinder axis in
units of the Gouy-Chapman length �. These order param-
eters represent the mean inverse localization length of coun-
terions. For �	�c and in the limit �→
 and N→
, Sn
vanishes, but remains finite above �c exhibiting the scaling
relation Sn���, where 0	�=1−�c /��1 is the reduced
Manning parameter �reduced temperature�. The exponent �
is determined as �=2.0±0.4 within our MC simulations. In a
finite system, Sn does not vanish at �c and displays a power-
law decay with size parameters � and N as Sn��=�c���−�

�when the number of particles N�1 is fixed� and Sn��=�c�
�N− �when the lateral extension parameter ��1 is fixed�,
where the critical exponents are determined in our simula-
tions as �=2.0±0.6 and  =2/3±0.1.

The critical exponents are demonstrated to be universal;
i.e., they are independent of the coupling strength � �varied
over several decades 0.1	�	105�. They agree with the val-
ues we obtained from mean-field theory—namely, �PB=2.0
and �PB=2.0 �the exponent  is not defined within mean-field
theory�. Interestingly, the critical Manning parameter �c
=1.000±0.002 is also universal; it agrees with the mean-field
prediction in both 3D and 2D. Therefore, in striking contrast
with the typical situation in bulk critical phenomena, where
deviations from mean-field theory due to fluctuations grow
with decreasing dimension, the CCT criticality is found to be
described by the mean-field universality class in both 3D and
2D. The mean-field theory is found to be exact in 2D in the
whole range of Manning parameters �rescaled temperatures�
when N→
. In 3D, however, correlation effects in the con-
densation phase ����c� lead to strong deviations from mean-
field theory and induce a crossover to the strong-coupling
theory, which exhibits a larger accumulation of counterions
near the cylinder surface. This behavior has also been ob-
served in previous numerical studies �25,42,74–76� and ex-
periments �83�. An important result, however, is that the
large-distance form of the counterion density profile remains
unaffected by these correlations and thereby a universal con-
densed fraction �equal to the Manning or PB limiting value�
is obtained when the inflection-point criterion is applied.

To our knowledge, a rigorous analytical derivation for the
critical Manning parameter or the scaling exponents is not
yet available in 3D and our simulations �28� provide the first
numerical results for the universal and critical features of the
CCT in the large-system-size limit. In 2D, we have shown
that the simulation results can be understood using an ap-
proximate analytical theory. A more systematic approxima-
tion is developed recently in Ref. �46� that supports the
present results.

The present predictions for the order parameters and ther-
modynamic quantities can be examined in experiments. The
order parameters may be obtained from the distribution of
counterions around charged polymers, which has been di-
rectly measured using anomalous scattering techniques �87�.

The scaling properties of the order parameters may be inves-
tigated by changing the effective Manning parameter across
the critical region using a combination of methods such as
variation of the polymer linear charge density �using syn-
thetic chains, such as ionene, or various pH� �17,19–21� or
by variation of the dielectric constant of the medium �by
mixing different solvents such as water, methanol, or ethyl-
ene glycol� �18,21�. Different regimes of the coupling param-
eter may be explored by, for instance, changing the charge
valency of counterions; e.g., for polymer linear charge den-
sity of �e�3e /nm and radius R�1 nm, one can obtain a
large coupling parameter �=q3�B

2 � /R�10 using trivalent or
tetravalent counterions such as spermidine and spermine in
water and at room temperature ��B=0.7 nm�. �Recall that the
Bjerrum length �B=e2 / �4���0kBT� varies with the solvent
dielectric constant and temperature.� Another quantity of in-
terest that can be measured experimentally is the excess heat
capacity of counterions, which is predicted in the present
study to exhibit a universal jump at the critical Manning
parameter. The heat capacity of polyelectrolyte solutions can
be measured using microcalorimetry methods �see, e.g., Ref.
�88� and references therein�.

The two-dimensional counterion-condensation transition
may be more difficult to realize experimentally. Nonetheless,
mixtures of rodlike polyanions and polycations appear as
good candidates for that purpose �64–66�. The central poly-
ion could be chosen from dendronized polymers that are
rigid, cylindrically shaped objects, whose radii and linear
charge densities may be varied systematically. The synthesis,
structural details, self-assembly, and complexation of these
charged rods with other polyelectrolytes have been addressed
extensively in recent years �65–67�.

In this study, we have made use of an idealized �primitive�
cell model �53–57� in order to bring out the main universal
aspects of the CCT. Obviously, other factors that exist in
realistic systems �see below� may lead to corrections to the
ideal scaling relations obtained here. But the remarkable suc-
cess of the cylindrical cell model in predicting various prop-
erties of polyelectrolyte solutions �such as osmotic or activ-
ity coefficients �2,41,55–57,89–91� and the counterionic
density profile around polymers �83,87,92�� makes it a reli-
able first-step model for investigating the critical properties
of the CCT as well. Due to the logarithmic convergence to
the infinite-dilution limit, the limiting cell-model predictions
are expected to emerge only at small polymer concentrations
�as low as a few mM� �1,2,4,41,55,56,89–91�. Note that the
experiments address both the salt-free �counterion-only� so-
lutions �89,90� as well as those with additional salt concen-
tration cs �1,2,4,91�. In this work, we have not investigated
the role of screening effects due to additional salt and co-
ions. It is, however, known that the Debye screening length
rs�cs

−1/2 plays the role of the upper bound cutoff �similar to
the outer boundary D in the cell model� and that the CCT
occurs strictly in the limit of zero salt concentration—i.e.,
when ln�rs /R�→
�1,9–11,14,25,32,38,45,47�. Thus we can
expect that similar asymptotic behaviors arise near �c=1 and
within a similar model as used here, when the zero-salt limit
is approached. Yet it would be interesting to examine the
critical salt-screening finite-size effects in a systematic fash-
ion.
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Other interesting issues for future research include inves-
tigating possible effects due to more realistic and specific
factors such as the discrete charge pattern of polymers
�26,27,31,39,42,75,93�, chain flexibility, and finite contour
length �11,12,24,26,27,31,35,36,43,94� as well as the influ-
ence of nonuniform dielectric boundaries �43,93� on the criti-
cal behavior. Note that the present results indicate that short-
range effects such as electrostatic correlations do not affect
the properties of the system near the critical point, because
most of the counterions are decondensed and the critical be-
havior is predominately determined by long-range features.
�The mean-field results in Refs. �42,44� similarly indicate
that ion-size effects are negligible in the infinite-dilution
limit.� Future studies should determine the influence of short-
range specific effects in a more systematic manner.
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APPENDIX A: SINGULARITIES ASSOCIATED
WITH THE ONSAGER INSTABILITY

The rescaled energy Ẽ=EN / �NkBT� and the rescaled heat

capacity C̃=CN / �NkB� associated with the Onsager instabil-
ity can be calculated from Eq. �17�. The results coincide with
those obtained in Sec. VIII C by choosing N=1. In brief, the
approximate location of the energy peak �*

E is obtained as

�*
E � 1 −

1
�2�

�A1�

for large �. This relation exhibits a different asymptotic con-
vergency �from below� to the critical value �c=1 as com-
pared to the mean-field result, Eq. �83�. The heat capacity
peak is located above the critical point at

�*
C � 1 +

5

�2 . �A2�

In the limit �→
, the heat capacity diverges at the critical
point from above and below as

C̃ � �−2, �A3�

where �=1−�c /�. The left tail of energy �for �	�*
E� goes to

infinity linearly with � as Ẽ�2��+� / ��−1�, but its right
tail shows a power-law divergency as

Ẽ � �−1. �A4�

Note that these behaviors are distinctly different from those
obtained with many particles in the simulations and mean-
field theory �Secs. VI B and III D�.

APPENDIX B: RESCALED PB EQUATION

The Poisson-Boltzmann equation for mean electrostatic
potential �PB in actual units reads

�x
2�PB =

��x�e
��0

−
qe�PB�x�

��0
, �B1�

where the density profile of counterions is given by

�PB�x� = �0��x�e−qe�PB�x�/kBT, �B2�

with �0 being a normalization prefactor and ��x� specifying
the volume accessible to counterions �Eq. �20��. The rescaled
PB equation �18� is recovered using Eqs. �B1� and �B2� and
the dimensionless quantities x̃=x /�, �̃�x̃�=���x� /�s,
�̃PB�x̃�=�PB�x� / �2��B�s

2�, �PB=qe�PB/ �kBT�, where �
=R /�=1/ �2�q�B�s� is the Gouy-Chapman length �Eq. �6��.
The prefactor �0 is related to �̃ in Eq. �18� through �̃=��
where �2=4�q2�B�0. One can show that the actual density
profile �B2� is also mapped to the rescaled profile �23�.

Normalization of the density �to the total number of coun-
terions� in actual units reads �dx �PB�x�=N, and in rescaled
units, we have �dx̃ �̃PB�x̃�=2��N, which is equivalent to
Eq. �21� in the text, when Eqs. �11� and �23� are used.

APPENDIX C: ASYMPTOTIC RESULTS
WITHIN THE PB THEORY

1. Limiting behavior of � for large �

A general discussion of the global behavior of � has been
given by Fuoss et al. �54� using Eq. �26�. Here, we first
review some of their results as quoted in the text and then
derive the finite-size-scaling relations for � near the PB criti-
cal point ��c

PB=1� as used in Sec. III C.

A. Small Manning parameter �	�*

The integration constant � vanishes at �=�*=� / �1+��
and tends to unity, �→1−, for small �→0+, as can be
checked easily from Eq. �26� �we arbitrarily choose ��0�.
Further inspection shows that in this regime, �→ �1−��−

when �→
 �54�. Hence for ��1, one can propose the fol-
lowing form:

�2 � �1 − ��2�1 − x� , �C1�

where x is a small function of � and �. To determine x, we
may rearrange the first equation in Eq. �26� as

�� =
1

2
ln

1 − �

1 + �
−

1

2
ln

�� − 1� + �

�� − 1� − �
�C2�

and use this together with Eq. �C1� to obtain

x �
4�

2 − �
e−2�1−���. �C3�

This reproduces Eq. �31� in the text.

B. Large Manning parameter ���*

One can easily show that �, Eq. �26�, is a monotonically
increasing function of � for finite �; it vanishes at �=�* and
tends to a finite upper bound �
=� /� when �→
 �54�.
Thus in the limit �→
, � vanishes for the whole range of
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Manning parameters ���*→1−. This result was frequently
used in the text �see, e.g., Eqs. �41� and �42��.

C. Finite-size scaling for � close to �c
PB

Of particular importance in our analysis is the behavior of
� close to �c

PB=1. �Since always �*�1, we restrict the dis-
cussion only to the regime ���*.� Analysis of Eq. �26�
shows that for sufficiently large �, we have ��� / �2�� right
at the critical point �c

PB=1. We may then perform a Taylor
expansion around �c

PB to obtain the approximate form of �
for small �=1−�c

PB/� as

���,�� =
�

2�
+

2

�
� −

8�

�3 �2 + O��3� , �C4�

which remains valid for ��	�2 /4. This relation clearly in-
dicates a scale-invariant form for � when ��1. Comparing
this with Eq. �50�, we find the approximate form of the scal-
ing function B�u� as

B�u� �
�

2
+

2

�
u −

8

�3u2, �C5�

where u=��	�2 /4. In particular, we have B�u�→� /2 as
u→0.

The asymptotic behavior of B�u� for u→
 �or, equiva-
lently, �→
 for finite �� can be obtained using a different
series expansion, since in this limit � becomes singular at
�c

PB=1 and the above expansion breaks down. This is be-
cause � is always singular �with an infinite first derivative� at
�* which tends to the critical Manning parameter when �
→
. We thus perform a singular expansion around �=�*,
which yields ���3� /�. Hence, the asymptotic form of the
scaling function is given by

B�u� � �3u, u → 
 . �C6�

2. PB cumulative density profile

The PB cumulative density of counterions, nPB�y�, is de-
fined via Eq. �73�. It can easily be shown that nPB�y� is a
monotonically increasing function of y=ln�r /R�—i.e.,
dnPB/dy�0. It is therefore bounded by its boundary values
nPB�0�=0 and nPB���=N �Fig. 3�.

For ���*, nPB�y� has an inflection point the location of
which, y*=ln�r* /R�, follows from the equation d2nPB/dy2

=0 as y*=tan−1���−1� /�� /�. It is easy to check �using the
results in Appendix C 1� that y*�� /2 for large � and that
y*→0 for �→1. For �	�*, on the other hand, the cumula-
tive density nPB�y� vanishes for y	� when �→
, as can be
checked by inserting the approximate expression �C1� for �
into Eq. �73�.

We note that the main quantities of interest within the PB
theory can be expressed solely in terms of the cumulative
density profile. This includes the PB potential field �PB and
the order parameter Sn

PB. Using the definitions of these quan-
tities �Sec. III�, we obtain the following relations �which are
valid for all ��:

�PB�y� = 2��y −
1

N
	

0

y

nPB�y��dy�
 , �C7�

Sn
PB =

1

�n	
0

�

dy e−ny� 1

N

dnPB

dy

 . �C8�

3. Asymptotic behavior of Sn within PB theory

A. Small Manning parameter �	�*

For �	�*, the order parameter Sn
PB vanishes as �→
,

indicating complete decondensation of counterions. To dem-
onstrate this result, we use Eq. �C8�, which, for ��1, can be
written as

�nSn
PB =

n

N
	

0

�

dy e−nynPB�y� + O�e−n�� . �C9�

Since the cumulative density is bounded by the number of
counterions, N, and tends to zero at any finite y for �	�*
�Appendix C 2�, we obtain Sn

PB→0 in this regime when �
→
.

B. Large Manning parameter ���*

Consider the exact mean-field expression for Sn
PB, Eq.

�40�. The integrand in Eq. �40� is the product of an exponen-
tially decaying factor with an inverse-squared sine function,
which has a series of divergencies at ym= �m�−!� /� for in-
teger m and !�cot−1���−1� /��. For �→
, we have �→0
when ���* �Appendix C 1�, implying !→0. In this limit, !
may be expanded as

! �
�

� − 1
−

�3

3�� − 1�3 + O��5� . �C10�

The location of singularities, ym, tends to infinity as � in-
creases except for m=0 for which we have y0=−! /�→
−1/ ��−1� using Eq. �C10�. The quantity Sn

PB in Eq. �40� is
therefore dominated by the lower boundary of the integral
�around y=0� due to the exponentially decaying integrand.
To derive the asymptotic form of Sn

PB for large �, one can
expand the integrand either around y=0 or around the singu-
lar point y0. Both procedures lead to the same scaling rela-
tion �42� for Sn

PB in the strict limit of �→
 when � is close
to the critical value �c

PB=1. But as � becomes larger ���1�,
only the second procedure leads to the correct result, because
the singularity at y0�−1/ ��−1� approaches zero, rendering
the expansion around y=0 a poor approximation.

By expanding the integrand around y=0 �up to the first
order in y�, we obtain from Eq. �40� that

Sn
PB �

�2

�n+1sin2 !
	

0

�

dy e−�n+2�−2�y �
�2 + �� − 1�2

�n+1�n + 2� − 2�
.

�C11�

This relation reproduces Eq. �41� in the text, which, as ex-
plained above, is valid for � close to �c

PB=1.
For larger values of �, we expand the integrand in Eq.

�40� around y0=−! /�, which yields
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Sn
PB �

�/!

�n+1�1 −
n!

�
en!/�"�0,

n!

�

� , �C12�

where "�a ,b� is the incomplete gamma function. This rela-
tion provides a reasonably good approximation for Sn

PB at
large � and in the whole range ��1. In particular, when the
limit �→
 is taken, it yields the correct analytical result as
expressed in Eq. �C18� below.

4. PB solution in an unbounded system „�= 	 …

In the present study, we have assumed that the counterion-
cylinder system is bounded laterally, ensuring that the nor-
malization of density profile �̃PB�r̃� to the total number of
counterions, N, is fulfilled even in the limit �→
. In a
strictly unbounded system �with �=
�, this normalization
condition is not preserved, because a finite fraction of coun-
terions can escape to infinity. In this case, the PB equation
�18� can be solved by relaxing the normalization condition
�21� and assuming the boundary conditions at the cylinder

surface as �PB

 �R̃�=0 and R̃�d�PB


 �r̃= R̃� /dr̃�=2�. One thus
finds �70�

�PB

 �r̃� = �2� ln

r̃

R̃
, � � 1,

2 ln
r̃

R̃
+ 2 ln�1 + �� − 1�ln

r̃

R̃
� , � � 1,�

�C13�

and that �̃2 /2= �̃PB

 �R̃�=0 for ��1 and �̃2 /2= ��−1�2 /�2 oth-

erwise. Hence using Eq. �23�, the density profile in an un-

bounded system �for R̃� r̃� D̃� reads

�̃PB

 �r̃� = �0, � � 1,

�� − 1�2

�2 � r̃

R̃
�−2�1 + �� − 1�ln

r̃

R̃
�−2

, � � 1, �
�C14�

which coincides with the asymptotic expressions �32� and
�34�. But now �̃PB


 �r̃� is normalized only to the condensed
fraction �M �Eq. �72��—i.e.,

	
R̃




dr̃ r̃ �̃PB

 �r̃� = �M� = �0, � � 1,

� − 1, � � 1
� �C15�

�compare with Eq. �29� and note the order in which the in-
tegration and the infinite-system-size limit are taken�. The
order parameter in an unbounded system, Sn

PB,
, may be cal-
culated using �̃PB


 . For ���c
PB=1, we obtain

Sn
PB,
 =

1

�n�1 −
n

� − 1
en/��−1�"�0,

n

� − 1

� . �C16�

Near the critical point �0	�=1−�c
PB/��1�, we have

Sn
PB,
��� �

�

n
, �C17�

which exhibits a different exponent as compared with the
quantity Sn

PB�� ,�→ 
 � in Eq. �42�. This is again due to the

difference in the normalization factor, which enters in Sn
through Eq. �38�. In general, however, the limiting ��→ 
 �
result for the order parameter Sn

PB, Eq. �40�, may be obtained
for arbitrary � by multiplying Sn

PB,
 in Eq. �C16� with the
condensed fraction �M—i.e.,

lim
�→


Sn
PB = �MSn

PB,
. �C18�

APPENDIX D: HAMILTONIAN OF A PERIODIC
CYLINDRICAL CELL MODEL (3D)

As stated in Sec. V B, the periodic boundary conditions
used in the simulations in 3D lead to summation of the Cou-
lomb interaction �v3D�x�=1/ �x � � over an infinite number of
periodic images. For an electroneutral system, the resultant
summation series are convergent and can be mapped to fast-
converging series that can be handled easily in the simula-
tions �78,79�. In what follows, we derive the convergent ex-
pressions for the Hamiltonian �3�.

The main �cylindrical� simulation box �of height L and
containing N counterions� is replicated infinitely many times
in the z direction, generating a series of M→
 image boxes
labeled by the index m=−M /2 , . . . ,−1 ,0 ,1 , . . . , +M /2 �with
m=0 being the main box�. The Hamiltonian �3� consists of
three parts HN=Hci+Hint+Hself—namely, the counterion-
counterion interaction Hci, the counterion-cylinder interac-
tion Hint, and the cylinder self-energy Hself, which will be
analyzed separately. �Here we use actual units and in the end,
transform the results to the rescaled form.�

1. Hint and Hself terms

The counterion-cylinder interaction part per simulation
box reads Hint / �MkBT�=��=1

N u�r��, where, using ��x�
=�s
�r−R�, we have

u�r�� = − q�B	 v3D�x − x����x� dx = 2� ln� r�

R

 + c0,

�D1�

with � running only over the counterions within the main
box. The constant term is given by

c0 = − q�B	 v3D�x − x0���x� dx , �D2�

where x0 belongs to the cylinder �equipotential� surface. c0
may be written in terms of the cylinder self-energy,

Hself

MkBT
=

�B

2
	 ��x�v3D�x − x����x�� dx dx�. �D3�

Using the electroneutrality condition �L=qN �per box�, one
can show that Hself / �MkBT�=−Nc0 /2. Hence

1

MkBT
�Hint + Hself� = 2��

�=1

N

ln� r�

R

 + C0, �D4�

where C0=−Hself / �MkBT� is a constant, which diverges loga-
rithmically with M. This can be seen from the asymptotic
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behavior of the self-energy for large M �or large
ML /R�—i.e.,

Hself/�kBT�
�2�BML

= 	
0

2� d# d#�

4�2 	
−ML/2

ML/2 dz dz�/�2ML�
��z − z��2 + 4R2sin2 ��# − #��/2�

� a0 + ln�ML

R

 + O� R

ML

 , �D5�

where a0� ln 2−1. This logarithmic divergency is canceled
by a similar divergent term coming from the interaction be-
tween counterions as we show now.

2. Hci term and the Lekner-Sperb formula

The contribution from counterionic interactions �per
simulation box and for large M� can be written as

Hci

MkBT
=

q2�B

2M
�
i�j

v3D�xi − x j�

=
q2�B

2L � �
���

SM�x� − x�

L

 + NSM

0 � , �D6�

where i and j run over all counterions �including periodic
images�, while � and � �� ,�=1, . . . ,N� run over counterions
in the main simulation box. We have defined SM

0

=2�m=1
M/2m−1 and

SM�x� − x�

L

 = �

m=−M/2

M/2

����
2 + ���� + m�2�−1/2, �D7�

where ���= ��x�−x��2+ �y�−y��2�1/2 /L and ���= �z�−z�� /L.
Note that, in particular, SM

0 represents the interaction between
a counterion and its periodic images, which are lined up in
the z direction. This series diverges and may be written as

SM
0 =2 ln�M /2�+2Ce for M→
, where Ce=0.577 215. . . is

the Euler’s constant. In this limit, SM is also divergent, but it
may be split into a convergent and a divergent part as

SM = SM
0 + SLS����,���� + 2�ln 2 − Ce� , �D8�

in which the convergent series SLS���� ,���� can be ex-
pressed in terms of the special functions �78,79�.

Now inserting the above results for SM and SM
0 into Eq.

�D6�, we have, for M→
,

Hci

MkBT
=

q2�B

2L
�

���

SLS����,���� + ��Ce − ln 2� + �N ln M ,

�D9�

with a logarithmic divergent term �last term� from the one-
dimensional periodicity of the system. It immediately fol-
lows that the divergencies in Eqs. �D4� and �D9� cancel each
other when the electroneutrality condition is imposed. Thus
we have the well-defined expression

HN

MkBT
= 2��

�=1

N

ln� r�

R

 +

q2�B

2L
�

���

SLS����,���� + �Nh0,

�D10�

where h0=1+ln�R /2L�+ �Ce−ln 2� /N; equivalently,

HN

MkBT
= 2��

�=1

N

ln� r̃�

R̃

 +

�

2L̃
�

���

SLS��̃��, �̃��� + �Nh0

�D11�

in rescaled units, where h0=1+ln��2 /2�N�+ �Ce−ln 2� /N.
The above expression is used to calculate the internal energy
and the heat capacity in our simulations �Sec. VI�. The term

SLS��̃�� , �̃��� may be determined from Eq. �D8� using some
mathematical identities as shown by Lekner �78� and Sperb
�79�. It may be written in the form of two formally identical
series expansions

SLS

= �− 2 ln �̃�� + 4�m=1



K0�2�m�̃���cos�2�m�̃��� �series I�

�m=1


 �− 1/2

m

��̃���2m�Z�2m + 1,1 + �̃��� + Z�2m + 1,1 − �̃���� + ��̃��

2 + �̃��
2 �−1/2 − $�1 + �̃��� − $�1 − �̃��� − c* �series II� .�

�D12�

In the above relations, K0�x� is the modified Bessel function
of the second kind, Z�n ,x�=�k=0


 1/ �k+x�n is the Hurwitz
zeta function, $�x� is the digamma function, and c*=2 ln 2
�1.386 294. . . .

The series in Eq. �D12� can be evaluated numerically
up to the desired accuracy. Note that the first series �Lekner

scheme� involves the Bessel function K0�x�, which
decays exponentially for large x �as �exp�−x� /�x� but
diverges logarithmically for small x. It is therefore rapid-
ly converging when the rescaled radial distance between
two given particles, �̃��, is sufficiently large. We use
the following recipe to truncate series I: For �̃���3, we
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truncate after the third term, for 1 /3��̃���3, we
include 2+ �3/ �̃��� terms in the sum �where �x� refers to the
integer part of x�, and for 1 /4��̃��	1/3, we sum at least
12 terms. This recipe ensures a relative truncation error of
about �er � �10−10. For small radial separation �̃��	1/4 be-
tween two particles, series I becomes inefficient and slow.
We thus employ the second series expression �Sperb
scheme�. This series is rapidly converging for small �̃�� pro-

vided that �̃��, which enters in the argument of the Hurwitz

zeta function, is sufficiently small—namely, for ��̃�� � �1/2

�79� �note that in general we have ��̃�� � �1�. In fact, due to

the periodicity of the system, the energy expression �D6�
remains invariant under the transformations �̃��→1− �̃��

and �̃��→−�̃��, and thus �̃�� can always be restricted to the

range ��̃�� � �1/2. In this case, we use up to eight terms in
series II. The relative truncation error �er� varies for different

�̃��; e.g., for �̃���0.4 and �̃���0.25, one has �er � �10−7.

The error substantially decreases for smaller �̃��. The
above truncation recipes yield very accurate estimates for the
interaction energies within the statistical error bars of the
simulations.
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