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Simulation of a microfluidic flow-focusing device
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We present a model of microfluidic flow of several completely immiscible fluids and use it to simulate a
whole flow focusing device chamber. Our efficient, practical model supports a large parameter space, spanned
by surface wetting, surface tension, liquid-liquid wetting, viscosity ratio, and inlet velocity. It is based upon an
N-component lattice Boltzmann method with interrupted coalescence �Dupin et al., Philos. Trans. R. Soc.
London, Ser. A 362, 1885 �2004��, here adapted for calculations at low capillary and Reynolds numbers, with
wetting and significantly reduced spurious flow. Results over 2 orders of magnitude in Reynolds number are
presented.

DOI: 10.1103/PhysRevE.73.055701 PACS number�s�: 47.11.Qr, 47.15.G�
I. INTRODUCTION

Recently there has been interest in microscale apparatuses
containing two immiscible liquids, designed to form uniform
droplets e.g., �1,2�, which produce colloids of unprecedented
uniformity and so may form the basis of a lab-on-a-chip.
Anna’s “flow-focusing” geometry �1� is shown in Fig. 1. Its
flow, classified as continuum-scale, unsteady, and interface-
dominated, is characterized by a low drop Reynolds number,
Red, and a low to intermediate capillary number, Ca. The
modeling problem is compounded by liquid-liquid and
liquid-solid wetting.

Simulating Anna’s device by traditional computation fluid
dynamics �CFD� is computationally expensive, partially due
to interface tracking costs. Another challenge is the combi-
nation of low Red and Ca, which means that spurious veloci-
ties �present in most computational schemes� compare in
magnitude to the modeled flow velocity. We report results
obtained by a lattice Boltzmann �LB� method. LB methods
for fluid flows have developed since the late 1980s �3,4�; for
a recent, comprehensive, survey see �5�; the particular vari-
ant we use synthesizes and enhances Dupin and co-workers’
�6� multicomponent LB model and co-workers’ �7� and Lish-
chuk’s LB model. A less refined version of our method has
been successfully applied to venule-scale blood flow �6,8�.
We note in passing, the recent advent of microfluidic-adapted
LB methods �9,10� �containing, e.g., electrostatic interactions
and boundary slip�, some of which have achieved some suc-
cess �11–13�. However, at the present scale, a traditional LB
fluid model is equally valid; see Sec. II. Several multicom-
ponent LB versions are distinguished by the particular way
in which the fluid-fluid interface is imposed �e.g., �7,14–16��.
The method of Swift et al. �14�, based on the Cahn-Hilliard
theory, is an appropriate choice when phase separation kine-
matics feature. However, in our application, the continuum
approximation �small Knudsen number� and a consistency
across length scales urge a model with narrow interfaces and
a continuum model of wetting.

In this work, we combine existing LB methods in context
before defining the necessary model enhancements. In so do-
ing, we emphasize the significance of the latter. Accordingly,

this article is organized as follows. Section II outlines back-
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ground detail of our LB model, Sec. III considers the key
combinations of particular LB model components in a flow-
focusing context, Sec. IV describes model extensions, and
Secs. V and VI contain results and conclusions.

II. BACKGROUND LATTICE BOLTZMANN MODEL

Our particular multiple immiscible component LB
model �6,8,17� is based on the single component Bhatnagar-
Gross-Krook �LBGK� version �18� with a source term �i�r�
�5� added for interfacial tension:

f i�r + ci,t + 1� = f i�r,t� −
1

�
„f i�r,t� − f i

0��,�u�… + �i�r� , �1�

velocity vectors, ci, being the D2Q9 set �5�. Essentially, im-
miscible fluid component C is tracked using phase field, �M

C ,
at boundaries in which �i generates a body force �7� for
interfacial tension. Optimally sharp interfaces arise by a nu-
merical segregation process �15� �below�, so our model
maintains �within numerical error� a complete, mutual, seg-
regation of all components with all coalescence interrupted;
it contains no phase separation kinematics in the same way
as Swift and colleagues’ method �14�.

Dupin and co-workers’ �6,18� multicomponent LB model
decomposes the single momentum density, f i, into a set of
NC�r , t� contributions, f i

C�r , t�, such that:

FIG. 1. �Color online� Schematic of a flow focusing geometry,

e.g., �1�.

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevE.73.055701


DUPIN, HALLIDAY, AND CARE PHYSICAL REVIEW E 73, 055701�R� �2006�

RAPID COMMUNICATIONS
f i�r,t� = �
C

fi
C�r,t� , �2�

where the f i evolve according to Eq. �1� and the value of
superscript C runs over the NC�r , t� components present lo-
cally. Density, ��r , t�, is likewise decomposed into partial
contributions from each local component:

��r,t� = �
C
��C�r,t� = �

i

f i
C�r,t�� , �3�

with fluid velocity: ��r , t�u�r , t�=�i f i�r , t�ci. To segregate
different components, define a phase index:

�M
C �r,t� � 1 − 2

�C�r,t�
��r,t�

; − 1 � �M
C �r,t� � 1. �4�

C superscripts �i.e., f i
Cs� are reset “numerically,” �15� at

mixed nodes 	�M
C �r , t�	�0.99 after a collision. Component C,

present in amount �C, is allocated hierarchically, beginning at
the f i with that velocity, ci, of largest projection on its color
field:

GĈ � ��M
C �r,t� = 3�

i

tp�C�r + ci,t�ci + O„�c�i
3
… . �5�

This maximizes the flux of C, qC, in GĈ and generates a
narrow interface, some 1.5 lattice spacings across. On recog-
nizing that sharp interfaces mean NC�r , t��5 may be as-
sumed locally �the number of different components globally,
N, being unlimited� there results a computationally efficient
method for simulating a large number of immiscible species
�6,8�. Only five discrete values of C and 5 �sets of� momen-
tum distribution functions are required at each site, so
memory and computing time are virtually independent of N
and the distribution of fluid components.

At a mixed node, interfacial tension is applied for each C
by a generalized form of Lishchuk and co-workers’ pertur-
bation for a body force at the Navier-Stokes scale, propor-
tional in strength to the local interface curvature KC�r , t�:

FC�r,t� =
3

2
KC�r,t��C�C�r,t� , �6�

where KC�r , t� is obtained from the second derivatives of
��C �7�. Generalizing the analysis of �7�, the source term to
generate a macroscopic, body force for all the interfaces
present locally is

�i�r,t� =
3

2�
C
��CKC�r,t�ci�

�

�x�

�M
C �r,t�� . �7�

For two fluids, C and D, Eq. �7� becomes �i�r , t�= 3
2 ��C

+�D�KC�r , t�ci�
�

�x�
�M

C �r , t�, giving the macroscopic interfa-
cial tension �C+�D �7�.

III. APPLICATION TO FLOW FOCUSING

In the experiments of Anna et al. �1� �Fig. 1�, distilled
water, viscosity 	W, and silicon oil, viscosity 	O=6	W, enter
as indicated. Forced into a narrow thread, the water breaks
into uniform drops upstream or downstream of A, according
to parametrization. Drop size depends on inlet velocities.
Surfactant dissolved in the oil interrupts water drops’ coales-
cence. This apparatus will be considered as a pressure-driven

flow with open boundary conditions.
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For the current application �see Fig. 1�, we estimate the
Reynolds number Re�UOWO /	O
10−1 and the capillary
number Ca�	O	UO−UW	 /�
10−4 �where � is the interfa-
cial macroscopic surface tension�. It must be noted here that
this flow regime is particularly difficult to address with com-
mon computational methods �mainly due to the emergence of
unwanted spurious flow, see Sec. IV�. Flow in the geometry
of Fig. 1 is influenced by the two fluids’ dynamic contact line
�DCL� behavior at the solid boundaries. The continuum de-
scription breaks down close to a DCL and, strictly, one
should resolve the interface structure. However, one can use
one of several continuum approximation strategies; here we
choose to use a form of the Navier boundary condition �19�.

Perhaps the most important, existing property of our
model outlined in Sec. II is its control of coalescence. The
input oil stream and the stabilized drops are represented as
mutually immiscible liquids with the same physical proper-
ties. We detect oil drop scission by monitoring the phase
field, �O, representing the oil profile, along the central axis of
the simulation. The separation of a drop is identified as the
appearance of a zero in the profile and the fluid in the droplet
is relabeled to a new, unique, value. Different liquids, albeit
with identical properties, are treated as immiscible by default
in Dupin’s algorithm. Note while this creates a new liquid
component in the simulation, it leaves the total data storage
requirement, unchanged. Also note that execution speed is
only slightly reduced as additional interface appears.

In the case of three or more liquids at a node, the water
fluid was made preferentially to wet by setting its parameter
�W�0 �Eq. �6�� and setting GC→−GC locally; all interfacial
tensions of course remain positive �see note after Eq. �7��,
but with three fluids in contact, this device encourages a thin
layer of water to prevent the close approach between drops,
circumventing a need to postulate sublattice lubrication
forces.

Open boundary conditions are present on the left and right
faces of Fig. 1. Inlet and outlet fluxes and an outlet pressure
�density� distribution were specified at every time step, using
an appropriate equilibrium f i

�0��� ,u� �5�. The inlet pressure
distribution was allowed to develop. The inlet fluxes are in-
dicated in Fig. 1; the corresponding outlet flux was taken to
be a square profile of matched discharge. The unknown inlet
density developed using a “fully developed,” uniform pres-
sure gradient condition �17�. No-slip walls were applied by
the robust method of midlink bounceback �5�, which, while
only 0�1.5� accurate, conveniently resolves our complex wall
shapes. Wetting at these walls is discussed in Sec. IV.

To support the large axial pressure gradient about orifice
A �Fig. 1�, it was necessary to use an exactly incompressible
�EI� form of the LBGK method �shortened as exactly incom-
pressible Bhatnagar-Gross-Krook �EILBGK��. He and Luo’s
�20� D2Q9 EILBGK scheme was used for the overall fluid.
In this method, the average LB fluid density is assumed con-
stant, locally the pressure P=� and the effect of LB fluid
compressibility, originating in LB’s O�1� speed of sound, is
removed. Errors associated with the time variation in EIL-
BGK schemes were measured as negligible in the slow flow
of this configuration.
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IV. ENHANCED MULTICOMPONENT LATTICE
BOLTZMANN

A. Phase fields at the wall

To control wetting one must control the direction of the
color flux at the wall. Consider mixed nodes on a no-slip
boundary; steps �i� and �ii� below reduce spurious flow by
more than an order of magnitude. �i� Segregating liquids
“symmetrically” when ��M

C lies within ±5° of a lattice link
direction. Numerical species segregation generates sharp in-
terfaces by preferentially populating links with the largest
projection on ��M

C with color C. However, this gives a flux
of color C, which fluctuates about the direction of ��M

C , the
instantaneous direction of the flux of C only approximating
that of ��M

C . It is essential to correlate the directions of ��M
C

and the C flux for nodes lying close to a wall. For our appli-
cation, no-slip walls were placed parallel to lattice directions.
To allow the C flux to resolve the wall orientation, subsets of
the three LB lattice links with the largest projection on ��M

C

had equal priority for the allocation of color C. The value of
5° is based on trial and error. Decreasing this angle limits the
benefits of equal recoloring while increasing it decreases
efficiency. �ii� Systematic error in the boundary-normal
component of ��M

C leads to errors in the emergent DCL be-
havior through the misdirection of the flux of �M

C �17�. There-
fore, we calculated the boundary value of ��M

C at a point
displaced by 0.5 lattice spacings along the wet boundary
normal.

B. Contact line motion

Dynamic contact lines �DCLs� are an open question. To
avoid a singularity, we assume a subgrid layer of supernatant
wets the walls and that wetting in low-inertia flow is domi-
nated by competition between fluids’ postulated wetting af-
finities. Interfacial slip in the DCL region is assumed to be
determined by an uncompensated Young stress alone, as fol-

lows. Let T̂ denote the boundary tangent. Suppose compo-
nents C and C� are present. A “boundary body force” param-
etrized by �W

C , determines the wetting affinity of component

C: Fb
C=�W

C 	�T̂� ��C
N	. It acts parallel to the walls, into fluid C

�17�. Corresponding similar forces are applied to all fluids of
the mixture present in contact with the wall. Wetting of a
given CC� interface is the combination of each wetting af-
finity for the pair constituents C and C�.

C. Stability and parameter range

The range of modelled behavior is controlled by �i� the

FIG. 2. �Color online� Detail of the velocity field of simulation
in Fig. 3�a�, showing a clean velocity field. Paired vortices are
consistent with the experimental counterpart.
boundary conditions, especially the magnitude of the pres-
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sure gradient and �ii� the range of Ca between simulations.
Item �i� was discussed in Sec. III. Item �ii� becomes
problematic when simulating low Ca, materialized by a noisy
velocity field and an unphysical droplet behavior. The
first practical problem relating to item �ii� is LB’s lack of
Galilean invariance or the “pinning” of drops onto the under-
lying lattice in very slow flow. Lishchuk and co-workers’
method uses an interface force density �see Eq. �6�� and
should sum to zero for closed interfaces. However, it
has been found that numerical derivatives �despite O�2� ac-
curacy� introduce an error, leading to the pinning. It is re-
duced by eliminating the small but finite total interface force
on any one drop by adding its negative to the interface, uni-
formly distributed. Reduced spurious interfacial flow ex-
poses another artefact of all CFD: velocity field checker-
boarding. We exploit a slow time variation by averaging two
successive simulation states, reducing checkerboarding to
negligible levels but leaving the accuracy of the model’s dy-
namics unaffected to O�u2� �17�. The above improvements
lead to reduced pinning, checkerboarding and spurious flow;
see Fig. 2.

V. RESULTS

Lattice dimensions were Lx�Ly =160�100. The surface
tension was calibrated by measuring the pressure increase
across the interface of an isolated drop. Confirmed Laplace
law behavior between a macroscopic surface tension � and
the surface tension parameter � �R2=0.985, 30 points� was
used to estimate Ca. The oil LBGK collision parameter var-
ied from 0.2 to 1.5, depending on the Re. The oil influx, UO,
varied in 0.0015¼0.011 lattice units per time step. Follow-
ing �1�, UW=UO /4. The measured increase in inlet pressure
at steady state varied from 2% to 20%, depending on the Re.

FIG. 3. �Color online� Drop formation and scission. Interimage
interval is 1000 time steps. Simulation parameters were
Ca=4�10−4, Re=10−1. This time sequence is in good comparison
with Ref. �1�. The surface wetting set at A makes the drop “stick”
slightly.
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The program execution required 5 �0.3� mins/droplet for the
smallest �largest� Re on a UNIX Pentium 3.06 GHz and only
43 Mb of RAM. Re varied from 10−1 to 17; the correspond-
ing Ca ranged from 3�10−4 to 6�10−2. Generally, the
model shows behavior very similar to the experiments of �1�,
as the time sequence of Fig. 3 shows. The latter depicts the
formation of drops for Re=0.1, Ca=3�10−4 �parameters of
Fig. 4�a��.

Our model is stable over a range of Re and Ca. Figure 4
shows the “steady-state” drop product distribution over 2
orders of magnitude of Ca and Re. The viscosity contrast and
fluids’ wetting affinities were constant in this data. There is a
very clear variation in drop radius with Re, but for given Re,
monodispersity is high, �1�. The third �unmodeled� dimen-
sion appeared to affect trends in comparison to the results of
Anna et al., especially at the aperture. Note also that our
simulations show drop scission both within orifice A and
downstream of it.

Sensitivity of our results to grid resolution was assessed
by repeating the results of Fig. 4�a� with a range of increased

FIG. 4. �Color online� Steady state for 
Ca, Re�: �a� �top left�

4�10−4 ,0.10�, �b� �top right� 
3�10−3 ,0.62�, �c� �bottom left�

0.01, 2.7�, �d� �bottom right� 
0.07, 17�. Wetting affinities and inlet
velocity profiles are constant. �d� shows the effect of preferential
supernatant wetting. Droplets size and distribution in the chambers
are in good comparison with the images of Ref. �1�.
resolutions. Average drop size was observed to remain con-

�10� L. S. Luo, Phys. Rev. Lett. 92, 139401 �2004�.
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stant for �up to� a factor of 10 �100� increase in the linear
�area� density of mesh points.

As in all CFD models, the artifact of spurious velocities
impacts in LB at low Ca. However, Fig. 2 shows that, in the
most demanding regime �lowest Ca�, our model achieves a
very low spurious flow velocity field. Overall, it is clearly a
great advantage that computational requirements scale only
weakly with the number of drops.

VI. CONCLUSION

We report an efficient simulation of multicomponent mi-
crofluidics. Using a flow-focusing device �Fig. 1� as a test
case, we used a two-dimensional multicomponent lattice
Boltzmann method to simulate this low Ca, low Re, complex
and unsteady flow in the continuum approximation over 2
orders of magnitude in Ca and Re �Fig. 4�. Key develop-
ments of our model relate to control of spurious flow and
treatment interfaces at the solid boundary, living an essen-
tially clean velocity field �Fig. 2�. Qualitative agreement with
experiment �1� is good �Fig. 3�.

A three-dimensional model of this system would bring
only restricted benefits; while it would address a reported
flow resistance of the drops �probably due to wetting on
unmodeled boundaries�, the latter could also be modeled in
2D, using an appropriate body force. For effective improve-
ment we suggest �i� improving boundary conditions on the
flow �phase field� by O�2� accurate closure �dynamic wetting
using a slip length� and �ii� further attention to drop pinning,
using a distributed interface. Item �ii� is central to improving
access to reduced Re but “costs” in terms of length scales.
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