
PHYSICAL REVIEW E 73, 055601�R� �2006�

RAPID COMMUNICATIONS
Stabilization of vector soliton complexes in nonlocal nonlinear media
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We introduce vector soliton complexes in nonlocal Kerr-type nonlinear media. We discover that under
proper conditions the combination of nonlocality and vectorial coupling has a remarkable stabilizing action on
multihumped solitons. In particular, we find that stable bound states featuring several field oscillations in each
soliton component do exist. This affords stabilization of vector soliton trains incorporating a large number of
humps, a class of structures known to self-destroy via strong instabilities in scalar settings.
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The mutual interaction between nonlinear excitations is
under active consideration in different areas of physics, in-
cluding condensed matter, solid state, dynamical biomol-
ecules, and nonlinear optics. This includes a rich variety of
effects connected with the vectorial nature of the nonlinear
excitations. For example, vectorial coupling was observed in
multicomponent Bose-Einstein condensates �1� and in topo-
logical defects arising due to the interspecies interaction �2�.
In nonlinear optics, vectorial coupling between several light
waves resulting in the formation of vector solitons has been
extensively studied for coherent �3� and incoherent �4,5� in-
teractions in materials with local nonlinearity. One important
result introduced in Ref. �4� is the existence of multihumped
solitons afforded by the vectorial interactions. Recently, vec-
tor solitons in media with transverse periodic modulation of
refractive index were addressed as well �6�. It was shown
�3–6� that vectorial coupling in local Kerr-type media could
lead to the existence of complex multihumped structures that
have no counterpart in the scalar case. However, in a local
saturable medium such structures were found to be stable
only when the total intensity distribution does not feature
more than three humps �5�.

On the other hand, nonlinearity may be highly nonlocal, a
property that drastically alters the propagation and interac-
tion of nonlinear waves �7�. Nonlocality should be taken into
account when the transverse extent of the wave packet be-
comes comparable with the characteristic response length of
the medium. The nonlocal nonlinear response brings new
features in the development of modulation instability �8�,
prevents catastrophic collapse of multidimensional solitons
�9,10�, and results in the stabilization of vortex solitons �11�.
New effects attributed to nonlocality have been studied in
photorefractive crystals �12�, thermo-optical materials �13�,
liquid crystals �14�, plasmas �15�, and Bose-Einstein conden-
sates with long-range interparticle interactions �16�. Among
other specific features encountered with nonlocal medium is
the possibility of the formation of complex multihumped
trains composed of scalar bright or dark solitons �17�. Such
trains may or may not feature a threshold number of humps
for stability depending on the type of nonlocal response of
the medium. In particular, in materials with exponential re-
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sponse functions stable scalar trains cannot involve more
than four solitons �18�.

In this Communication we introduce vector soliton struc-
tures in nonlocal media, and reveal that such a combination
affords remarkable phenomena. In particular, we discovered
that because of the nature of soliton interactions in nonlocal
media, vector solitons can form stable bound states that fea-
ture several field oscillations in each component, in sharp
contrast to the behavior encountered in local media. We re-
veal that nonlocal nonlinear response plays a strong stabiliz-
ing action for vector solitons of higher orders. Complex pat-
terns with a large number of humps in one field component,
that are unstable when propagating alone, can be made stable

FIG. 1. Soliton profiles corresponding to b1=3, d=2, and �a�
b2=1.8, �b� b2=2.5. �c� Energy flow vs propagation constant b2 at
b1=3. Points marked by circles correspond to solitons shown in �a�
and �b�. �d� Energy sharing between w1 and w2 soliton components
vs b2 at b1=3, d=2. Domains of existence of vector solitons at

�d ,b2� plane for b1=3 �e� and at �b1 ,b2� plane for d=2 �f�.
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in nonlocal media due to the mutual coupling with stable
solitons propagating in other field components.

We consider the propagation of two mutually incoherent
laser beams along the � axis of a nonlocal focusing Kerr-type
medium described by the system of equations for dimension-
less complex light field amplitudes q1,2 and nonlinear correc-
tion to refractive index n given by

i � q1/�� = − 1
2 �2q1/��2 − q1n ,

i � q2/�� = − 1
2 �2q2/��2 − q2n ,

�1�
n − d �2n/��2 = �q1�2 + �q2�2.

Here � and � stand for the transverse and longitudinal
coordinates scaled to the input beam width and diffraction
length, respectively; the parameter d describes the degree of
nonlocality of the nonlinear response. In the limit d→0 the
system �1� reduces to a system of coupled nonlinear
Schrödinger equations for the fields q1,2 whose vector soliton
solutions are well established �3–5�. The opposite limit
d→� corresponds to a strongly nonlocal regime. Under ap-
propriate conditions the mathematical model �1� adequately
describes the nonlinear response of some thermo-optical ma-
terials, liquid crystals, or partially ionized plasmas �13–15�.
Among the conserved quantities of system �1� are the energy
flows U ,U1,2 and the Hamiltonian H;

U = U1 + U2 = �
−�

�

��q1�2 + �q2�2�d� ,

H = �
−�

� � 1
2 ��q1/���2 + 1

2 ��q2/���2

− 1
2 ��q1�2 + �q2�2��

−�

�

G�� − ����q1�2 + �q2�2�d��d� , �2�

where G���= �1/2d1/2�exp�−�� � /d1/2� is the response func-

FIG. 2. Soliton profiles corresponding to b1=3, d=2, and �a�
b2=1, �b� b2=2.3. Domains of existence of vector solitons at �d ,b2�
plane for b1=3 �c� and at �b1 ,b2� plane for d=2 �d�.
tion of the nonlocal medium.
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We searched for the stationary solutions of Eq. �1� nu-
merically in the form q1,2�� ,��=w1,2���exp�ib1,2��, where
w1,2��� are real functions and b1,2 are real propagation con-
stants. The resulting system of equations obtained after sub-
stitution of light field in such form into Eq. �1� was solved
with a standard relaxation method. To elucidate the linear
stability of the solutions, we searched for perturbed solutions
in the form q1,2�� ,��= �w1,2���+u1,2�� ,��+ iv1,2�� ,���
�exp�ib1,2��, where real u1,2�� ,�� and imaginary v1,2�� ,��
parts of the perturbation can grow with a complex rate �
upon propagation. Linearization of Eq. �1� around a station-
ary solution w1,2 yields the eigenvalue problem

�u1 = − 1
2d2v1/d�2 + b1v1 − nv1,

�v1 = 1
2d2u1/d�2 − b1u1 + nu1 + w1 � n ,

�u2 = − 1
2d2v2/d�2 + b2v2 − nv2,

�v2 = 1
2d2u2/d�2 − b2u2 + nu2 + w2 � n , �3�

where �n=2	−�
� G��−���w1���u1���+w2���u2����d� is the

perturbation of refractive index. We solved Eq. �3� numeri-
cally to find the profiles of perturbations and the associated
growth rates.

The simplest vector solitons can be found with b1=b2 in

FIG. 3. Profiles of various higher-order vector solitons at �a�
b2=2.55, d=2, �b� b2=1.5, d=2, �c� b2=0.45, d=4, �e� b2=2.15,
d=10, and �f� b2=2.37, d=16. Panel �d� shows stability �shaded�
and instability domains on �d ,b2� plane for solitons incorporating
nodeless w1 and five-hump w2 components �see panels �c� and �e�
for soliton profiles�. In all cases b1=3.
the form w1���=w���cos � and w2���=w���sin �, where
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w��� describes the profile of scalar soliton, and � is an arbi-
trary projection angle. The most interesting situation is en-
countered, however, when b2�b1 and the first and second
soliton components possess different types of symmetry. Be-
low, without loss of generality, we search for solutions with
b2�b1. The properties of vector soliton composed from the
first nodeless and second dipole-mode components are sum-
marized in Fig. 1. At fixed propagation constant b1 and non-
locality degree d there exist lower b2

low and upper b2
upp cutoffs

on b2 for vector soliton existence. As b2→b2
low the second

dipole-mode component gradually vanishes �Fig. 1�a��, while
in the opposite limit b2→b2

upp the nodeless component ceases
to exist �Fig. 1�b��. Such transformation of the internal struc-
ture of the vector soliton is accompanied by the development
of a two-humped refractive index distribution near b2

upp.
Notice, that with increase of nonlocality degree, the width of
the refractive index distribution increases substantially and
far exceeds the width of the actual intensity distribution
w1

2+w2
2. The deep on top of the refractive index distribution

becomes more pronounced in the local limit �d→0� and al-
most vanishes in strongly nonlocal medium �d→ � �. At
small degrees of nonlocality and at b2→b2

upp the vector soli-

FIG. 4. Propagation dynamics of vector solitons in nonlocal
medium. �a� Soliton involving nodeless w1 and dipole-mode w2

components at b1=3, b2=2, d=2. �b� Soliton involving nodeless w1

and triple-mode w2 components at b1=3, b2=2.4, d=3. �c� Soliton
involving dipole-mode w1 and triple-mode w2 components at
b1=3, b2=2.55, d=2. �d� Soliton involving dipole-mode w1 and
quadrupole-mode w2 components at b1=3, b2=1.5, d=2. �e� Soliton
involving nodeless w1 and five-hump w2 components at b1=3,
b2=0.45, d=4. �f� Decay of soliton depicted in �e� in the absence of
w1 component. In �a�–�e� white noise with variance 
noise

2 =0.01 is
added into input profiles. Only w2 components are shown.
ton transforms into two very well separated solitons with
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bell-shaped second components having opposite signs, while
at b2→b2

low a small second component broadens substan-
tially in comparison with the localized first component. In
strongly nonlocal media both components remain well local-
ized in the cutoffs. The total energy flow U is found to be a
monotonically increasing function of b2 �Fig. 1�c��. The en-
ergy sharing S1,2=U1,2 /U as a function of b2 is depicted in
Fig. 1�d�. We found that the width of the existence domain
on b2 for vector solitons shrinks substantially with the in-
crease of nonlocality degree d �Fig. 1�e�� and expands with
the increase of b1 �Fig. 1�f��. A comprehensive linear stabil-
ity analysis revealed that vector solitons composed of node-
less and dipole-mode components are stable in the entire
domain of their existence.

We also found vector solitons composed of first nodeless
and second triple-mode components, whose properties are
summarized in Fig. 2. The generic properties of such solitons
are reminiscent to those of solitons discussed in Fig. 1, but
the existence domain for such solitons is substantially wider
�compare Figs. 2�c� and 1�e��. The linear stability analysis
revealed that solitons composed from nodeless and triple-
mode components are unstable for small values of d. With
decrease of d the instability domain emerges near upper cut-
off b2

upp and occupies the entire domain of soliton existence
as d→0.2 �Fig. 2�c��. In contrast, at moderate nonlocality
degrees d
2.3 such solitons are stable near lower and upper
cutoffs and feature only a narrow instability band inside their
existence domain. At small values of d the instability is of
exponential type while for d	2.3 we encountered only os-
cillatory instabilities. It should be pointed out that, in con-
trast to the case of local saturable medium �5�, multihumped
vector solitons in nonlocal media may be stable when total
intensity and refractive index distributions develop three or
even more humps.

One of the central results of this Communication is that
vector solitons were found to form stable bound states that
feature several field oscillations in both components and that,
to the best of our knowledge, were not encountered previ-
ously in any model of local Kerr-type media. Such bound
states exist because of the specific character of soliton inter-
actions in nonlocal medium, whose sign is determined not
only by the phase difference, but also by the separation be-
tween solitons �17�. Thus, in nonlocal media both w1 and w2
can change their sign in contrast to the case of local media
where one of the components remains nodeless �3–5�. Sev-
eral representative examples are shown in Fig. 3, including
solitons incorporating dipole-mode first and triple- �Fig.
3�a�� or quadrupole-mode �Fig. 3�b�� second components, as
well as more complex structures �Figs. 3�c�–3�f��. The total
number of humps in the refractive index distribution is de-
termined by the relative weights of the components. While
borders of the existence domain for bound states �e.g., Figs.
3�a� and 3�b�� look qualitatively similar to those shown in
Figs. 1 and 2, the complexity of the structure of stability
�instability� domains increases progressively with the in-
crease of the number of humps in each component, so that
typically several stability windows appear in the �d ,b2�
plane.

To confirm the outcome of the linear stability analysis, we

performed numerical simulations of Eq. �1� with the input
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conditions q1,2�� ,�=0�=w1,2����1+�1,2����, where w1,2���
stands for the profiles of stationary solitons, and �1,2��� are
random functions with Gaussian distribution and variance

noise

2 . Numerical simulations confirmed the results of the
linear stability analysis in all cases. Stable solitons shown in
Figs. 1–3 propagate over huge distances, exceeding experi-
mentally feasible nonlinear material lengths by several or-
ders of magnitude, even in the presence of considerable
broadband input noise �Fig. 4�.

Another important result that we encountered is that com-
plex patterns with a large number of humps, that are unstable
when propagating alone, can be made stable in suitable pa-
rameter regions due to the mutual coupling with stable
single-humped or multihumped components. Illustrative ex-
amples are shown in Figs. 3�c�–3�f�, where stabilization of
five- and six-hump components �that are unstable when
propagating alone in a medium with exponential response
function G �18�� is achieved because of the coupling with
first stable fundamental and stable quadrupole-mode compo-
nents, respectively. To stress that stabilization of such com-
plex multihumped structures takes place in a wide parameter
region we show in Fig. 3�d� the stability �instability� do-
mains for solitons depicted in Figs. 3�c� and 3�e�. Besides the
expected stability domain which adjoins the lower cutoff
b2

low, where the vector soliton bifurcates from the stable fun-
damental scalar soliton, another stability domain that appears
at d�3 �shaded area in the inset of Fig. 3�d�� was found. In
this latter domain, stabilization of the five-hump component
is achieved at the expense of coupling with a weak funda-
mental component. For a soliton profile belonging to this
stability domain, see Fig. 3�e�. Dropping the first component

causes fast splitting and decay of the second component �Fig.

�9� S. K. Turitsyn, Theor. Math. Phys. 64, 797 �1985�; O. Bang et
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4�f�� that is stable in the presence of coupling �Fig. 4�e��.
Similar results were obtained for more complex solitons,
e.g., Fig. 3�f�. Therefore, vectorial coupling of unstable soli-
tons in one field component with stable solitons in other field
components allows a substantial increase of the number of
solitons that can be packed into the composite, stable vector
soliton complex.

We thus conclude stressing that vectorial coupling in
Kerr-type nonlocal media features important soliton phenom-
ena. In particular, we revealed that in such media vector
solitons could form stable bound states that exhibit several
field oscillations in each component, thus affording an ex-
tended number of peaks that can be packed into stable soli-
ton trains. Our predictions open a route to the experimental
observation of such multihumped soliton complexes. We
based our analysis on a general model that combines nonlo-
cal nonlinearity and vectorial coupling, potentially relevant
to a variety of multicomponent nonlinear excitations in
strongly nonlocal materials with symmetric nonlocal kernels.
Formation of stable vector soliton complexes with rich inter-
nal structure might be possible in several systems. Therefore,
our results motivate specific research in settings that exhibit
diverse mechanisms resulting in nonlocal nonlinearities, in-
cluding charge transport in photorefractive crystals �12�,
thermal nonlinearities �13�, reorientational nonlinearities in
liquid crystals �14�, many-body interactions in multispecies
Bose-Einstein condensates �16,19� and partially ionized plas-
mas �15�, nonlinearities of semiconductors �20�, or inter-
atomic interactions in strongly correlated atomic gases �21�.
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