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Interacting surface waves, parametrically excited by two commensurate frequencies �Faraday waves�, yield
a rich family of nonlinear states, which result from a variety of three-wave resonant interactions. By perturbing
the system with a third frequency, we selectively favor different nonlinear wave interactions. Where quadratic
nonlinearities are dominant, the only observed patterns correspond to “grid” states. Grid states are superlattices
in which two corotated sets of critical wave vectors are spanned by a sublattice whose basis states are linearly
stable modes. Specific driving phase combinations govern the selection of different grid states.
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Three-wave interactions are among the most generic types
of interactions between nonlinear waves that occur in nature.
These are the lowest order �quadratic� nonlinear interactions
and, unless barred by symmetry constraints, will generically
occur in driven nonlinear systems. Examples range from
plasmas and fluids to nonlinear optical systems �1�. As de-
picted schematically in Fig. 1�a�, we consider two sets of
critical modes with wave number kc, that couple quadrati-
cally to a third linearly damped mode with wave number kd,
which is not directly introduced by the forcing. We will dem-
onstrate that the only observed nonlinear states are members
of an infinite family of “grid” states �2�. Different grid states
will be selected by perturbing the system so as to favor a
desired linearly damped mode.

Grid states are composed of two sets of hexagonal

lattices, K� i
1 ,K� i

2 �i=1 , . . . ,6� where �K� i
1,2 � =kc, that are coro-

tated by an angle � so as to couple to kd=2kc sin�� /2�. The
defining feature of grid states is that the 12 critical wave
numbers lie on a hexagonal sublattice spanned by basis vec-
tors, k�grid1,2

�Fig. 1�b��. n1 and n2 are coprime integers such

that K� 1
1=n1k�grid1

+n2k�grid2
and K� 1

2=n1k�grid1
+ �n1−n2�k�grid2

,
with the remainder of the Ki

1,2 obtained by � /3 rotations.
We label each grid state by the integers n1 :n2 needed to

span the state, where n1�n2�
1
2n1�0, and n1+n2 is not a

multiple of 3. These yield rotation angles, �, and basis vec-
tors, kgrid, given by �2�

cos��� =
n1

2 + 2n1n2 − 2n2
2

2�n1
2 − n1n2 + n2

2�
, �1�

kgrid = kc/�n1
2 − n1n2 + n2

2. �2�

The damped mode, kd, can either coincide with kgrid or be,
itself, a linear combination of k�grid1,2

.
To date, only one type of grid state, n1 :n2=3:2

��=22° �, has been identified experimentally �3,4� in the Far-
aday system. Although not identified as such, candidates for
grid states have also been observed in nonlinear optical sys-
tems �1�. The construction in Fig. 1�b� was proposed �2� to
characterize these states, but no explanation was provided for
the physical origin of the wave number, kd, needed to com-
plete the resonant triads depicted in Fig. 1�a�. Later work

�5,6� suggested that kd could correspond to a number of pos-
sible linearly stable �damped� modes in this system.

Our experiments study parametrically excited nonlinear
waves on the two-dimensional �2D� surface of a fluid. The
unperturbed system is driven by a spatially uniform, tempo-
rally periodic vibration of the fluid layer of the form:
a1cos�m1�t+�1�+a2cos�m2�t+�2�, where m1 ,m2 are mutu-
ally prime, odd, and even integers �7�. Details of the experi-
mental system can be found in �4�. We label the driving
frequency ratio by m1 /m2. Note that this differs from the
n1 :n2 labeling used to characterize grid states. The bulk of
our quantitative measurements were performed at the fre-
quency ratio m1 /m2=6/7 although the grid states in Fig. 3
have also been observed for 8 /9 driving. The experiments
were performed in a 150-mm-diam cell filled with 18cS sili-
cone oil at 31.5±0.05 °C, � /2�=14 Hz and, unless other-
wise stated, a fluid depth, h, of 0.3 cm. Our experiments are
in a dissipative regime, as kc

�� /��O�1�. Due to both the
large aspect ratio �typically 40–50�c� and the dissipative na-
ture of the fluid, the results described are independent of the
system’s lateral boundaries �7�.

When the driving frequency is m�, the system’s dominant
temporal response is m� /2. The parity of the integer m plays
an important role in determining the allowed types of non-
linear interactions. One can see this by performing a tempo-
ral translation of one driving period, t→ t+2� /�. This
changes the sign of the linear modes when m is odd but

FIG. 1. �a� Three-wave interactions of corotated sets of critical

wave numbers K� i ��K� i � =kc� coupled to a linearly damped wave
number, k�d, are �b� spanned by a sublattice of stable wave numbers,
k�gridi

to form grid states.
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leaves them unchanged when m is even. As the system
should be invariant under this action, quadratic nonlinearities
are only allowed for even values of m. Thus, when m is even
�odd� the dominant nonlinear self-interaction is quadratic
�cubic�. Similar considerations �8� limit the parity of the tem-
poral mode corresponding to kd �see Fig. 1�a�� to be even.
Therefore, our choice of the forcing function enables us to
select the dominant nonlinear interactions between modes.

To the unperturbed driving function �Fig. 2� we now add a
small-amplitude perturbation of the form: a3cos�m3�t+�3�,
where m3=2 ,4 ,5 ,8 were used. Values of a3 used were small,
20%–35% of the critical acceleration, a3crit

for exciting a
linear mode at frequency m3 /2. A third frequency perturba-
tion had previously been used in this system to stabilize both
triangular �9� and quasicrystalline �4� patterns. In addition,
the temporal parity of the perturbing frequency was utilized
�10� to control spatiotemporal chaos formed by competing
nonlinear states having different temporal parities. Here we
use the phase of the third frequency to control the strength of
quadratic interactions, and thereby select different types of
nonlinear states.

We have observed all of the three types of grid states �3:2,
4:3, 5:3� possible up to n1=5 �Fig. 3�. A summary of their
rotation angle � and the damped wave number kd is pre-
sented in Table I. Note that for the 3:2 and 5:3 states
kd=kgrid, while kd=2kgrid for the 4:3 grid states. The high-
amplitude peaks on the inner circle of each spatial spectrum
correspond precisely to the values of kd defined by Eq. �2�.
This elucidates the physical significance of these modes,
since the geometrical construction in Eqs. �1� and �2� con-
tains no information about the relative amplitudes of differ-
ent linear combinations of k�grid1,2

. The time dependence of
each of these grid states is an even multiple �harmonic� of �,
despite the fact that the driving contains an odd-parity fre-
quency �7��. Thus, in this region of phase space the major
role of the odd-parity driving component is to enable qua-
dratic interactions �7�.

Whereas only variants of the 3:2 grid state had been noted
previously �coined “SL1” for 6 /7 driving �3� and “DHS” for
2 /3 driving �4��, the existence of the 4:3 and 5:3 states sug-
gests the generality of grid states. These states all appear in
the same region of phase space, where 5:3 grid states �Fig.
3�c�� were the most commonly observed. This state, pre-
dicted by �5� for different forcing parameters, appeared for
all 6 /7 /m3 frequency ratios tested. The 3:2 state �Fig. 3�a��
was observed for h=0.3 cm for the majority of frequency
ratios. This state was replaced by the 4:3 state �Fig. 3�b��
when the system dissipation was effectively increased by de-
creasing h to 0.2 cm.

At first glance, the 4:3 grid state could be mistaken for a
12-fold quasicrystalline pattern. The 28° rotation angle of the
4:3 state is close to the 30° angle expected for the 12-fold
state, as suggested in �11�. A careful inspection of its higher
spatial harmonics, however, reveals a clear differentiation
between these two qualitatively different states.

Let us now turn to the selection of the different grid
states. Recently, �6� investigated how the strength of these
resonant triad interactions �Fig. 1� depends on the forcing

FIG. 2. Unperturbed phase diagram for 6/7 forcing for h
=0.3 cm. To the right of the bicritical point at �a1 ,a2�
= �3.22,5.65� the phase space is dominated by quadratic interac-
tions, where the 3� mode �parametrically driven by 6�� is linearly
unstable. In this region we observe two types of grid states—3:2
�Fig. 3�a�� and 5:3 �Fig. 3�c��. The two-mode superlattice �2MS� �4�
is in the region dominated by the odd frequency, 7�. Between these
two regions a spatiotemporal chaotic state �STC� �4,10� exists. �
denotes the point �a1 ,a2�= �6.4,3.4�, where the measurements de-
scribed in Fig. 4 were performed.

FIG. 3. �a� 3:2, �b� 4:3, and �c� 5:3 grid states. The spatial
spectra �center� corresponding to the photographs �left� are spanned
by grids �right� whose basis vectors, k�grid, are stable modes. Fluid
parameters are as in Fig. 2. Fluid depths: �a� and �c� 0.3 cm and

�b� 0.2 cm. � and denote corotated sets of K� i.

TABLE I. Predicted and observed values of the rotation angles
��pred ,�obs� and damped wave numbers �kd−pred ,kd−obs� of observed
grid states.

n1:n2 �pred �obs kd−pred kd−obs

3:2 21.8° 22° kc /�7�0.38kc 0.38kc±0.02kc

4:3 27.8° 28° 2 ·kc /�13�0.56kc 0.55kc±0.02kc

5:3 13.2° 13° kc /�19�0.23kc 0.23kc±0.01kc
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parameters of this system. This symmetry based analysis,
predicted that the relative phases, �i, of the forcing terms
may be used to enhance or suppress nonlinear interactions
between two Ki vectors and the damped linear modes, kd,
which correspond to frequencies which are even multiples of
� �8�. For each m1 /m2 /m3 forcing, a generalized phase, 	,
which is a specific linear combination of the �i, was shown
to control the nonlinear coupling between these modes. Us-
ing the quasipotential model �12� for parametrically excited
surface waves, selection of the 3:2 grid state as a function of
	 was demonstrated for systems with low dissipation.

The influence of the driving phases on the selection of
nonlinear states is demonstrated in the a3 ,�3 phase diagram
presented in Fig. 4�a�. For the values of a1=3.4 g and
a2=6.4 g used �denoted by the diamond in Fig. 2�, the sys-
tem is in a pure hexagonal state for a3=0. As a3 is increased,
surprisingly, two distinct regions of 3:2 and 5:3 grid states
appear for a3�0.2a3crit

and a3�0.3a3crit
in the respective

vicinities of �3=90° and �3=270°. Beyond a3=0.6a3crit
a

transition to spatiotemporal chaos is observed. For driving

ratios of 6 /7 /4 and 6/7 /8 both the 5:3 and 3:2 grid states are
also observed with a3 ,�3 phase diagrams qualitatively simi-
lar to Fig. 4�a� but with different values of �3 at transition.

In �6� the strength of the nonlinear cross-coupling inter-
actions was predicted to depend on both the generalized
phases, 	, and values of m3. A quantitative measure of the
strength of these interactions can be obtained by the use of
the angular correlation function �4,13�

Ck��� =

�



�„fk��� − f̄ k…„fk�� + 
� − f̄ k…�

�



�„fk�
� − f̄ k…
2�

, �3�

where fk�
� is the power of the wave number k at the polar
angle 
. As grid states have a high degree of correlation at
distinct angles �, both the locations and amplitudes of peaks
of the function Ck��� provide a quantitative measure of both
the existence and stability of a given grid state.

To test the dependence of the cross-coupling strength as a
function of 	, we measured the 	 dependence of Ckc

�22° �
�Fig. 4�b�� and Ckc

�13° � �Fig. 4�c�� for 6 /7 /2 driving. For
this driving ratio, the predicted combination of �i comprising
	 is 	=2�1−2�2+�3. Only when plotted as a function of
this predicted combination for 	, was a clear collapse of
the data obtained �14�. In addition, the explicit value of
	�90° theoretically predicted by �6� for the peak value of
the 3:2 grid state was observed. No special behavior, how-
ever, was predicted for the value 	�270°, for which the 5:3
grid state was observed for the same forcing parameters �Fig.
4�c��. Similar measurements were performed for 6 /7 /5 using
	=2�1−�2−�3. Both frequency ratios yielded convincing
collapses of the data with the above values of 	. 	 in the
latter case was predicted for m /n / �2m−n� driving �6�, but
was not expected for 6 /7 /5 driving. This collapse may be
due to high-order terms �15� not included in �6�.

We have seen that the generalized phase, 	, plays a sig-
nificant role in the selection of nonlinear states. 	 is defined
only by the temporal forcing ratios and, as demonstrated by
Fig. 4, multiple grid states can be stabilized for the same
forcing ratio. The explicit nature of a grid state, however, is
determined by the value of kd selected by the system.

The linearly damped modes are calculated for the param-
eters of Fig. 4 �16� in Fig. 5�a�. For 6 /7 /m3 forcing ratios
there are five linearly damped minima with wave numbers

FIG. 4. �a� a3 ,�3 phase diagram for 6/7 /2 forcing at the point
depicted by � in Fig. 2. The generalized phase, 	, selects the
different grid states shown in �a�. Angular correlation amplitudes at
kc of �b� the 3:2 phase at �=22° and �c� the 5:3 phase at �=13°.
Three different schemes were used to vary 	; we first held
�2=�3=0 and changed �1 by 20° jumps. We then used two cyclic
permutations of this scheme. �−�1, �−�2, and •−�3, used to cal-
culate 	 collapse onto the same curve. �e� and �f� are phase dia-
grams of the perturbed system with a3=0.4a3crit

where �3=90° and
�3=270°, respectively.

FIG. 5. Linear stability curves for h=0.3 �a� and 0.2 cm �b� with
the other system parameters as in Fig. 4. Dark �light� lines depict
even-parity �odd-parity� modes. kn1:n2

is the wave number of the
damped mode of a n1:n2 grid state.
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smaller than the excited ones. The damped modes with even
parity correspond to dominant response frequencies of � and
2�, whereas those of odd parity to � /2, 3� /2, and 5� /2.
Symmetry considerations �8� allow only the even-parity
modes to couple to two K� i modes. Later work �5� predicted
that modes corresponding to the difference frequency,
�m1−m2 ��, the sum frequency, �m1+m2��, and mi� should
have the largest contribution to the coupling coefficient. As
seen in Fig. 5�a�, the wave number k3:2 is indeed close to the
critical wave number corresponding to �.

When h is reduced from 0.3 to 0.2 cm, the 4:3 grid state
replaces the 3:2 grid state at 	=90°. The selection of the 4:3
grid state may possibly be understood by examination of the
linear stability diagram, Fig. 5�b�, for h=0.2 cm. The change
in h precipitated both an increase, by nearly a factor of 2, in
the height of the stability curve corresponding to � and a
significant shift of the value of k��� away from k3:2. At the
same time, the stability curve minimum corresponding to 2�
shifted close to the value of k4:3. The 4:3 grid state may have
been enhanced relative to the 3:2 state by these changes.

This selection criterion, however, does not apply to the
selection of the 5:3 grid state. Although selection of this state
is determined by the generalized phase 	, Fig. 5�a� indicates
that no minimum of an even-parity tongue is in the vicinity
of k5:3. The selection of this wave number might be ex-
plained by the existence of an additional three-wave spatial

resonance. For this grid state kc
� +kd

� =k2
� , where k2 is the wave

number of the linearly unstable �odd-parity� mode that cor-
responds to 7� forcing. Although this resonance violates
temporal parity �as no odd-parity temporal frequency is ob-
served for the 5:3 state�, we speculate that this second spatial
resonance may be the key for understanding the selection of
this state.

In summary, we have shown that all superlattice states
generated by quadratic nonlinearities, in this system, are grid
states. Although each specific grid state may be explained by
a different mechanism, the important point here is that the
spatial resonances inherent in these states appear to increase
their stability. We have also demonstrated that both general-
ized phases, predicted by symmetry arguments, and intelli-
gent selection of the system parameters can be used to select
which grid states are created. As both quadratic nonlineari-
ties and the above symmetry arguments are generic, we ex-
pect that these results should be relevant to a wide class of
nonlinear systems. Indications of this can be seen in reanaly-
sis of superlattice states observed in optical systems �1�,
where both the predicted angles and corresponding values of
kd consistent with a number of grid states are observed.
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