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Universal behavior in populations composed of excitable and self-oscillatory elements
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We study the robustness of self-sustained oscillatory activity in a globally coupled ensemble of excitable and
oscillatory units. The critical balance to achieve collective self-sustained oscillations is analytically established.
We also report a universal scaling function for the ensemble’s mean frequency. Our results extend the frame-
work of the “aging transition” �Phys. Rev. Lett. 93, 104101 �2004�� including a broad class of dynamical
systems potentially relevant in biology.
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Large networks of interacting dissipative systems are ap-
propriately modeled in terms of coupled nonlinear differen-
tial equations, which successfully reproduce a huge variety
of the dynamical patterns found in nature. In many cases, the
individual systems present time-periodic behavior and may
achieve a certain degree of global synchronization despite
the unavoidable differences among them �1,2�. This subject
has attracted a great deal of both theoretical and experimen-
tal interest during the past decades �3�.

However, the robustness of the macroscopic synchronized
oscillations in a mixed population of self-oscillatory and
non-self-oscillatory elements has only been addressed very
recently by Daido and Nakanishi �4�. Interestingly, they re-
port a general scenario, called “aging transition,” character-
ized by a universal �i.e., independent of the oscillator type�
scaling function. In �4� the aging transition was found in
populations of oscillators in which some of them lose their
self-oscillatory activity �by deterioration or “aging”� through
an inverse Hopf bifurcation.

In this Rapid Communication we present an extension of
the aging transition taking place in a new class of systems in
which the oscillatory behavior is lost in a saddle-node �SN�
bifurcation. Such systems are of particular relevance since
their resulting dynamics is excitable and thus of interest in
many areas of physics, chemistry, and biology �1,5–7�.

For instance, a remarkable example of macroscopic syn-
chronization is found among the pacemaker cells in the si-
noatrial node which initiate the heartbeat. When a certain
ratio of cells are damaged by disease, the lack of an adequate
synchronized state requires the implantation of an electronic
pacemaker. Nevertheless, new techniques aiming to create
biological pacemakers have been recently proposed as a very
promising alternative to electronic ones �8�. One of them
consists in the creation of an aggregate of biological pace-
maker cells in some region�s� of the ventricle, converting
excitable heart cells into pacemaker cells by gene transfer
�9�, in an “inverse-aging” transition. This is feasible since the
heart’s pacemaker and excitable cells are very similar �they
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are both identical pacemaker cells in the early embryonic
heart, and differentiate as the development progresses�. In
this context, the robustness of the aggregate’s self-oscillating
activity in a mixed population of self-oscillatory �converted�
and excitable �unaltered� elements seems to be particularly
relevant.

In our study, we have considered systems that cease their
oscillatory behavior through a SN bifurcation on invariant
circle �SNIC� �7�, also called SN homoclinic bifurcation �10�
�see Fig. 1�. This is the simplest possible scenario linking
excitable and oscillatory dynamics, and there is only one
attractor at each parameter value. The excitable regime �at
one side of the bifurcation� is very well known in theoretical
neuroscience, where it is referred to as class I excitability
�11�.

Additionally, we make the following assumptions.
�i� The population �of size N� is divided into two groups,

consisting of pN �1/N� p� �N−1� /N� identical excitable
units �SE�, and of �1− p�N identical active units �SA�. The
elements in the population are ordered according to an index
j, such that SA� j� �1, . . . , �1− p�N� and SE� j� ��1− p�N
+1, . . . ,N�.

�ii� A linear all-to-all coupling is assumed, for the state
variable x j of each unit:

FIG. 1. Morris-Lecar equations �2� in the excitable �left panel�
and in the oscillatory �right panel� regimes. Both dynamical states
are linked through a saddle-node bifurcation on invariant circle

�SNIC� at �*�0.076 �see Eq. �2a��. The nullclines V̇=0 and ẇ=0

are depicted with gray lines.
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ẋ j = F j�x j� +
K

N
	
k=1

N

�xk − x j� , �1�

where F j =FA for j�SA and F j =FE for j�SE. In general, the
coupling term in �1� could simply enter through a single
variable of x j �e.g., the membrane potential, in a cell model�.
This has in many cases the same synchronizing effect �but
see �12��.

First we introduce our findings using an ensemble of glo-
bally coupled Morris-Lecar �ML� units �13�. The ML equa-
tions were obtained from the study of the electrical activity
of the barnacle muscle fiber, and later they were popularized
as a reduced model of excitability �11�. We have used the
adimensionalized version proposed in �14�, with the coupling
term �proportional to K� entering through the voltage vari-
able. The system is

CV̇j = gL�− VL − Vj� + gCam��Vj��VCa − Vj� − gKwj�VK + Vj�

+ � j�0.2 − Vj� +
K

N
	
i=1

N

�Vi − Vj� , �2a�

ẇj = ��Vj��w��Vj� − wj� , �2b�

where m��Vj�=0.5�1+tanh��Vj −v1� /v2��, w��Vj�=0.5�1
+tanh��Vj −v3� /v4��, and ��Vj�=�0�1+cosh��Vj −v3� /v4��.
Several constants �19� were taken from �14� with the external
current set equal to zero. The term � j�0.2−Vj� in Eq. �2a�
controls the dynamics of an isolated element �20�. In our
model � j takes only two possible values �A and �E. For
�A��*�0.076 the dynamics of an isolated cell is self-
oscillatory, whereas for �E��* it is excitable. Both behav-
iors are linked by a SNIC at �* �Fig. 1�.

The system �2� is described in terms of two control pa-
rameters, the ratio p of excitable units, and the coupling
strength K. Figure 2�a� shows the �K , p� phase diagram with

FIG. 2. �Color online� �K , p� phase diagram for a mixed popu-
lation of oscillatory and excitable elements: �a� Morris-Lecar �2�
with �A=0.1 and �E=0.06; �b� phase model �3� with bA=0 �oscil-
latory� and bE=
2 �excitable�. Inside the region of global oscilla-
tions �GO� the black dashed line separates 1:1 �right� from other
1 :r, 0�r�1 �left� frequency ratios, within the region GO. The
�red, online� dotted curves are the deformation of the solid lines
when heterogeneity in each subpopulation is considered �see text�:
	= �a� 0.01 and �b� 0.6.
the dynamical regimes found in the ensemble of ML units.
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For small coupling K, each element in the population essen-
tially maintains its intrinsic dynamics. Such a state is labeled
as partial oscillations �PO� because the collective state is not
entirely oscillatory �the excitable elements are not able to
oscillate, they only exhibit small amplitude “pulsations”�.
For large values of the coupling strength K, all the elements
in the ensemble exhibit the same behavior, but depending on
the ratio p they are all at rest �quiescence Q� or all oscillating
�global oscillations �GO��. The region GO contains a thin
stripe-shaped subregion, where all the units are oscillating,
but with frequency ratios different from 1:1.

The structure of the parameter space in Fig. 2�a� is repro-
duced for other oscillator types like the one proposed by
Eguia et al. �15� and a phase model close to a SNIC �so-
called “active rotator” �16��. The equations for the globally
coupled phase model are

�̇ j = 1 − bj sin � j +
K

N
	
l=1

N

sin��l − � j� , �3�

where the parameter bj characterizes the nonuniformity of
the phase rotation. Figure 2�b� shows that the simple phase
model �3� qualitatively behaves as the ensemble of ML os-
cillators �Fig. 2�a��. The only significant difference is the
shape of the region inside GO with different rotation num-
bers in each subpopulation: wedge-shaped for the phase
model and stripe-shaped for “complete” models. For phase
models �other implementations were tested�, leaving the Q
region implies generically a transition to GO with 1:1 fre-
quency ratio, or to PO �1:0�. For coupled oscillators, the
transition from the quiescent state to oscillations with other
frequency ratios �1:r� is of codimension one. From our
simulations with the ML equations we have indications that
in this transition the structure of phase space is a Cherry flow
�see, e.g., �17��, although this seems difficult to prove.

In order to check the robustness of the diagrams in Fig. 2
we performed numerical simulations �N=1000� considering
a certain degree of heterogeneity in each subpopulation �see
red dotted lines in Fig. 2�. This has been carried out distrib-
uting the systems’ parameters uniformly around �A,E �ML�
and bA,E �phase model� with a finite width 	. Heterogeneity
shrinks the region Q, since there is need of more coupling
strength to counterbalance the major diversity in the popula-
tion. As a last remark, we just notice that the dynamics in the
PO and GO regions become more complex �some regimes
cannot be labeled by just one frequency ratio�.

The rest of this Communication is devoted to the analysis
of Fig. 2 in the absence of heterogeneity �i.e., 	=0�. We will
mainly stress those results whose validity is independent ir-
respective of the particular dynamical system considered.
One empirical fact that simplifies the analysis is that in the
whole K-p plane all the identical elements are at the same
state: x j�SA

=xA ,x j�SE
=xE. Thus, it is possible to study the

dynamics of the population in terms of two asymmetrically
coupled elements:

ẋ = F �x � + Kp�x − x � , �4a�
A A A E A
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ẋE = FE�xE� + K�1 − p��xA − xE� , �4b�

with x= �V ,w� for the ML cells, and x=� for the phase
model. This simplification allows us to study the N→� limit
and to adjust p continuously. In fact, reduction �4� was used
to efficiently compute Fig. 2. And, in particular, for the phase
model �3�, the bifurcation lines limiting Q can be easily cal-
culated analytically for bA=0: pc=1/K and pc=1/bE, with a
degenerate point at �K , p�= �bE ,bE

−1�. Other lines must be
computed numerically �21�.

An important feature of the phase diagrams in Fig. 2 is the
asymptotic value of the bifurcation line limiting Q: pc

�

� pc�K→��. Remarkably, pc
� can be analytically estimated

in a simple way. The calculation is based on the fact that
close to pc the dynamics evolves for a long time inside a
�slow� region where the SN bifurcation takes place. There-
fore, resorting to the normal form of a SN bifurcation, we
obtain �after rescaling space and time�

żA = a
A − zA
2 + Kp�zE − zA� , �5a�

żE = a
E − zE
2 + K�1 − p��zA − zE� , �5b�

with 
A�0 and 
E�0 according to the oscillatory �no
fixed point� and the excitable �one stable and one saddle
fixed point� regimes at both sides of the SN bifurcation �at

=0�. In the limit K→�, the quadratic terms can be ne-
glected at the bifurcation point. From the nullclines of Eq.
�5� �zE=zA− �a
A−zA

2� /Kp and zA=zE− �a
E−zE
2� /K�1− p��

we obtain

pc
� =


A


A − 
E
. �6�

This is one of the main results of the present work. Equation
�6� gives the critical proportion of excitable and oscillatory
elements in order for the whole population to become self-
oscillatory. Only three parameters are needed: the value of
the control parameter at the SN bifurcation and the distances,

A and 
E, of the oscillatory and excitable elements to the
bifurcation point. Specifically, for the ML model
we have 
A,E���*−�A,E�, that according to �6� yields
pc

��0.60, in good agreement with the numerical results �see
also Fig. 3� �22�. Remarkably we find that Eq. �6� holds also
for an ensemble of dynamical systems at both sides of a Hopf
bifurcation �we skip here the proof, but cf. Eq. �4� in �4� for
a particular case�.

Our next results concern the behavior of the mean ensem-
ble’s frequency, which is a natural measure for the global
oscillatory activity. The ensemble’s average of the individual
frequencies is

� =
1

N
	
j=1

N

� j , �7�

where � j represents the mean frequency of the jth element.
Obviously, under the assumption in Eq. �4�, �= �1− p��A

+ p�E �with �A=� j�SA
, �E=� j�SE

�. Figure 3 shows the av-
erage frequency �7�—normalized by the frequency at p=0:
˜
��p����p� /��0�—, and the individual frequencies � j�p�
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�right panels� for different values of K. Note that for small

coupling the transition to quiescence ��̃=0� occurs trivially
at pc=1. Such behavior changes above Kc�0.144, where the
transition begins to take place at pc�1. Also, note that for
intermediate values of K the curves present a steplike profile,
corresponding to the stripe-shaped region in Fig. 2�a�. This
can be seen in Figs. 3�c� and 3�d� where, in the correspond-
ing range of p, the two observed frequencies in the ensemble
are not 1:1 �neither 1:0� related.

The quantity � presents interesting universal properties
around Kc. Assuming that Eq. �4� exhibits a SN bifurcation at
some psn�K� we have pc=1� psn�K� �for K�Kc�,
pc=1= psn�K� �at K=Kc�, and pc= psn�K��1 �for K�Kc�.
And noting that �i� only the active �self-oscillating� elements
contribute to �: �= �1− p��A. ��E=0�, and that �ii� in a
SNIC, the frequency of the oscillating elements scales as a
square root: �A�h�psn− p�1/2, we find that � grows from
zero as a power of the distance to the critical pc:

� = �1 − p�h�psn − p�1/2 � �pc − p�
, �8�

with three different values of the exponent 
: 1 �for K�Kc,
psn� pc=1�, 3

2 �at K=Kc, psn= pc=1�, 1
2 �for K�Kc,

psn= pc�1�.
In a neighborhood of �K=Kc, p=1�, we may obtain a

universal scaling function by assuming that the shift of psn is
approximately linear on K: psn�1+g�Kc−K�. Recalling that
pc=1 for K�Kc, we obtain from Eq. �8� the expressions

� = h�pc − p��pc − p + g�Kc − K��1/2, �K � Kc�

� = h�1 − p��pc − p�1/2, �K � Kc� . �9�

These distinct scalings may be condensed into the single
scaling function �by approximating 1� pc−g�Kc−K� in the

FIG. 3. �a� Normalized ensemble’s frequency �̃�p� for different
values of the coupling strength K in a population of oscillatory and
excitable ML units �N=500�. The dashed line for large coupling
�K=5� shows the convergence of pc to the value predicted by Eq.
�6�. Panels �b�–�e� show the individual frequencies for K=0.05
�PO� �top�, Kc�0.144, K=0.2, and K=0.3 �transition GO-Q�
�bottom�.
second equation�:
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� = h�pc − p�3/2��g
K − Kc

pc − p
� , �10�

with ��x��=
1−x�x�0��, �=1+x�x�0��. We obtain then
two scaling regions with common fitting parameters g and h,
see Fig. 4.

It is important to note that the scaling in Fig. 4 coincides
with the one reported in �4� for the amplitude of oscillations

FIG. 4. Fitting to Eq. �10� for an ensemble of N=1000 ML
elements, Kc=0.14 386�0�. Dashed lines stem from Eq. �10� with
fitting parameters g=5.01 and h=0.66.
3190 �1995�.
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in a mixed population of oscillators close to a Hopf bifurca-
tion. Such coincidence lies in the same asymptotic depen-
dence �square-root law� for the cycle’s amplitude in the case
of a Hopf bifurcation and for the cycle’s frequency in the
case of a SNIC.

In conclusion, we have demonstrated that for systems
close to a SNIC, a transition to global quiescence occurs
as the ratio p of excitable elements in the ensemble exceeds
a certain value pc. Such transition is a generalization of
the aging transition reported in �4� and is characterized by
a universal scaling function relating the mean frequency
� with p and the coupling strength K. Additionally, we de-
rive an analytical estimation for pc in the large K limit which
holds for both Hopf- and SNIC-mediated aging transitions.

Our results might be of importance in several situations,
since excitability is a typical feature of many physical,
chemical, and biological systems. Hence, our work is a
first step in modeling the competition between excitable
and oscillatory dynamics, with possible extensions to
extended media and complex networks. Finally, our findings
could also be relevant in populations of excitable systems
when some of the elements turn self-oscillatory due to the
presence of noise �coherence resonance �18��, a situation
common in neuroscience.
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