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Scaling laws at the phase transition of systems with divergent order parameter and/or internal
length: The example of DNA denaturation
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We used the transfer-integral method to compute, with an uncertainty smaller than 5%, the six fundamental
characteristic exponents of two dynamical models for DNA thermal denaturation and investigate the validity of
the scaling laws. Doubts concerning this point arise because the investigated systems �i� have a divergent
internal length, �ii� are described by a divergent order parameter, and �iii� are of dimension 1. We found that the
assumption that the free energy can be described by a single homogeneous function is robust, despite the
divergence of the order parameter, so that Rushbrooke’s and Widom’s identities are valid relations. Josephson’s
identity is instead not satisfied. This is probably due to the divergence of the internal length, which invalidates
the assumption that the correlation length is solely responsible for singular contributions to thermodynamic
quantities. Fisher’s identity is even more wrong. We showed that this is due to the d=1 dimensionality and
obtained an alternative law, which is well satisfied at DNA thermal denaturation.
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I. INTRODUCTION

It has long been recognized that there are marked simi-
larities between the phase transitions of very different sys-
tems: antiferromagnets, liquids, superconductors, and ferro-
electrics, to quote some of them, indeed all display a rather
simple behavior in the region close to the critical point. A
partial explanation comes from Landau’s theory �1� and
equivalent ones, like van der Waals’ equation for liquids,
Weiss’ molecular field theory for ferromagnets, Ornstein-
Zernike equations, random phase approximations �2�, and
Ginzburg-Landau equations for superconductors �3�. By sup-
posing that the transition can be described by a so-called
order parameter �2� and that the free energy can be expanded
in power series in this parameter and the temperature gap
Tc−T �where Tc is the critical temperature�, these theories
predict that most quantities �like the specific heat, the order
parameter, the isothermal susceptibility, the correlation
length, and the correlation functions� display power laws in
the neighborhood of the phase transition. Experiments done
on many systems confirm the power laws predicted by Lan-
dau, but show that real critical exponents differ markedly
from those predicted by the theory �4�. These experiments
furthermore suggest that the various critical exponents are
not independent but obey instead certain constraints. Phe-
nomenological scenarios, which explain these observations,
were proposed by Widom �5,6�, Essam and Fisher �7–9�,
Kadanoff et al. �4,10�, and Domb and Hunter �11�. Based on
the assumption that the free energy and/or the correlation
length are homogeneous functions, these theories lead to the
conclusion that all critical exponents can be expressed in
terms of only two of them, thanks to so-called scaling laws.
Later, a method known as the renormalization group theory,
which is based on Wilson’s idea that the critical point can be
mapped onto a fixed point of a suitably chosen transforma-
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tion of the system’s Hamiltonian �12,13�, has provided a con-
ceptual framework for understanding scaling.

Yet, as far as we know, all the systems for which the
validity of the scaling laws has been checked have two prop-
erties in common: �i� their phase transition is describable by
a finite order parameter, and �ii� these systems do not disso-
ciate at the critical temperature. The fact that the order pa-
rameter remains finite is essential for most theories, which
assume that the free energy can be expanded in power series
with respect to the order parameter and the temperature gap
Tc−T. Obviously, this assumption no longer holds when the
order parameter diverges at the critical point. Another central
assumption of scaling theories is that the correlation length is
solely responsible for singular contributions to extensive
thermodynamic quantities. While this is certainly a reason-
able assumption for bound systems, this might not be the
case for dissociating ones. Indeed, a system that dissociates
at the critical temperature possesses at least one physical
internal length which increases infinitely at the critical point
and might therefore contribute significantly to extensive ther-
modynamic quantities.

Whether the scaling laws are valid or not for systems with
divergent order parameter and/or internal length is therefore
an open question. The purpose of this paper is to address this
question through the calculation of the characteristic expo-
nents of two realistic dynamical models for DNA denatur-
ation. This phase transition, which takes place when DNA
solutions are heated, corresponds to the separation of the two
DNA strands, that is, to the dissociation of the entangled
polymers. Moreover, if the external stress depends explicitly
on the distance between paired bases, then the corresponding
order parameter diverges at the critical point. DNA denatur-
ation models are therefore particularly well suited to inves-
tigate the applicability of the scaling laws to such unusual
systems.

The remainder of this paper is organized as follows. The
two dynamical models for DNA denaturation are briefly de-
scribed in Sec. II. The technique we used to compute the

characteristic exponents is the transfer-integral �TI� method.
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The details of the calculations are sketched in Sec. III. Fi-
nally, the applicability of the scaling laws to systems with
divergent order parameter and/or internal length is discussed
in Sec. IV on the basis of the critical exponents that were
obtained for the two models.

II. TWO DYNAMICAL MODELS FOR DNA
DENATURATION

The potential energy Epot of the two dynamical models for
DNA denaturation is of the general form

Epot = �
k

V�yk� + W�yk,yk+1� + hf�yk� , �2.1�

where yk denotes the position of the particle at site k, V�yk� is
the on-site potential, W�yk ,yk+1� the nearest-neighbor cou-
pling between two successive particles, and hf�yk� plays the
role of an externally applied constraint. The order parameter
m is obtained as the first derivative of the free energy with
respect to the external field—that is, here

m =
�

�h
�− kBT ln�� exp	−

Epot

kBT

dy��

=
� f�y�exp	−

Epot

kBT

dy

� exp	−
Epot

kBT

dy

= 
f�y�� . �2.2�

In this work, we used f�yk�=yk and f�yk�=yk
2, which lead to

order parameters m= 
y� and m= 
y2�, respectively.
The first model for DNA denaturation was proposed by

Dauxois, Peyrard, and Bishop �DPB� �14–17�. Expressions
for the on-site potential and nearest-neighbor coupling are

V�yk� = D�1 − exp�− ayk��2,

W�yk,yk+1� =
K

2
�yk+1 − yk�2�1 + � exp�− ��yk + yk+1��� ,

�2.3�

where yk represents the transverse stretching of the hydrogen
bond connecting the kth pair of bases. Numerical values of
the coefficients are taken from Ref. �16�—that is, D
=0.03 eV, a=4.5 Å−1, K=0.06 eV Å−2, �=0.35 Å−1, and �
=1. Thanks to the nonlinear stacking interaction ���0�, this
model displays a much sharper transition at denaturation and
is thus in better agreement with experiment than the older
models on which it is based �18–20�.

The second model for DNA denaturation was proposed by
us �Joyeux and Buyukdagli �JB�� �21,22� to take into account
the fact that stacking interactions are necessarily finite. For
homogeneous sequences, it is of the form

V�y � = D�1 − exp�− ay ��2,
k k
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W�yk,yk+1� =
�H

2
�1 − exp�− b�yk+1 − yk�2�� + Kb�yk+1 − yk�2,

�2.4�

where D=0.04 eV, a=4.45 Å−1, �H=0.44 eV, b=0.10 Å−2,
and Kb=10−5 eV Å−2. The first term of W�yk ,yk+1� describes
the finite stacking interaction, while the second one models
the stiffness of the sugar/phosphate backbone. Most interest-
ingly, we were able, by introducing in this model the site-
specific stacking enthalpies �H deduced from thermody-
namic calculations �23�, to reproduce the multistep
denaturation process that is experimentally observed for in-
homogeneous DNA sequences.

III. TRANSFER-INTEGRAL CALCULATIONS

The transfer-integral method �see, for example, Ref. �24�
for a general description and Ref. �25� for a discussion re-
garding the applicability of the method to systems with un-
bound on-site potentials� consists in finding the eigenvalues
�k and eigenvectors �k of the symmetric TI operator, which
satisfy

� �k�x�exp	−
V�x� + V�y� + 2W�x,y� + hf�x� + hf�y�

2kBT

dx

= �k�k�y� . �3.1�

For this purpose, we used the procedure described in Appen-
dix B of Ref. �24�, which is based on the diagonalization of
a symmetric matrix with elements

Mij = �i
1/2� j

1/2

	exp	−
V�ui� + V�uj� + 2W�ui,uj� + hf�ui� + hf�uj�

2kBT

 ,

�3.2�

where the ui define a grid of non-necessarily equally spaced
values of the position coordinate and the �i stand for the
intervals �i= �ui+1−ui−1� /2. The eigenvalues �k of the sym-
metric TI operator coincide with the eigenvalues of the �Mij�
matrix, while the eigenvectors �k of the symmetric TI opera-
tor are connected to the normalized eigenvectors �Vk,i� of the
�Mij� matrix through the relation �k�ui�=�i

−1/2Vk,i. It is con-
venient to rewrite the eigenvalues in the form �k=exp�−
k /
�kBT�� and to label with a 0 the quantities related to the
largest eigenvalue �e.g., �0, 
0, �0, and �V0,i��and with a 1
those related to the second largest eigenvalue �e.g., �1,

1 , . . .�. In the thermodynamic limit of an infinite number of
sites, the singular part of the specific heat cV, the longitudinal
correlation length �, the average 
g�y�� of any function g�y�,
and the static structure factor S�q ,T� are obtained according
to

cV = − T
�2
0

�T2 ,

� =
lkBT

,


1 − 
0
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g�y�� =� g�y���0�y��2dy = �
i

g�ui�V0,i
2 ,

S�q,T� = �
k�0

Rk
2 �0

2 − �k
2

�0
2 + �k

2 − 2�0�k cos�ql�
, �3.3�

where l denotes a characteristic length of the system �we
assumed without loss of generality that l=1 Å� and Rk stands
for the integral

Rk =� f�y��k�y��0�y�dy = �
i

f�ui�Vk,iV0,i. �3.4�

Note that the derivative in the expression for cV, as well as
the derivative dm /dh �see Sec. IV�, was computed from fi-
nite differences rather than from the complex expressions in
Appendix B of Ref. �24�.

The characteristic exponents were estimated by drawing
log-log plots of the various quantities in Eq. �3.3� and mea-
suring the slopes in the regions where power laws are satis-
fied. For obvious physical reasons, these regions do not ex-
tend far from the critical point. Unfortunately, numerical
considerations also forbid the observation of these regions
too close from the critical point. Indeed, an infinite range of
y values would be needed to numerically converge the quan-
tities in Eq. �3.3� at the critical point. Since the dimension of
the �Mij� matrix is necessarily finite, numerical results can be
accurate only up to a certain distance from it. Consequently,
large grids of points extending to large values of y are man-
datory for the interval on which power laws are observed to
be broad enough to allow a precise estimation of the charac-
teristic exponents. This point is absolutely crucial. For ex-
ample, some of the characteristic exponents for the DPB
model have already been reported �16�. However, the authors
note that several quantities “diverge smoothly” at the transi-
tion, because of “transients which mask the leading-order
asymptotics.” As a consequence, they only provide rough
estimates for the exponents, which sometimes differ by a
factor of 2 from exact values. In the light of our calculations,
it appears that the so-called transients actually result from the
numerical limitation mentioned above. In order to achieve
better precision, we used grids of 4200 ui values regularly
spaced between y=−200/a and y=4000/a or, alternately,
grids of the same length but with spacings which increase
exponentially from �i=0.2/a at y�0 to �i=4/a at y
=5067/a �both grids lead essentially to the same result�. We
estimate on the basis of all our trials, that we were able to
compute the exponents �see Eq. �4.1� below� with an uncer-
tainty smaller than 5%.

IV. RESULTS AND DISCUSSION

A. Characteristic exponents

The six fundamental characteristic exponents �, 
, �, �,
�, and � �we omit the prime symbols although T�Tc� are

traditionally defined according to
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cV � �Tc − T�−�,

m � �Tc − T�
,

dm

dh
� �Tc − T�−�,

m � h1/�,

� � �Tc − T�−�,

S�q,Tc� � �q��−2. �4.1�

�, 
, �, and � are computed at zero field �h=0�, while � and
� are computed at critical temperature Tc. From the numeri-
cal point of view, Tc was obtained as the temperature where
the longitudinal correlation length � is maximum �at h=0�.
With the exponentially spaced grid of length 4200, we cal-
culated Tc=280.2934 K for the DPB model and Tc
=368.15 K for the JB model. As indicated in Sec. III, the
characteristic exponents were estimated by drawing log-log
plots of the quantities in Eq. �4.1� and measuring the slopes
in the regions where power laws hold. For the sake of illus-
tration, some plots for �, 
, �, and � are shown in Figs. 1
and 2. Figure 1 deals with the DPB model with external
constraint f�yk�=yk, while Fig. 2 deals with the JB model
with the same external constraint. Measurements of the last
two exponents � and � were performed on similar plots, but

FIG. 1. �Color online� Log-log plots used to determine the criti-
cal exponents �, 
, �, and � for the DPB model with external
constraint f�yk�=yk.
with field �h� or wave-vector �q� abscissa. Note that we used
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two different external constraints for each model—namely,
f�yk�=yk and f�yk�=yk

2, which correspond to order param-
eters m= 
y� and m= 
y2�, respectively. Exponents 
, �, and �
depend on the choice of external constraint, while �, �, and
� do not. The two sets of characteristics exponents that were
obtained for each model are summarized in Table I.

At that point, two comments are in order. First, the char-
acteristic exponent for specific heat, �, is significantly larger
than 1 for both the DPB and JB models. This confirms that
both models predict a first-order phase transition at DNA
denaturation temperature �16,21,26�. Moreover, the signs in

FIG. 2. �Color online� Log-log plots used to determine the criti-
cal exponents �, 
, �, and � for the JB model with external con-
straint f�yk�=yk.

TABLE I. Values of the six fundamental characteristic expo-
nents �, 
, �, �, �, and � for the DPB and JB models with external
constraints f�yk�=yk and f�yk�=yk

2. The seventh exponent � charac-
terizes the behavior of 
f�y�2� close to the critical temperature �see
Sec. IV D�.

DPB model JB model

f�y�=y f�y�=y2 f�y�=y f�y�=y2

� 1.45 1.45 1.13 1.13


 −1.07 −1.72 −1.31 −2.11

� 2.86 4.00 3.33 4.82

� −1.66 −1.39 −1.58 −1.35

� 0.01 0.01 0.02 0.02

� 1.12 1.12 1.23 1.23

� 1.72 2.98 2.11 3.52
051910
Eq. �4.1� were chosen such that exponents are usually posi-
tive �although � and � are sometimes slightly negative�. For
the DPB and JB models, the order parameter m, however,
diverges at the critical point, so that 
 and � are strongly
negative.

B. Rushbrooke’s and Widom’s identities

The first two scaling laws, known as Rushbrooke’s and
Widom’s identities, can be written in the form

� + 2
 + � = 2,

� − 
�� − 1� = 0, �4.2�

respectively. To obtain these relations, one just needs to as-
sume that the singular part of the free energy, fsing, can be
described by a single homogenous function in Tc−T and
h—that is,

fsing�T,h� = �Tc − T�2−�G� h

�Tc − T��� . �4.3�

Equation �4.2�, as well as the additional relation �=
�, then
arises naturally from the interconnections between fsing, cV,
m, and dm /dh via thermodynamic derivatives. Equation
�4.3� is actually a generalization of what is observed within
the saddle-node approximation of the Ginzburg-Landau
model, which leads to fsing�T ,h�= �Tc−T�2G�h / �Tc−T�3/2�.
The models investigated in this paper differ markedly from
the Ginzburg-Landau one, but we checked that the homoge-
neity assumption of Eq. �4.3� is nevertheless well satisfied.
This is illustrated in Fig. 3, which shows the plots of

FIG. 3. �Color online� Plots of fsing/ �Tc−T�2−� versus the loga-
rithm of h / �Tc−T�
� for the JB model with external constraint
f�yk�=yk and three values of h ranging from 10−4 D to 10−6 D. fsing

and h are expressed in units of D. The fact that the points corre-
sponding to different values of h all lie on the same line indicates
that the homogeneity assumption of Eq. �4.3� is correctly satisfied
by the model.
-4
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fsing/ �Tc−T�2−� versus the logarithm of h / �Tc−T�
� for the
JB model with external constraint f�yk�=yk and three values
of h ranging from 10−4 D to 10−6 D. Note that in the TI
formalism, fsing is obtained from

fsing�T,h� = 
0�T,h� − 
0�T = Tc,h = 0� . �4.4�

The fact that the points corresponding to different values of h
all lie on the same line indicates that the homogeneity as-
sumption is correctly satisfied. It therefore comes as no sur-
prise that Rushbrooke’s and Widom’s identities are also sat-
isfied by the measured exponents. This is clearly seen in
Table II, which displays, for each polynome �+2
+� and
�−
��−1�, the value predicted by the corresponding scaling
law �column 2� and those obtained from the measured values
of the characteristic exponents �columns 3–6�. Table II also
provides qualitative uncertainties obtained by assuming that
all exponents have additive 5% errors. It is seen that in all
cases the values predicted by Rushbrooke’s and Widom’s
identities lie well inside the uncertainty range.

C. Josephson’s identity

Josephson’s inequality �27,28� states that

� + �d � 2, �4.5�

where d is the dimensionality of the system �here d=1�. This
inequality converts to the equality known as Josephson’s
identity

� + �d = 2 �4.6�

if the generalized homogeneity assumption—holds—that is,
if �i� the only important length near the critical point is the
correlation length � and �ii� � is solely responsible for all
singular contributions to thermodynamic quantities. Note
that if the generalized homogeneity assumption is satisfied,
then the homogeneity assumption of Eq. �4.3� is also satis-
fied, so that Rushbrooke’s and Widom’s identities are true.

Quite interestingly, examination of Table II shows that the
computed exponents satisfy the inequality of Eq. �4.5� but
not Josephson’s identity. Indeed, the difference between the
computed values of �+�d and that predicted by the scaling
law �i.e., 2� is larger than 3 times the 5% uncertainty for both

TABLE II. Values of �+2
+�, �−
��−1�, �+�
�column 2� and obtained from the measured characte
models with external constraints f�yk�=yk and f�y
additive 5% errors for all the exponents. The last sc

Scaling
law

D

f�y�=y

Rushbrooke: �+2
+� 2 2.17±0.3

Widom: �−
��−1� 0 0.01±0.3

Josephson: �+�d 2 2.57±0.1

Fisher: �−��2−�� 0 0.63±0.2

�− ��+�� 0 0.02±0.2
models. This indicates that, in contrast with many systems,
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the generalized homogeneity assumption does not hold for
DNA denaturation. As we anticipated in the Introduction,
this is not unexpected for systems which dissociate at the
critical point. Indeed, these systems possess at least one
physical internal length which increases infinitely at the criti-
cal temperature, so that it is no longer justified to assume that
everything is a function only of the ratio of a typical finite
microscopic length to the correlation length �. We unsuccess-
fully tried to figure out, on the basis of the numerical values
reported in Tables I, what quantity could replace the correla-
tion length � in the generalized homogeneity assumption
�this quantity should obviously have length dimension and a
characteristic exponent equal to 2−��.

D. Fisher’s identity

Fisher’s identity connects �, �, and � according to

� − ��2 − �� = 0. �4.7�

Examination of Table II shows that this equality is very far
from being satisfied by the models for DNA denaturation.
The reason for these discrepancies is that Fisher’s identity is
based on the assumption that the correlation function

G�x� = 
f�yj�f�yj+x�� − 
f�y��2 �4.8�

falls off, close to the critical temperature, as

G�x� �
1

xd−2+� . �4.9�

While correct for the Ginzburg-Landau Hamiltonian with d
�2, this assumption is just wrong for a system with d=1 and
��0 because, for these values of d and �, Eq. �4.9� diverges
with increasing values of x. In the TI formalism, G�x� may
be obtained from �24�


f�yj�f�yj+x�� = �
k

Rk
2��k

�0
�x

. �4.10�

Numerically, we found that Eq. �4.10� actually leads to con-
stant values of G�x� for the two investigated models close to
the critical temperature. Evaluating these constants at x=0,

−��2−��, and �− ��+�� predicted by scaling laws
c exponents reported in Table I for the DPB and JB

k
2 �columns 3–6�. The uncertainties correspond to

law �− ��+��=0 is introduced in Sec. IV D.

model JB model

f�y�=y2 f�y�=y f�y�=y2

2.01±0.44 1.84±0.35 1.73±0.51

−0.11±0.53 −0.05±0.44 −0.14±0.63

2.57±0.13 2.36±0.12 2.36±0.12

1.77±0.31 0.89±0.29 2.38±0.36

−0.10±0.40 −0.01±0.33 0.07±0.48
d, �
risti

k�=y
aling

PB

2

7

3

5

8

one gets
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G�x� = 
f�y�2� − 
f�y��2 � 
f�y�2� . �4.11�

Writing, as usual, that

dm

dh
� �

0

�

G�x�dx , �4.12�

one thus obtains, instead of Fisher’ identity, the relation

� = � + � , �4.13�

where � is the characteristic exponent for 
f�y�2�:


f�y�2� � �Tc − T�−�. �4.14�

The measured values of � are reported in Table I �note that
the exponent � for f�yk�=yk is the opposite of 
 for f�yk�
=yk

2�. The validity of the scaling rule in Eq. �4.13� is checked
in Table II. The agreement is excellent.

V. CONCLUSION

We investigated the validity of the scaling rules for two
dynamical models of DNA thermal denaturation. These mod-
els indeed display several characteristics, which shed doubts
on this question: �i� the distance between paired bases—that

is, the physical length in terms of which the Hamiltonian is

�15� T. Dauxois and M. Peyrard, Phys. Rev. E 51, 4027 �1995�.
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expressed—diverges at the melting temperature, �ii� the ex-
pressions we assumed for the external constraint lead to or-
der parameters, which also diverge at the critical tempera-
ture, and �iii� the dimensionality is d=1. Conclusions are the
following.

�a� The assumption that the free energy can be described
by a single homogeneous function seems to be rather robust,
despite the divergence of the order parameter. Consequently,
Rushbrooke’s and Widom’s identities are valid relations.

�b� Josephson’s identity is instead not satisfied. We argued
that this is probably due to the divergent internal length,
which invalidates the assumption that the correlation length
is solely responsible for singular contributions to thermody-
namic quantities.

�c� Fisher’s identity is still further from being satisfied.
We showed that this is due to the d=1 dimensionality and
obtained an alternative law, which is well satisfied at DNA
thermal denaturation.

Of course, one cannot derive general conclusions from a
single study and additional work is certainly needed to as-
certain the robustness of the homogeneity assumption for
free energy and/or improve Josephson’s identity. This work
still indicates that scaling laws must be handled with care

when dealing with systems with unusual characteristics.
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