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Growth of cortical neuronal network in vitro: Modeling and analysis
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We present a detailed analysis and theoretical growth models to account for recent experimental data on the
growth of cortical neuronal networks in vitro [Phys. Rev. Lett. 93, 088101 (2004)]. The experimentally
observed synchronized firing frequency of a well-connected neuronal network is shown to be proportional to
the mean network connectivity. The growth of the network is consistent with the model of an early enhanced
growth of connection, but followed by a retarded growth once the synchronized cluster is formed. Microscopic
models with dominant excluded volume interactions are consistent with the observed exponential decay of the
mean connection probability as a function of the mean network connectivity. The biological implications of the

growth model are also discussed.
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I. INTRODUCTION

The fundamental units constituting our brain and nervous
system are neuron cells. The basic physical properties of an
individual neuron were well characterized more than half a
century ago by the classic work of Hodgkin and Huxley [1].
However, the complex emerging properties [2] of highly
connected networks [3] of neurons and the function of the
brain are still not fully understood. As we know, most neuron
cells do not divide and the number of living neurons in an
organism will not increase, only the connectivity between the
neurons changes in the course of the development. Thus the
sophisticated behavior and functions in the brain are largely
determined by the neuronal connections. In principle, it is
possible to deduce or design the functions of a neuronal net-
work if the neuronal connections are known in detail [4]. It is
known that neurons are connected in different manners in the
brain [5] to provide different functions. Such neuronal net-
works are often highly complex, for example, a single neu-
ron is connected to about 10* neurons in the vertebrate cor-
tex, and in the mammalian brain there are around 10!
interconnected neurons [5]. Detailed information such as the
interactions among the constituents, connectivity of the net-
work, the synaptic strengths, etc., are often not precisely
known, and one has to infer this microscopic information
from the macroscopic emerging properties. Presumably, a
deeper understanding of the growth process of the connec-
tions of neuron networks in vitro might provide some infor-
mation about the early developmental stage of the brain. Al-
though there are significant differences between neuronal
culture in vitro and brain developmental processes in vivo,
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there are some interesting features that are common in both
cases. For example, some features such as the high degree of
synchrony observed in a primitive form of network-driven
activity in early development for immature neurons in vivo
[6], are also observed in cultured neurons in vitro. As a first
step to probe the growth of connections in such neuronal
networks, we recently reported experimental observations [7]
of the growth of cortical neuronal networks in vitro and the
associated synchronous firing (SF) phenomenon when the
network is sufficiently well connected. And it has been sug-
gested that such synchronized activity plays an important
role in the strategy followed by the developing brain in turn-
ing to an active state that possesses highly diversified elec-
trical signals and selective synapses [6]. The basic idea in
our experiments [7] was to use the SF frequency as a mean to
probe the network connectivity at different growing stages.
In this paper, we present a detailed analysis of the experi-
mental data in [7] and theoretical growth models to account
for the observations. It should be emphasized that in this
work we focus on the growth model of the neuronal network,
rather than on the mechanisms giving rise to the SF phenom-
enon. In Sec. II, the experimental observations reported in
[7] are summarized with further analyses to establish the
relation between the SF frequency and the mean network
connectivity. Section III presents the model of an early stage
accelerated growth followed by an exponentially retarded
growth when SF is achieved. The values of the growth pa-
rameters of the model are also estimated. Section IV ana-
lyzes the system from the microscopic interaction viewpoint,
presenting some possible mechanisms that could give rise to
the growth model. Finally, some biological implications are
discussed in the last section.

II. SUMMARY OF THE EXPERIMENTAL OBSERVATIONS

Cortical neuron cells are implanted and incubated in a
Petri dish, forming a quasi-two-dimensional neuronal net-
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work. These cortical cultures are networks of growing neu-
rons. Synchronized firing has been observed in these cortical
neural cultures under suitable conditions [8,9]; typically for
cell density of the order 10* cell/mm? it takes about
6 to 8 days for synchronous firing to be observed. In our
recent work [7], we reported synchronized firing frequency
data. The synchronous firing is in bursts. A large part of the
neurons in the culture can be seen to form synchronized clus-
ters (SCs) which fire synchronously with a bursting fre-
quency f of the order of 0.1-1 Hz when the extracellular
concentration of Mg?* is lowered. The size of the SC is more
or less fixed during many periods. Because of the variability
of samples from different dissections, results reported were
taken usually from samples of the same dissections. How-
ever, the synchronized firing phenomena can be observed in
all the dissections, while the quantitative data were taken
from the average of many samples. The major findings can
be summarized as follows.

(i) SF occurs only when the incubation time [measured in
days in vitro (DIV)] exceeds some critical value ¢,.

(ii) The data on the synchronized firing frequency f as a
function of time can be well fitted by the empirical relation

f=fc+foln(f), 1> 1, (1)

For t,=t, the above gives a linear increase of f with ¢, f
=fe+folt/1.—~1).

(iii) f. is roughly independent of the mean cell density of
the culture, p.

(iv) The critical age ¢, scales with p as

t.~pP, B=0.44+0.08. (2)

(v) The SF frequency f is roughly proportional to the
mean effective connectivity k.

First of all, we shall examine (v) more closely. There is a
strong correlation between the synchronous firing f and the
mean network connectivity k, which is defined as the average
number of physical connections of a neuron to the others in
the network. Notice that k£ as defined here is not exactly the
same as the correlation connectivity in [7]. The correlation of
the network depends on both k and the synaptic strengths of
the connections. From empirical observations, both f and k
increase with time and hence f also increases with k. More
intuitively, one can rationalize from the fact that as the mean
connectivity of the network increases, the average communi-
cation time between the neurons decreases, which would set
the collective time scale of the system to be faster. More
quantitative dependence of f on k can be obtained from the
data of killing neurons with a UV laser. Figure 1 shows the
variation of the SF frequency as a function of the number of
neurons being killed (n;;) in the SF cluster. Suppose the
original SF cluster contains N neurons; then the mean con-
nectivity of the network varies with ny; as k=(1/N)(N
=) (N—ng— 1) Py, where Py is the mean probability that
any two neurons are connected before any neuron is killed.
Notice that the killing process increases n;;;, but Py would be
unaffected. The data in Fig. 1 would be well fitted by assum-
ing f to vary linearly with k, f=a+bk for some constants a
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FIG. 1. (Color online) Synchronized firing frequency as a func-
tion of number of neurons being killed by a UV laser. The data are
taken from the inset of Fig. 2 in Ref. [7]. The curve is a fitting of the
experimental data to a quadratic function.

and b. Then a fitting of the data in Fig. 1 with a quadratic
dependence in ny; gives a ~0.1Hz, which is of the order of
the error bars in f [7]. Hence, to a first approximation, one
can take fock and the mean connectivity k also has a loga-
rithmic time dependence, k=k, +kq In(¢/t,) for k=k,, similar
to Eq. (1), with k, being the connectivity at ¢,, which is a
constant independent of p.

III. THE GROWTH MODEL

Here we propose a theoretical model for the growth of a
quasi-two-dimensional neuronal network in vitro. This model
is aimed at providing a quantitative description of the growth
behavior in the neuronal culture. The model provides a phe-
nomenological description while the microscopic interaction
mechanisms that leads to the observed growth behavior can-
not be inferred from this model. Some thoughts on the nature
of these microscopic interactions are presented in Sec. IV.

Let N, be the number of cells in a region, if the probabil-
ity that any two cells are connected is P, then the mean
coordination number (microscopic connections) of a cell is
given by k=~PN,N,—~1)/N;~ PN, In general, P depends
on k. Suppose the cells are deposited on a two-dimensional
plane with a uniform cell density p; consider a domain of
radius d with mean connectivity k. As the neurons reach out
for their connections in the next time step, the domain radius
increases by &d; then the increase in the mean connectivity,
ok, is given by

ok
ry =27P(k)pd, (3)

where P(k) is the probability of two neurons being con-
nected. Equation (3) implicitly assumes that the growth of
connection is irreversible since the increase 6k depends on
the probability of connection of the previous step. Although
the physical connections of the neurites are irreversible, the
synaptic strength of a neural connection can be enhanced or
weakened by neuronal firing activities. The synaptic
strengths averaged over all the connections are slowly vary-
ing on the time scale of the SF frequency measurement. Fur-
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thermore, in our experiments, the culture is relatively quiet
until it is induced to fire at a certain time. Therefore, at the
mean field level, the overall change in the correlations of the
network is dominated by the change in the physical neurite
connections, and so the growth of the “correlation connec-
tivity” can also be taken to be irreversible in a first approxi-
mation for simplicity [7]. The dependence of P(k) is ex-
pected to be in general a decreasing function of k for large k
since more connections would reduce the probability of a
new connection simply due to the finite metabolic rate of a
neuron. We shall show below that in order to account for the
experimental observations, the search range of the axons is
modeled to behave as

d=ut, t<t

c?

d*=Dt, t=1,, (4)
where u and D are the active search speed and diffusive
search coefficient, respectively. Furthermore, in order to ac-

count for the experimentally observed growth law given by
Eq. (1), P(k) is modeled to be

P_(k), k <k,

Pk)= k—k 5
(k) Pcexp(—k—C) k> k. (5)
0

for some function P_(k), where P.= P(k,) and k, are con-
stants. This form of P(k) implies that if there is a large num-
ber of connections present, the probability of new connec-
tions forming is very small. This kind of feedback
mechanism between the firing activity and effective connec-
tions has also been reported in the homeostatic plasticity in
some developing neural systems [10]. Although the explicit
form of P_(k) is not known, we shall make the reasonable
assumption that P(k) is continuous at k=k,, i.e., P_(k.)=P..
Since there are no direct experimental data for <z, we shall
take the simplest case of P_(k)=P_.=const whenever an ex-
plicit form of P_(k) is needed for quantitative calculations.

A. Enhanced growth model for connectivity
toward the synchronized cluster: ¢ <t,

In this regime, there is no direct experimental data on the
connectivity as a function of #, but we can still attempt to
construct a theoretical model that is consistent with what the
experimental data would suggest. The neurons tend to grow
their neurites very fast before they achieve a SC; the search
range of the neurites is proposed to be given by the active
growth manner: d(f)=ut for some characteristic search
speed u. Without invoking any explicit form of P_(k), we
shall derive a relation between k,=k(t=t,) and f.. The only
assumption is that the only scale characterizing P_(k) is k.,

ie., P(k):ﬁ(k/k(,) for some function P. Using Eq. (3) and
the active growth law, one gets
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&k = 2arpu’totP (k), (6)

and upon integrating one gets1

2
k(f) = kccb-1<q>(1)§—2) (7)
where
o = [ 2 ®)
0o P(x)

and k. is given by
k.= mput2/d(1). 9)

One expects u to be insensitive to p since in the early stage
of the search, k is small and a neuron does not know how
many neurons are out there. SF occurs when k=k,_ for some
fixed value of k. which is independent of p [from experimen-
tal observation (iii)|. Hence one has #.% 1/+p consistent with
the experimental result.

In this picture, where the neurons tend to grow their neu-
rites very fast before they achieve a SC, we can examine the
model from the viewpoint of the connectivity growth rate
R =dk/dt. From Egs. (6) and (1), one easily obtains

R = 2uNmwpk,D(klk,) P(klk,). (10)

There are no direct experimental data for <<z, and little
empirical information about the form of P_(k) for k<k,, but
one can still make some further reasonable assumptions and
proceed. Assuming P_(k)=P.=const for k<k,, then ®(x)
=x/P,. and k. is given by

1 | k.
k.= Trpuchtg or u=—\/—"—, (11)
t wpP

c c

and R becomes R=2uvmpP k for P_(k)=P,. Furthermore,
it is easy to show that [for P_(k)=P_]

'k _dR 2aputP, >0, 1< (12)
— = —=27pu’P, >0, t<t,,
ar  dt P
suggesting an accelerated growth of the neurites toward a
synchronized cluster.

B. Retarded growth model for the connectivity after SF: ¢>¢,

At r=t, (k=k_), the neurons have made enough connec-
tions among themselves and cooperativity begins. Presum-
ably a neuron gets enough signals from other neurons such
that it surmounts some threshold signaling that there are
enough connections for cooperativity and there is no need for
further increase of connection. Thus for #.=<t, motivated by
the experimental observation of early linear dependence of f
(and hence k) on ¢, and from Eq. (3), we model the search
range of the neurites to form connections by a diffusive be-

'dd~1(y)/dy=P[D"(y)].

051906-3



LAIL JIA, AND CHAN

havior: d>=Dt (D is a kind of diffusion coefficient).” Invok-
ing Egs. (1) and (3) together with the diffusive behavior for
the search range, d, one finally has

P(k) =P, exp(— K ;Ok“> (13)
and P,= P(k,) has to satisfy
ko= mpDP,i.. (14)
Using Eq. (9), one gets
k ko= u*t /[DP . D(1)]. (15)

One expects D to be a decreasing function of p as the density
effect will be important as the neurites will encounter many
obstacles as they grow in this regime. If one assumes
P_(k)=P.=for k<k,, then one has k./ky=u’t./D. After the
SC has formed, P(k) decays rapidly for a sufficiently large
cluster. From the viewpoint of the rate of growth, R
=dk/dt is governed by

k—

ko ( kc>
R = dk/dt=— exp| — for k = k.. (16)
Ie 0

Equation (16) together with the initial condition of k(¢=t¢,)
=k, will give the observed empirical relation in Eq. (1). It is
easy to show that d°k/dt*=—ky/>*<0 and the growth is re-
tarded once the SC has formed.

As suggested by the model (and the data), the decrease in
‘R is rather strong, namely, exponential in k, and a neuron
with connectivity much greater than a characteristic k, has a
negligible R. We shall briefly examine the implication of an
exponential decay of R in this regime. First, we assume that
the neurons are passive in response to the increasing connec-
tions, i.e., the neuron will not do anything extra in response
to an increase in k. Then R will be roughly a constant (set by
the nominal metabolic rate of the neuron) and the mean con-
nectivity will increase linearly with ¢. Thus, it is quite pos-
sible that the neurons (and also some active components in
the medium such as the glia cells) play an active and effec-
tive role in decreasing the connection growth rate via some
sort of feedback mechanism, which is related to the plasticity
of developing neural systems [10,11]. It is plausible that the
system tries to homogenize the connection number for each
neuron, and it does so in an effective way: R ~exp[—(k
—k.)/ko] so that neurons with k>k, basically stop the
growth of new connections. If one assumes that, to lowest-
order approximation, the decrease in R is proportional to
both R and the increase in k, i.e., dR*—R dk, then one
obtains the consistent result of (16).

1. More results from the model

From Egs. (9) and (14), one gets

%One can include the effect of excluded volume interaction by
writing d%= Dr*” with self-avoiding walk exponent v [=3/4 in two
dimensions (2D)], then all calculations will also follow with D
—D and kg— ko/ (2v).
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FIG. 2. (Color online) The reduced bursting frequency of SF

f1f. vs the reduced DIV t/t.. The experimental data are fitted with
Eq. (18) with fy/f.=1.5.

ky D®P(1)P,
%:k_o.: u(zt) ' (17)

The time dependence of k or f can be put into the form

cIr‘[@ﬂ)(f)z], 1<t

18

DO(1)P, t (18)

+———In|—], 1=1.
u't, .

f_k_
fo ke

The relation between the microscopic growth parameters can
be obtained from a fitting of the experimental data. Figure 2
shows the fitting of Eq. (18) with the data of p=10*/mm? in
[7] [taking P<(k)=P.], one gets fo/f.=D/(u*t.)=1.5. The
mean connectivity & is continuous at t=t,, but R can in gen-
eral be discontinuous at ¢, with

R(L)) = 2u\ wpk D(1) P, = 2mpu’t,., (19)
+ kO
R() = P 7pD. (20)

C

However, due to the collective nature of SF, fast variations in
the growth rates are expected to be smoothed out; hence we
expect the discontinuity in R at 7. will not be large. This can
be checked in our model by computing R(¢;)/R(z))
=2u’t,/D=2f./f,. From the fitting of experimental data
folfe=1.5, one gets R(r;)/R(r;)=1.35. The rate of growth
is switched to a lower value once the synchronized cluster is
formed.

2. Estimates of u and D

Here we attempt to obtain an order of magnitude estimate
for the microscopic growth parameters u and D of the model
using information from further experiments. Recall that u is
the mean active search speed of a neuron before the synchro-
nized cluster is formed and D is the mean diffusion constant
of the diffusive search of a neuron after the network is syn-
chronized. Using an UV laser, we also performed experi-
ments of isolating a circular interior domain from the rest of
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the network when the culture has grown to the SF stage [12].
We then determined the minimal radius r. of the isolated
domain such that SF still occurred in it. From the experimen-
tal data of cultures of p=10*/mm?, we found r, is of the
order 0.1-0.2 mm. For a rough order of magnitude estimate,
we shall assume r.~0.15 mm. Denoting N,.= ﬂ'prf to be the
number of cells in the the threshold domain, N, can be re-
garded as the minimal number of neurons in a connected
cluster for collective behavior to emerge and this is achieved
by the early stage of growth in a period of .. Invoking the
active search growth law, then one has (ut,)*p~N,~rip.
Thus one gets u~r./t,. Using t,~6 days for p~ 10*/mm?
and r.~0.15 mm, one has u~25 um/day. Also, using Eq.
(17) [with P_(k)=P_] and D~ u’t.fy/f. and from fitting of
the experiment, f,~ 1.5f,, one gets D~ 0.0056 mm?/day. It
is also worth noting that N.~ 300.

3. Coupling length between neurons

Intuitively, the probability of connection between two
neurons should be some implicit function of their separation.
This is because two neurons that are far apart will be difficult
to connect because by the time there is a chance they can be
connected, the connectivity of the two neurons has already
grown to be too large, which decreases the probability of
new connections. Here we attempt to deduce the mean prob-
ability P(A) that two neurons initially separated by a dis-
tance A will be connected. The knowledge of P(A) will be
important in determining whether there is a finite coupling
length between two neurons in a culture. Furthermore, it
might provide information about the minimal size of a func-
tioning synchronized neuron cluster. Adopting the model
from the previous section, we first consider the small-A case,
i.e., A<<ut,. In this case, the two neurons are in active search
and the connection will be achieved in a time ~A/u<t,.
From Eq. (7), the corresponding connectivity is &k
=k D '[(A/ut.)?], and the connecting probability is given by

P_(k)=P(k/k_). Thus one obtains

|

2
=<1>-1’(7TZA ) for A < ut,. 1)

c

For P_(k)=P,, one has a constant P(A)=P,. For A>ur,,
diffusive search takes place after the active search; thus two
neurons will meet at a time ~,+(A—ut.)?/D. At this time
the connectivity is given by Eq. (18) with a probability given
by Eq. (5). One finally gets

P,
P = Ty

1+
Dz,

for A > ut,. (22)

Figure 3 shows the distributions of PP(A), illustrating that the
coupling range increases with larger values of D/(u%t,) for
A>ut,.. The “coupling length” A_. between two neurons can
be characterized by the half-width of P(A), i.e., P(A)/P,

1
=5, and one gets
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FIG. 3. (Color online) Reduced coupling length distribution
P(A)/ P, as given by Eq. (22) for various values of u*¢./D.

A, =ut, +\Dt.. (23)

To get an estimate of the value of A_, taking the estimated
values of u~25 um/day, t,=6 days, and f,/f.=(u’t.)/D
= 1.5, one gets A.~0.33 mm. This is very close to twice the
experimental estimated critical radius r.~0.15 mm, as one
might have expected.

IV. SOME MICROSCOPIC MODELS
FOR NETWORK GROWTH

Here we attempt to model the microscopic interactions
between the neurons during the network growing process.
These models merely provide a plausible coarse model to
describe the qualitative behavior of the observed growth of
neuronal connections in a quasi-two-dimensional network
in vitro. Further direct detailed experiments on smaller length
scales should be conducted to provide more quantitative in-
formation on the nature of these microscopic interactions.

A. A Phenomenological model

As a first step, we construct a phenomenological micro-
scopic model consisting of local connection rules that mim-
ics the exponential behavior of P(k). Consider a system of N
neurons; the ith neuron will have a probability of accepting a
connection given by

P., k <k,

pPi= (24)

» (_ ki—kc> =1
c CXp 2k0 ’ = Res
where k; is the degree of connection of the ith neuron. k; and
k. are parameters with similar meanings, but not exactly the
same quantities as in previous sections, since p; is a local
probability whereas P(k) in the previous sections is a mean
field probability for the whole system. A connection will be
formed between neurons i and j with probability p;p;. This
model can be easily simulated and the time dependence of
the average connectivity can be monitored and compared
with experimental data. Figure 4 shows the simulation results
of the reduced mean connectivity k/k. as a function of the
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FIG. 4. (Color online) Simulation results for a network grown
with connecting probability described by Eq. (24). N=500. ko/k,
=3 obtained by fitting to the experimental data.

reduced growing time ¢/t.. The simulation results depend
only on ky/k,. and its value is fitted to achieve best agreement
with the experimental data. The simulation results are not
sensitive to the values of P, (as long as P.<1) and for
sufficiently large N.

The best-fitted value of ky/k. is =3 which is somewhat
larger than that obtained from fitting with the mean field
theory (ky/k,=1.5) in previous sections. This is presumably
due to the fluctuation effects, which would cause some sites
to be highly connected but then basically inert to new con-
nections. As a result, fluctuations would tend to slow down
the growing process which is manifest in a larger ky/k.. It is
also easy to see that in this model the degree distribution
function is non-scale-free and results in a completely con-
nected graph in the asymptotic long time limit.

B. Local intracellular interactions:
Exclusion near the cell boundary

The experimental observation of an exponential decay of
P(k), i.e., the more connections the system possesses, the
less probable it is to form a new connection, can be viewed
as a kind of homeostatic feedback in the system. There are
many possible detailed mechanisms that could lead to such
an observation, but we are interested in more generic factors.
One plausible reason for the rapid decrease in P(k) with
increasing k may be due to geometric effects arising from the
excluded volume interactions between the connecting sites
on a neuron. As the neuron attempts to establish a connection
with another neuron, its neurite has to grow out and reach the
neurites of another neuron. If the mean number of connec-
tions is large, the available sites for the incoming and outgo-
ing neurites are blocked by the already connected neurites of
other neurons. The unconnected neurite has to overcome a
kind of excluded volume interaction. The dominant part of
this interaction will be the excluded volume interaction for
accepting an incoming neurite and connecting to its cell
body. Imagine that the neuron cell body (quasi-2D) already
has a large number of neurites attached to its boundary; then
it would be very hard to have a new neurite connect, i.e., a
single neuron possesses a kind of excluded volume interac-
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tion in the local vicinity of the cell body. This problem can
be viewed as the one-dimensional random sequential adsorp-
tion whose exact solution has been well established [13]. For
the adsorption of a dimer on a 1D lattice with a constant
deposition rate «, the probability of having an empty n-tuple
is given by

P, (1) =exp[—2(1 — e ") Jexp[— (n — 1) kt]. (25)

kt is the number of trial depositions and is just k in our
neuron model. Now for a new neurite to connect to the cell
body, it will do so if it finds enough space around it. Suppose
a new neurite makes a connection if there is an empty
m-tuple on the cell boundary, the probability of accepting a
new neurite is given by (taking the cell boundary very much
larger than the neurite thickness)

©

P(k) = X P, (k) ~ exp[-2(1 — e ™) Jexp[~ (m — 1)k].

(26)

Since the k dependence in the prefactor in (26) is insensitive
to k, one has approximately P(k) «exp[—(m—1)k]. This gives
a plausible account for the observed exponential decay in the
connection growth rate as the number of connection in-
creases. Furthermore, comparing Egs. (16) and (26), k, has
the physical meaning related to the range of excluded vol-
ume interaction for the neurite near the cell boundary,
namely, 1/ky+1~=m.

C. Global intercelluar interactions between neurites

Excluded volume interactions are still significant even at
length scales not close to the vicinity of a neuron, especially
when the mean connectivity of the network is significant.
This is simply because if the substrate of the culture is al-
ready densely occupied by other neurites, the growth of a
new neurite into this region is expected to be retarded. This
growth-suppressing interaction is of a global (intercellular)
scale and is especially significant in our quasi-two-
dimensional networks. The observed exponential decay
of P(k) is also consistent with the above view from the
following argument: the probability of a new connection
attempt crossing the existing bonds is proportional to
P(k) X (bond density). Since the average bond density is pro-
portional to k, so if the mean connectivity is increased by Jk,
the change in the connecting probability is given by 6P
—P(k) 8k, which results in the exponential decay of P(k).
Even though we do not know the strength of such suppress-
ing interactions between the crowded connections, we can
still examine such an effect by simulation. Such a suppress-
ing interaction can also be viewed as costing some sort of
penalty for neurites crossing each other. For the extreme case
of a very strong interaction, the neurites will try to avoid
each other and will not cross. Again this kind of suppression
of the neuronal crossing can also be viewed as an effective
homeostatic feedback mechanism which suppresses long dis-
tance connections (which are not economical). If crossing
cost no penalty, then there would be no self-control for the
growth of connections, i.e., no homeostatic feedback, which
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is not favorable for the biological system and also not ob-
served experimentally. The simplest intuitive model for such
homeostatic feedback would be simply to impose some
crossing restriction in a two-dimensional growing network.

We carried out Monte Carlo simulations to investigate the
growth of connections of a 2D network subjected to the con-
straint that there is strictly no crossing of the connections. Of
course, in reality neurite connections can cross but it would
presumably cost some sort of energy penalty. In the simula-
tion, neuron sites are initially randomly placed on a plane,
then a pair of sites is randomly chosen in an attempt to make
a connection; a connection is allowed only if the new con-
nection does not intersect with any other existing connec-
tions. The results are then averaged over many different re-
alizations of the initial random neuron positions. The mean
connectivity of the network as a function of growing time is
monitored. The connecting probability of two previously un-
connected neurons is also measured. Figure 5(a) displays the
connecting probability P(k) as a function of the mean con-
nectivity k showing an exponential decay of P(k) for 1 <k.
The purpose of the simulation is just to demonstrate that
such crossing penalty interaction in the growth of a two-
dimensional network will lead to a strong suppression in the
probability of connection as the mean connectivity of the
network is increasing. We have also verified that qualita-
tively similar results are also obtained for finite penalty of
connection crossings. More sophisticated growth models in-
corporating such neurite interactions will be necessary to
model the realistic growth dynamics of the experimental
neuronal network, which is under current investigations.
Nevertheless, our simulation result demonstrates that the in-
tercellular neurite avoiding interactions is a plausible mecha-
nism for the exponential slowing down of the connection
growth after the synchronized cluster is formed. Further-
more, Fig. 5(b) also shows that the mean connectivity grows
logarithmically in time after some initial stage of growth,
again consistent with experimental observations. It should be
emphasized that the P(k) discussed here is different from the
degree of distribution function P (k) that is frequently stud-
ied in statistical network theory [14]. The degree distribution
functions in the present simulations are also shown in Fig.
5(c) at early and late stages of the network growth. P (k) is
highly asymmetric and cannot be described by Poisson nor
power law distributions.

V. BIOLOGICAL RELEVANCE AND OUTLOOK

In this work, by detailed analysis of the data on the SF of
neuronal networks, a growth model describing the growth of
neuronal connections is constructed that can explain the ex-
perimental observations. In this model, after the network has
grown to a stage with reasonable connectivity, the growth is
subsequently slowed down. Presumably this would allow the
system to maintain a long time span to perform the necessary
biological functions. If the system continues to grow rapidly
at its initial accelerated pace, it will use up energy too soon,
which is biologically unfavorable. Furthermore, if there are
too many connections for each neuron, it may exceed the
information capacity for a single neuron, resulting in low
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FIG. 5. (Color online) Simulation results for a two-dimensional
network grown with the constraints of strictly forbidden bond cross-
ings. N=200. (a) The measured probability of making an allowed
bond as a function of the average coordination number of the net-
work. (b) Time dependence of the mean degree of the network. 7 is
in units of Monte Carlo steps/neuron. The straight lines are just
guides to the eyes to show the exponential decay of P(k) and loga-
rithmic growth of k(7). (c) Degree distribution functions of a grow-
ing 2D self-avoiding network.

performance or lack of functioning. Thus, there appears to be
an optimal effective number of connections for the best per-
formance of the network. The growth of the neuronal con-
nection network is rather well described, at least phenomeno-
logically, by an early active search regime followed by a
retarded diffusive regime. The microscopic mechanism lead-
ing to such a growth law is still not fully understood, al-
though various studies have shown that electrical activities,
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both spontaneous activity in early embryonic brains and
experience-driven activity during the postnatal period, are
essential for the growth of neuronal circuits [11]. It is pos-
sible that the neuron possesses some biochemical internal
feedback device within the cell so that when it receives too
many signals from other neurons (too many connections), the
neuron will slow down further growth of connections. On the
other hand, inhibitory cells would suppress the firing activity
and presumably may have some effects on the retardation of
connection growth in late stages of the culture. Their precise
roles in the growth of neuronal connections is still unclear,
but we believe they are deeply related to the homeostatic
plasticity of neural development [10]. Hopefully well-
controlled electrophysiological measurement can shed some
light on this issue. But as illustrated in the present work, the
more generic excluded volume and self-avoiding interactions
can also be conveniently employed by the network to slow
down the connectivity growth. Detailed experiments on the
biochemical signaling pathway of the neurons would be able
to clarify the picture. Many interesting further experiments
are possible: such as using transfection of cell cultures with
E-GFP plasmids to follow the growth of several individual
neurons and to characterize their lengths and branching over
time. Similarly, by immunostaining one can quantitatively
measure the number of physical synapses as a function of
time. Finally, direct electrophysiological measurements can
be analyzed to provide information on the synaptic contribu-
tions over time to the cell firing. Some of these experiments
are under way and will be reported in future.

Another interesting issue is the topological structure of
such neuronal networks. It has been demonstrated that the
neuronal network of C. elegans resembles a small-world net-
work [15], while it has been suggested that the brain function
network is a scale-free network [16]. But the brain function
network is derived from fMRI data of the activity correla-
tions between macroscopic regions (which consist of many
neurons) of the brain, which is quite different from the direct
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synaptic connections between neurons. Preliminary studies
of our quasi-two-dimensional cultured neuronal network in
vitro do not indicate that the network is scale-free. More
detailed studies on the topological structure of our networks
are currently under way.

On the other hand, it is clear that a deeper understanding
of the underlying mechanism of SF will be valuable in un-
derstanding not only the connectivity of the network, but
also the interactions among the neurons during growth [17].
However, the basic mechanism of spontaneous SF is not
clear and still under investigations [18]. Presumably, some
detailed realistic dynamics of the neurons must be respon-
sible for SF. A possible source of the induction of SF is the
noise in the system, which can be due to thermal effects and
ion channel activities, and growing network connectivity can
provide a further increase in noise level. It has been demon-
strated that regularly coupled excitable systems such as the
FitzHugh-Nagumo neuron model, can be driven to synchro-
nized states, oscillating with a well-defined frequency under
a suitable noise level (coherence resonance) [19]. The syn-
chronization is further enhanced by the many-body coupling
effects among each individual element and the heterogeneity
in the network [20]. However, it is still not clear how and
why the neuronal network would self-tune the noise level of
the system to achieve a synchronized state. Presumably some
sort of feedback mechanism during the growth process
would self-adjust the noise level of the system in an optimal
way. This interesting issue awaits further experimental and
theoretical investigations.
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