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The cellular Potts model (CPM) has been used for simulating various biological phenomena such as differ-
ential adhesion, fruiting body formation of the slime mold Dictyostelium discoideum, angiogenesis, cancer
invasion, chondrogenesis in embryonic vertebrate limbs, and many others. We derive a continuous limit of a
discrete one-dimensional CPM with the chemotactic interactions between cells in the form of a Fokker-Planck
equation for the evolution of the cell probability density function. This equation is then reduced to the classical
macroscopic Keller-Segel model. In particular, all coefficients of the Keller-Segel model are obtained from
parameters of the CPM. Theoretical results are verified numerically by comparing Monte Carlo simulations for

the CPM with numerics for the Keller-Segel model.
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I. INTRODUCTION

Biological cell dynamics has been studied at two main
scales of description. The macroscopic level provides one
with a coarse-grained treatment of biological cells through
their macroscopically averaged quantities such as local den-
sity of cells [1-4]. The macroscopic scale is large in com-
parison with the typical size of a cell. Macroscopic models
are usually continuous and utilize families of differential or
integro-differential equations to describe “fields” of interac-
tion. A much more detailed approach is needed at the second,
microscopic level which takes into account stochastic fluc-
tuations of the shape of each individual cell.

Discrete models describe individual (microscopic) behav-
iors of cells. They are often applied to microscale events
where a small number of elements can have a large (and
stochastic) impact on a system. For example, while many
periodic growth patterns can be modeled using continuous
methods, patterns which depend sensitively on interaction
between cells and media are best modeled with discrete
methods. Simplest discrete models describe cells as point-
wise objects. Some bacteria are self-propelled and do not
change considerably their shape during motion (e.g., Es-
cherichia coli [2,5] and Myxococcus xanthus [6,7] bacteria).
They can be successfully represented as pointwise objects
undergoing reorientation while moving [2,8,10]. In contrast,
some other bacteria (e.g., Dictyostelium discoideum [11]) ex-
perience essential random fluctuations of their shapes and
need to be treated as extended objects of variable shapes.

One of the microscopic models dealing with differential
adhesion and shape fluctuations is a cellular Potts model
(CPM) which is an extension of the well-known Potts model
from statistical mechanics [12,13]. In this model each bio-
logical cell is represented by a cluster of pixels (spins). The
CPM has been used to simulate various biological phenom-
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ena such as cell sorting [12,13], fruiting body formation of
the slime mold Dictyostelium discoideum [14,15], angiogen-
esis [16], cancer invasion [17], chondrogenesis in embryonic
vertebrate limbs [18,19], and many others. (Different appli-
cations of the CPM have been reviewed in [20].) Recently an
alternative model was suggested [21] which represents a cell
as collection of subcellular elements which interact with
each other through phenomenological intra-cellular and in-
tercellular potentials.

In addition to short-range cell-cell adhesion and interac-
tions between cells and their surrounding extracellular ma-
trix, cells interact at long range through signal transmission
and reception mediated by a diffusing chemical field (chemo-
taxis). The continuous macroscopic Keller-Segel model of
the evolution of the density of cells with chemotactic inter-
actions has been extensively studied [1-4] over the years. In
particular, it has been successfully applied to the description
of Escherichia coli bacteria aggregation due to chemotaxis in
[2]. The drawback of continuous models is that they have a
lower resolution than discrete models. However, their advan-
tage is the availability of a large set of analytical and numeri-
cal tools for analyzing solutions of the corresponding nonlin-
ear partial differential equations (PDE’s). By contrast, the
analytical study of discrete models is often impossibly com-
plicated and their computational implementation is often
much less efficient in comparison with numerical methods
available for PDE’s. It is thus important, for numerical, ana-
lytical, as well as conceptual reasons to establish connections
between various discrete and continuous models of the same
biological problem.

There is a vast literature on studying continuous limits of
pointwise discrete microscopic models. In particular, the
classical Keller-Segel model has been derived from a model
with pointwise representation for cells undergoing random
walk [8,22,23]. However, much less work has been done on
deriving macroscopic limits of microscopic models which
treat cells as extended objects. One of the first attempts at
combining microscopic and macroscopic levels of descrip-
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tion of cellular dynamics has been described in [24] where
the diffusion coefficient for a collection of noninteracting
randomly moving cells has been derived from a one-
dimensional CPM. Recently a microscopic limit of subcellu-
lar elements model [21] was derived in the form of continu-
ous advection-diffusion equation for cellular density. In the
present paper, we establish a connection between a one-
dimensional CPM of a cell moving in a media and reacting
to a chemical field and a Fokker-Planck equation for the cell
probability density function. This equation is then reduced to
the classical macroscopic Keller-Segel equation. In particu-
lar, we derive all coefficients of the Keller-Segel model from
parameters of the CPM. We also compare Monte Carlo [9]
simulations for the CPM with numerics for the Keller-Segel
model to support our theoretical results.

A unified multiscale approach, described in this paper and
based on combining microscopic and macroscopic models,
can be applied to studying such biological phenomena as
streaming in Dictyostelium discoideum. In starved popula-
tions of Dictyostelium amoebae, cells produce and detect a
communication chemical (cAMP). The movement of Dicty-
ostelium cells changes from a random walk to a directed
walk up the cAMP gradient resulting in formation of streams
of cells towards the aggregation center [see Fig. 1(a)] and
subsequent formation of multicellular fruiting body. Figure
1(b) shows cells’ movement from left to right in response to
waves of cAMP traveling through the aggregation stream
from right to left. The cAMP gradient of the up-down direc-
tion is very small and could be ignored. Figure 1(c) sche-
matically demonstrates the main features of the cell move-
ment.

Unlike differential adhesion [12,13], chemotactic cell mo-
tion is highly organized over a length scale significantly
larger than the size of a single cell. (For details about mod-
eling Dictyostelium discoideum fruiting body formation see,
e.g., [14,15,25,26].)

The paper is organized as follows. In Sec. II we describe
a one-dimensional (1D) CPM with chemotaxis. In Sec. III,
we derive from the Monte Carlo dynamics of the CPM the
discrete master equation for the probability density function
P(x,L,t)—that is, the probability that at time ¢, there is a cell
whose length is L and whose center of mass is located at x.
In Sec. IV we use the discrete master equation to derive a
partial differential equation for P(x,L,f) in a continuous
limit which assumes that cell changes its position and length
at each Monte Carlo step by a small amount. We show that
the dependence of P(x,L,t) on L is very close to the Boltz-
mann distribution. This is used in Sec. V for the derivation of
a Fokker-Planck equation for the probability density function
p(x,t) of a cell’s center of mass being at x which is the main
result of the paper. In Sec. VI it is shown that the addition of
the time dependence of chemical field reduces the Fokker-
Planck equation to the Keller-Segel equations. Sec. VII deals
with numerical verification of the theoretical results of the
previous sections and compares the Monte Carlo simulations
for our CPM and Keller-Segel models.

II. CELLULAR POTTS MODEL

The cellular Potts model, an extension of the Potts model
from statistical mechanics, is a flexible and powerful way to
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FIG. 1. (a) Streaming of Dictyostelium discoideum towards the
aggregation center. Cells move chemotactically towards the aggre-
gation center, leading to the formation of cell streams and finally
mounds. (Reproduced from [27] with permission.) (b) Example of a
quasi-one-dimensional motion of Dictyostelium discoideum inside a
stream [this picture is on much smaller scale compared with (a)].
Cells are moving parallel to each other in the direction of chemical
gradient (from left to right). Chemical gradient also causes polar-
ization of cells so that they become elongated in the direction of a
gradient. (Reproduced from [11] with permission.) (¢) Schematic
picture of cell motion in a gradient of chemical field (e.g., chemoat-
tractant cCAMP). The concentration of the chemical field is shown
schematically above the main figure.

model cellular patterns. Its core mechanism is the competi-
tion between the minimization of various energy terms in
some generalized functional of the cellular configuration—
e.g., surface minimization, cell-cell contact and chemotactic
interactions, and global geometric constraints. It simulates
stochastic fluctuations of cell shapes as simple thermal fluc-
tuations.

The CPM is defined on a rectangular lattice £, which is of
the form [0,m,] (for one dimension), [0,m,]X[0,m,] (for
two dimensions) or [0,m,]X[0,m,]X[0,m,] (for three di-
mensions). (Here [0,m]={0,1,...,m}.) The elements of L
are called the lattice sites (intervals in 1D, pixels in 2D,
voxels in 3D). A lattice site is denoted by an index i e L.

Each lattice site has an assigned “spin” o(i) which can
have values s=0,1,...,0, where s=0 corresponds to ab-
sence of any cell at the given site and the value 1<s<Q
means that the given site is occupied by the sth cell, where Q
is the total number of cells in the system. Assume that we fix
the values of o(i) at each lattice site; then, we refer to that set
of values as a configuration. The best way to visualize a
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FIG. 2. Example of a cell in one-dimensional CPM. The cell
(shaded domain) occupies lattice sites 2,...,6. It has a length of
5eAx, its center of mass is located at x=4&Ax, and its end points
are x;=1.5¢Ax and x,=6.5eAx.

configuration is to regard the different spins as different col-
ors. Each lattice site i has a color of(i). The cells are the
collections of lattice sites that have the same spin (color), so
that each lattice site can be occupied by a single cell only.
White color corresponds to absence of any cell at given site:
o(i)=0. In the model considered here we assume that cells
cannot divide so that sites with the same color are always
connected.

We assume periodic boundary conditions so that pixels at
zero position in x, y, or z are identical to sites with i .=m,
+1, iy=my+1, and i,=m_+1, respectively. However, in our
numerical simulation the cell never crossed the boundary, so
there is no influence of our boundary conditions on result of
simulations.

The temporal dynamics of the system is defined by certain
probabilistic transition rules between the configurations, giv-
ing rise to a Markov chain of configurations—i.e., a se-
quence of configurations 0°, o', 0?,... . To describe the tran-
sition rules, we associate to each configuration o an energy
E(o), also referred to as the Hamiltonian. The state changes
from one configuration to the next are governed by an energy
minimization principle with effective temperature 7. This is
implemented by means of the Metropolis algorithm for
Monte Carlo Boltzmann dynamics [9]. The algorithm works
as follows.

Given a configuration ¢”', we randomly select a lattice site
i € £ such that not all of its nearest lattice neighbors have the
same spin. We then randomly choose a lattice neighbor i’ of
i with ¢”(i") # ¢”(i). Let ¢’ be the configuration we obtain
by “flipping” the spin of i; i.e., we have ¢’ (j)=0"(j) for all
j#i and o' (i)=0"(i’). The new configuration ¢’**! is then
either ¢” or the configuration ¢’. The probability ®(AE) that
o’ is accepted as the next configuration ¢"*! depends on the
energy difference AE=E(0")—E(d"). The formula is

BAE) 1, if AE<O0, (1)
" |exp(- BAE), if AE>0.

Here B=1/T is a positive constant (inverse effective tem-

perature).

In this paper, we consider a quasi-one-dimensional CPM,
which means that cells are assumed to move along x direc-
tion only and have fixed thickness [, in the y direction (see
Fig. 2). Let eAx denote the size of lattice site, where 0<<g
<1, € is the small dimensionless constant, and Ax is a di-
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mensional constant of the order of 1. Each lattice site is
described by its index i=0,1,..., so that the center of
each lattice site is located at x=igAx with the lattice site left
border at x,=(i—%)sAx and the lattice site right border at
x,=(i+%)sAx (see Fig. 2.)

In what follows, we will consider the dynamics of a single
cell so that the spin o can take two values: O if cell is absent
at a given site and 1 if cell occupies a given site. However,
our results remain valid for an ensemble of n cells which are
well separated from each other, so that the probability that
two cells would try to occupy the same volume is negligible.
This allows us to neglect cell-cell contact interactions. We
assume that cells can interact only with the surrounding me-
dium and the chemical field c(x) (chemotaxis). The chemical
field is assumed to depend only on x but not on y. Cells can
also produce a chemical which then diffuses. In Sec. VI we
discuss production of chemicals by cells.

A natural biological realization of this quasi-one-
dimensional model is the motion of biological cells in
streams [26]. E.g., the amoeba Dictyostelium discoideum un-
der starving condition typically forms streams [25]. The bio-
logical cells inside each stream are moving towards the ag-
gregation center [see Fig. 1(a)], which results in complicated
2D patterns [26]. If we zoom in to a small scale, we will see
that the motion of cells inside each stream is quasi one di-
mensional with cells moving parallel to each other in the x
direction [Fig. 1(b)]. The chemical gradient of the other di-
rection (y direction) could be neglected, and during cells
movement there are no cell-cell interactions, such as cell
collisions or cell signaling. Figure 1(c) schematically shows
such a parallel motion of the cells from left to the right under
the action of the gradient of a chemical field (chemoattrac-
tant).

For a given configuration o of spins, let N=N(o) denote
the number of lattice sites that the cell occupies. The length
of the cell is equal to L=NeAx. We denote the position of the
center of mass of the cell by x and denote the position of the
left and right ends of the cell by x; and x,, respectively. Then
L=x,—x;. (See Fig. 2.)

We assume that the chemical field c(x) is a slow function
of time so its typical time scale is much bigger than the time
step of a Monte Carlo algorithm. Then the Hamiltonian is
given by the formula

E=1J,,(2L+2¢€,) + N(L - Ly)* + puc(x)L. (2)

The first term is a surface energy term which has contribu-
tions from both the energy of cell-medium adhesiveness and
cell membrane elasticity, where J, is an interaction energy
between the cell and medium per unit length. The second
term is a length-constraint term which penalizes deviations
of the cell length L from the target cell length L;. Here A is
a positive constant. The choice of X and B [see Eq. (1)] is
determined by the typical scale of fluctuations of the cellular
shape. The third term in Eq. (2) is the coupling chemical
energy. This term will favor cell motion down or up the
chemical gradient for ©>0 and w<<0, respectively. We as-
sume that the concentration c(x) is a slow function of x on a
scale of the typical cell’s length L:
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xJL>1, (3)

where x, is a typical scale for variation of ¢(x) in x. This is
consistent with the generally accepted view that cells are
typically too small to detect chemical gradients without
moving. (See, e.g., [28]; however, recent experimental evi-
dence may put this view in question [29].) Note that the
chemical energy could also be defined as wf ;;c(x)dx. But in
the limit (3), this is equivalent to the form used in the Hamil-
tonian (2).

III. DISCRETE EVOLUTION EQUATION
FOR PROBABILITY DENSITY FUNCTION

In this section, we develop an analytical model for the
evolution of the stochastic dynamics of a cell in the CPM.

Let P(x,L,t) be a probability density for the cell with the
center of mass at x of length L at time 7. Spins of(i) are
defined on the lattice £ so that the length of the cell L, which
is the difference between positions of right and left ends of a
cell—L=x,—x—can take values neAx, n=1,2,.... The po-
sition of the center of mass x=(x,+x;)/2 can take values
nelAx/2, n=1,2,.... That is, the CPM grid is twice the size
of the grid of center of mass. In particular, if ZSXE is an even
number (i.e., x coincides with one of the lattice sites) then
the ratio i is also an even number. Alternatively, if 2~ is
an odd number (i.e., x coincides with a boundary between
two neighboring lattice sites), then the ratio ﬁ is an odd
number.

PHYSICAL REVIEW E 73, 051901 (2006)

For convenience, we choose a normalization for P(x,L,t)
such that the probability for a cell to have its center of mass
at x and length L at time ¢ is given by (£Ax)?P(x,L,t). The
factor (gAx)? results from the product of eAx/2 (the spacing
between lattice sites) and 2eAx (the spacing in L for a fixed
x). With this normalization, P(x,L,t) becomes a true prob-
ability density in the continuous limit € — 0.

We choose the time interval between two Monte Carlo
steps to be £?At, where At is a fixed constant of dimension of
time. This implies diffusive time-space scaling

e’Ar At
(eAx)*  (Ax)*’

which is independent of the scaling parameter €. We now
switch from measuring time in Monte Carlo steps n
=0,1,... to a continuous time variable t=ng2At.

Suppose at time ¢ the cell is at a state (x,L) meaning that
it has length L and its center of mass is at x. The stochastic
discrete system at time r+&”Atf can switch to one of the
following four possible states: (a) (x+&Ax/2,L+eAx) by
adding the lattice site x,+&Ax to the right end of cell, (b)
(x+eAx/2,L—eAx) by taking away the site x; from the left
end of the cell, (¢c) (x—eAx/2,L+&Ax) by adding the lattice
site x;+&Ax to the left end of cell, and (d) (x—eAx/2,L
—&Ax) by taking away the site x, from the right end of the
cell.

Therefore, the most general master equation for evolution
of the probability density P(x,L,?) has the form

e e e
P(x,L,t + €*At) = {1 - T1<x - EAX’L + sAx;x,L,t) - T,(x + EAx,L + sAx;x,L,t) - T,(x + EAX’L - sAx;x,L,t>

_ T,(x - ;Ax,L - sAx;x,L,t)}P(x,L,t) + Tl(x,L;x + gAx,L - sAx,t)P(x + gAx,L - sAx,t)

+ T,(x,L;x - gAx,L - sAx,t)P(x - gAx,L - sAx,t) + T,(x,L;x - gAx,L + sAx,t)P(x - gAx,L + 8Ax,t)

+ T,(x,L;x + gAx,L + sAx,t)P<x + gAx,L + sAx,t) , (4)

where T)(x,L;x’',L") and T.(x,L;x",L") correspond to tran-
sitional probabilities for a cell of length L' and center of
mass at x’ to change into a cell of length L and center of
mass at x’. Subscripts / and r correspond to a transition due
to the addition (removal) of a pixel from the left (right) side
of a cell, respectively. These transition probabilities are given
by

1
T/(X,L;XI,L,) = Tr(-x’L;x”L’) = Z(D(E(X’L) - E(x”L’))’

(5)

where E(x,L) is the Hamiltonian (2) and ®(AE) is given by
Eq. (1). The factor of 1/4 in Eq. (5) accounts for transitions

to four possible states (a)—(d). For computational purposes it
is convenient to rewrite Eq. (1) in an equivalent form

D(AE) =1-{1 —exp[- BAE]}O(AE). (6)

Here O(x) is a Heaviside step function: ®(x)=1 for x>0
and O (x)=0 for x<O0.

IV. CONTINUOUS EVOLUTION EQUATION FOR
PROBABILITY DENSITY FUNCTION OF THE CPM

Below we assume ¢ to be small, € <1, so that the change
of the cell size and position is small at each Monte Carlo
step. Now we carry out a Taylor series expansion in & of the

051901-4



MULTISCALE DYNAMICS OF BIOLOGICAL CELLS...

terms in Eq. (4). One has to take special care of @(AE) terms
in the expansion because the Heaviside step function is
not analytic. To avoid this difficulty we do not expand the
function itself but only its argument instead. There is an
important simplification which comes from the fact that
O(AE)+O(-AE)=1 so that in Eq. (4) we obtain that
T, (x,L ;x",L',0)+T; (x",L" ;x,L,1)=(1/4) exp[-B|E(x,L)
—E(x',L")|]. This yields a mutual cancellation of nonanalyti-
cal terms up to order O(g?). Then, equating coefficients in
the Taylor expansion in Eq. (4) in order O(&?) results in the
Fokker-Planck equation

8,P(x,L,1) = D(* + 43}) P + 8D BN, (LP)
+DBLud[c' (x)P)],

_(?
b= 8Ar M

-
L=-

1
\ emt )\(L - LT) + EMC(X) B

Now, under certain conditions to be described in the end
of this section, the terms 4D19iP+ SD,B)\ﬁL(ZP) dominate the
other terms on the right-hand side of Eq. (7). This means that
at the leading order, one can neglect terms with x derivatives.
Under this assumption, the probability density function
P(x,L,t) approaches a Boltzmann distribution for cell length
exponentially in time at the rate of 8DS\:

P(X,L,t) = PBoltz('x’L)p(x’t) s (8)

where p(x,f) is a probability density function of finding
cell’s center of mass at x. Pg,.(x,L) is the Boltzmann dis-
tribution for the cell length given by

1
PBoltz(x’L) = E eXP(— IBAElength) > (9)

AElength = E(L) =B = )\ZZ’ (10)

where E,,;, is a minimum of energy E(L) as a function of L
for a given x,

Jon (@)

Emin = E(Lmin)’ N 2\ >

Lmin=LT_ (11)

and Z is a partition function

Z(x) = 2eAx >

L=(1+a)eAx,(3+a)eAx,(5+a)elx,. ..

exp(— IBAElength) >

a=1for —=n, a=0 for %=n+1/2, neN.

eAx eAx
(12)

Here we use the fact that due to discrete nature of our model,
the position of the center of mass, x, could be located at one
of the lattice sites x=meAx (m being an integer number) if
the length of the cell L is an even number of units eAx or x
could be located at the boundary between two neighboring
lattice sites in case of L being equal to an odd number of
units of eAx. The factor (¢Ax)? in the definition of the par-
tition function (12) is chosen in such a way as to yield
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JP(x,L,t)dLdx=1 in the continuous limit. We can also nor-
malize [P(x,L,t)dLdx=N to the total number of cells in the
system N.

In the continuous limit £ — 0, the sum in Eq. (12) is trans-
formed into the integral

+o0 /
Z~ f exp(= BAE g)dl= ——, x—0. (13)
VBA

—0

Here we have extended the limits of integration from (0,
+0) to (=, + ). Of course, physically, the length of the cell
L is always positive. A typical fluctuation of the cell size
oL=L-L,,;, about L,,;, is determined by the Boltzmann dis-
tribution (8) as BASL>~ 1. In what follows we make a bio-
logically motivated assumption about fluctuations of the cell
size being much smaller than L: |SL|<L,,;, which results in
the condition

BLEN>1. (14)

This justifies the use of the integration limits (=, +) in
Eq. (13) instead of (0,+) because under this condition
exp(—=BAE,,,,) peaks around L,,;, and replacement of inte-
gration limits results in an exponentially small correction.

Let us now specify the conditions for the applicability of
the Boltzmann distribution approximation (8). For this, con-
sider Eq. (7). We have B\SL>~ 1. We now assume in addi-
tion the relation

Bxoh> 1, (15)

where x, is a typical scale of P with respect of x. It follows
from (15) that |2P|< |47 P|, and consequently, we may ne-
glect the first term with the x derivative, &fP, on the right-
hand side of Eq. (7).

The second condition for the applicability of the Boltz-
mann distribution approximation (8) is the assumption that
the last term with a x derivative in Eq. (7) is small,
|BLud[c' (x)P]|< |47 P|. This is true if

|meﬂco|<1 + x—) < \xZ, (16)
X0

where ¢ is a typical amplitude of c(x) and x, is a typical
scale of variation of c(x) with respect to x. Last, recall that
we derive the continuous equation (7) from the master equa-
tion (4) under the condition of the step in x being small:

e<1. (17)

Notice that diffusion coefficient D in Eq. (7) does not depend
on . Instead B determines a rate of convergence, 7':1
=8Dp\, of P(x,L,t) to the Boltzmann distribution (8).

We have solved both the master equation (4) and its con-
tinuous limit (7) numerically with initial conditions
P(x,L,0) different from the Boltzmann distribution (4). The
simulations described in Sec. VII demonstrate that for each
x, the solution P(x,L,r) indeed converges in time to the
Boltzmann distribution at an exponential rate of ~8DfA.
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V. FOKKER-PLANCK EQUATION FOR THE
PROBABILITY DENSITY FUNCTION p(x,?)

We now turn to calculating the probability density func-
tion p(x,1) of a cell’s center of mass being at x. It is given by
the sum over all possible lengths of a cell:

px,1) =2eAx > P(x,L,t)
L=(1+a)eAx,(3+a)eAx,(5+a)eAx,. ..
+o0
= f P(x,L,t)dL, &—0,
X X
a=1for—=n, a=0for—=n+1/2, neN.
eAx eAx
(18)

In the Boltzmann distribution approximation (8), Eq. (18)
reduces to trivial condition of the normalization of total
probability of the Boltzmann distribution to 1:
J2Ppoi(x, L, )dL=1.

To derive closed equation for p(x,z) we substitute the
ansatz (8) into (7) and integrate both the right-hand and
left-hand sides of Eq. (7) with respect to L to obtain

gip =Ddp - [ x(x)pd.c(x)],

_(Bw?
, D= SAr " (19)

D 1
X(x) = XBM Jcm - )\LT+ E/J«C(X)

This continuous equation is the main result of this paper. The
conditions for the applicability of Eq. (19) are given by Egs.
(14)-(17).

VI. REDUCTION TO THE KELLER-SEGEL MODEL

In this section we add time dependence to the chemical
field ¢ (concentration of chemoattractant or chemorepellant)
by including a diffusion equation with the source term ap
which determines the secretion of chemical by a cell:

dc=D.c—yc+ap, (20)

where D, is a diffusion coefficient of the chemical field, vy is
the decay rate of the chemical field, and a is a production
rate of the chemical field.

The system of equations (19) and (20) is applicable under
the assumption that thez: typical time scale 7, of diffusion of

c¢(x,1), given by Tc=%, is large in comparison with conver-
gence time 7,=1/(8DB\) of P(x,L,t) to the Boltzmann dis-

tribution (8), where x, is a typical spatial width of the distri-
bution of c¢(x,#). Namely, this condition has the form

7/7,=8DPBNT, > 1. (21)

Equations (19) and (20) form a closed set of equations
which is equivalent to the classical Keller-Segel model [1] of
chemotaxis. If the parameters satisfy condition
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1
|Jcm - )\LT| > 5|,LL|C(X), (22)

then Eq. (19) reduces to the following commonly used form
of the Keller-Segel model [2,3]:

a):p = Dofp - X()ax[p&xc]’

(Ax)?
8Ar

Xo=D\BulJ.,—NL7], D= (23)
The probability density function p(x,f) corresponds to the
microscopic density in the Keller-Segel model. Notice that in
both the Keller-Segel model and CPM considered in this
paper, there is no direct interaction between cells except
through production and reaction to a chemoattractant. In
other words, cells are treated in a way similar to a dilute gas
with long-range nonlocal interactions due to reaction to a
chemical field.

VII. COMPARISON OF NUMERICAL SIMULATIONS

In this section, we describe numerical tests comparing
Monte Carlo simulations of the CPM and simulations of both
discrete and continuous models for the probability density
functions P(x,L,?) and p(x,7), as given by Egs. (4), (7), and
(19).

A. Monte Carlo simulations

The computation of the frequency distribution of the cell
center of mass and length for the CPM has been carried out
as follows.

(i) We run a large number N of CPM simulations with one
cell with the same initial conditions.

(ii) We fix a time interval Sr=g>Ar; i.e., we fix the time
interval between successive Monte Carlo steps. For each
simulation we record the locations of the center of mass and
lengths of the cell at the times t=05¢,26t,36t,... .

(iii) After the N runs, the recorded data give a frequency
distribution M(x,L,t) for the location of the center of mass
of the cell and length of the cell.

The frequency distribution M(x,L,t) determines the ap-
proximation P, (x,L,1)=M(x,L,t)/[N(gAx)?] of the prob-
ability density function P(x,L,t) for the center of mass of a
cell of length L being at x at time ¢. Therefore, we compare
Ppu(x,L,t) with P(x,L,t) which is a solution of either the
master equation (4) or the Fokker-Planck equation (7). To
approximate the probability density function of center of
mass p(x,t) we sum up over all values of L on the grid in a
way used in Eq. (18):

Pepm(X,1) = 28Ax >
L=(1+a)eAx,(3+a)eAx,(5+a)eAx,. ..

P (X, L,1),

X X
a=1for —=n, a=0for—=n+1/2, neN.

EAX EAX

(24)
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FIG. 3. Probability densities for Monte Carlo simulations
Pepmx,1) (dotted line), p(x,?) for the master equation (4) (solid line)
and the Fokker-Planck equation (7) (dashed line) versus x for
t=t,,s (a) €=0.01, (b) £=0.1. The difference between position of
solid curve and a dashed curve is negligibly small in (a). Number of
Monte Carlo simulations is N=2 X 10°. We used c(x) as given by
Egq. (26).

In what follows, we compare p,,,(x,?) for e <1 with plx,1),
a solution of the continuous equation (19), corresponding to
the following choice of parameters:

N=4, L;=5, J,=2, B=15,
Ax=1, Ar=1. (25)

The size of the CPM lattice is chosen to be L,,=100, and
the model is typically run from #,=0 to ¢,,,=200. The num-
ber of the CPM lattice sites and the number of Monte Carlo
steps are chosen to be i—fx and %, respectively. We use a
range of values of & between 0.2 and 0.001.

The initial conditions for each CPM run are chosen as
follows. A random pixel in the interval [40, 60] is selected as
a center of mass of a cell, and then the length L for the cell
is chosen with probability Z; Uexp[-BE(L)]. Here the nor-
malization constant Z; is chosen to have the total probability
1. In most simulations, we use the following static distribu-
tion for the chemical field c(x):

_(x—70)2
400

pn=0.1,

c(x) (26)
We use periodic boundary condition to simplify the Monte
Carlo and numerical calculations. The chemical field c(x)
which we choose in our paper has the lowest value in the
middle of the one-dimensional space domain. The initial cell
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FIG. 4. Exponential convergence of the full width at half maxi-
mum (FWHM) of P(x,L,?) in L as a function of time for x=50.
The vertical axis corresponds to the normalized difference [W(r)
~Wsl/Wpg, where W(t) is the FWHM at time r and Wpg is the
FWHM for the Boltzmann distribution (8). Solid squares corre-
spond to the numerical solution of both Egs. (4) and (7). The solid
line is the best linear fit which gives exponential convergence
e 9855 The same parameters as in Fig. 3 are used here with
e=0.01.

distribution also is centered in the middle part of the domain.
Driven by chemical potential, all cells move toward the
middle of the space domain and no cell movement through
boundary points is observed in Monte Carlo simulations. The
numerical result shows that probability density values at the
boundary points are always zero. We checked that a change
of periodic boundary conditions into no-flux boundary con-
ditions has no effect on the final result.

B. Monte Carlo simulations versus numerical
solutions of the discrete master equation
and the Fokker-Planck equations

We first compare Monte Carlo simulations with the nu-
merics for the master equation (4) and the Fokker-Planck
equation (7). Simulations of the Fokker-Planck equation (7)
have been performed by using a finite-difference scheme. We
verified the result of a finite-difference scheme by varying
the grid size and time step. Typically we used 1000 mesh
points in x and time step is 0.0002. We also checked smaller
time step (0.00005) to ensure the convergence of our
method. Figure 3 shows the probability density functions for
all three types of simulations.

The difference between the master equation (4) and the
Fokker-Planck equation (7) simulations is negligibly small
for £=0.01 [Fig. 3(a)] but can be clearly seen for £=0.1 [Fig.
3(b)]. For the parameters of Fig. 3(b), discreteness causes a
shift of results compared with the continuous model. This is
a result of the discrete model being compared to the continu-
ous approximation used in the derivation of the Fokker-
Planck equation. We suggest a qualitative explanation: this
shift for e=0.1 follows from the fact that P(x,L,) have only
a few points in the discrete model across the width of the
Boltzmann distribution as a function of L. These points gen-
erally are not symmetric in respect to the maximum of the
Boltzmann distribution. Thus replacement of discrete sum
over L by integral [e.g., as in Eq. (18)] is not a good approxi-
mation in that case.
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FIG. 5. Plots of p,,, (dotted
line) and pyn(x,f) (solid line)
as functions of x for a series of
decreasing values of & at time
t=200. All other parameters are
the same as in Fig. 3.
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We conclude that for N — o, the Monte Carlo simulations
converge to the solution of the master equation (4) for any &.
The rate of convergence is about N2, For small ¢ —0, the
solution of the Fokker-Planck equation (7) also converges to
the solution of the master equation.

C. Convergence of the probability density function
P(x,L,t) to the Boltzmann distribution

To demonstrate quick convergence of P(x,L,f) to the
Boltzmann distribution (8) (as discussed in Sec. IV) we solve
numerically both the master equation (4) and its continuous
limit (7) with initial conditions P(x,L,0) being different
from the Boltzmann distribution (4). Namely, we choose ini-
tial value P(x,L,0) to be the Bolzmann distribution with
different temperature B;,;=1.5 so that Fig. 4 shows conver-
gence of initial state with temperature 1/8;,; to the quasi-
equilibrium state with temperature 1/8=1/15 used in the
Monte Carlo algorithm. Linear-log plot in Fig. 4 indicates
that convergence is indeed exponential in time with high

40 50 60 70 80

60 70 80

convergence rate 7':1 (T:1=98.55 for parameters of Fig. 4).
By a high convergence rate we mean that the typical conver-
gence time 7, is small compared with, e.g., the diffusion time
x3/D in x [see Eq. (7)]. Because of the x dependence of the
chemical field, the convergence rate 7, is also x dependent
and a closed analytic expression for it is difficult to obtain
from Eq. (7) for general c¢(x). However, even a simple esti-
mate T;l =8DpPN\ of the rate of convergence gives 60 for the
parameters of Fig. 4 which is qualitatively close to numerical
value 98.55. Here 98.55 is obtained from the linear fit pre-
sented in Fig. 4. Also we choose initial value of P(x,L,0) in
L in a form of step function: P(x,L,0)=const for 0.1<L
<5 and 0 otherwise; then, we found that P(x,L,t) again
converges fast in time (convergence rate is =52.38 in that
case) to the Boltzmann distribution (8).

Also, we observe that if we increase temperature 7 in
Monte Carlo simulations, so that the condition (14) is not
true any more, then it results in a significant departure from
the Boltzmann distribution (8) which confirms the theoretical
results of Sec. IV.
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FIG. 6. Normalized difference between solution of the CPM
and continuous equation (19) for the same parameters as in
Fig. 3 as a function of . The normalized difference is given by
1_fpcpm(x,[)pmnt(xvt)dX/fpcom(x’Z)de for =1 opg-

D. P(x,L,t) vs p(x,t) simulations

The ansatz (8) can be used for fast simulations of solu-
tions of the discrete master equation. Summing up over all
values of L in the master equation (4) and taking into account
the result of Eq. (8) in a discrete equation for the probability
density function p(x,7) we obtain:

plx,t+€*Ar) = {l - T(x + gAx;x,t) - T(x - gAx;x,I)}
Xp(x,1) + T<x;x - gAx,t)p(x - gAx,t>

+ T(x;x + gAx,t)p(x + gAx,t> , (27)

where T(x;x’,fr) is a transition probability of a change of
position of a center mass from x’ to x at time 7. Expressions
for T(x;x’,t) are described in the Appendix. They are calcu-
lated only once at the beginning of a simulation which makes
the numerics for the discrete equation (27) very efficient.

We run simulations for the discrete equation (27) and the
continuous equation (19) and compared them with the solu-
tions of the discrete (4) and continuous (7) equations, respec-
tively. We find, taking into account Eq. (8), that indeed the
differences between these solutions are very small for typical
values of the parameters.

We conclude that the Monte Carlo simulations of the
CPM are equivalent in the limit of large N to the the simu-
lations of the discrete Eq. (27) for any e.

E. Comparison of the continuous model with the CPM

Below we denote as p,,, both Monte Carlo simulations
and numerical solutions of Eq. (27) and as p,,,(x,t) solu-
tions of Eq. (19).

Figure 5 shows a series of simulations of the CPM (dotted
line) and numerical solutions of the continuous equation (19)
(solid line) for different values of .

This figure demonstrates that in the limit € — 0, the solu-
tion of the continuous equation (19) appears to converge to
the cell probability density function of the CPM.

Figure 6 shows the normalized difference between solu-
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FIG. 7. Typical results of CPM simulations. The same pa-
rameters as in Fig. 3 are used except that c(x)=cos(4mx/100),
£=0.01. The same notation for solid, dashed, and dotted curves as
in Fig. 3 is used here. The difference between position of solid
curve and a dashed curve is again negligibly small.

tions of Eq. (19) and the CPM. The normalized difference
approaches 0 as e decreases.

We also run a series of tests for different forms of
the chemical field c(x) and demonstrate that solutions of
the CPM and continuous equation (19) are close for small
values of e. Figure 7 shows a typical result of numerical
simulations for a ‘“double-well” chemical concentration
c(x)=cos(47x/100).

We conclude that the numerical simulations show excel-
lent agreement between the CPM and the continuous equa-
tion (19) provided that the Potts parameters satisfy condi-
tions (14)—(17) and &—0, which correspond to the
continuous limit of the CPM.

VIII. CONCLUSIONS

In this paper we combine microscopic and macroscopic
levels of description of one-dimensional cellular dynamics.
The microscopic level is represented by a one-dimensional
CPM with chemotaxis and without a cell-cell adhesion term.
We study a continuous macroscopic limit of our CPM as the
size of the Monte Carlo step is made small under the as-
sumption that changes in the cell’s position and length are
also small. In this limit, we derive the Fokker-Planck equa-
tion (19) for the probability density function p(x,7) of cells
and then further reduce it to the well-known macroscopic
continuous Keller-Segel models (20) and (23) for the chemo-
tactic aggregation of cells. All coefficients of the Keller-
Segel model are derived from parameters of the CPM.

We use numerical simulations to test hierarchy of models
and assumptions which we used to derive the continuous
equation (19). In particular, we compare Monte Carlo simu-
lations with simulations of both the discrete master equation
(4) and the Fokker-Planck equation (7) for P(x,L,t). We find
that, as expected from our theoretical analysis, all models
agree for small e. Also Monte Carlo simulations agree with
the solutions of the discrete master equation (4) for arbitrary
e. We verify numerically that the probability density function
P(x,L,t) quickly converges to the Boltzmann distribution
(8). And finally, we find that numerical simulations show
excellent agreement between Monte Carlo simulations of the
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CPM and the continuous macroscopic model (19).

We are currently working on extending our results to a 2D
case for modeling chondrogenic patterning in the presence of
chemotaxis and fibronactin production [30].
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(1+a)eAx,(3+a)eAx,(5+a)eAx,.

e 1
T(x;x— 5Ax,t> —_——
4Z(x - EA )

- sAx>) + exp{— ,BAE,ength<x —Ax,L +eAx

e 1
T(x;x+ —Ax,t)
2

(1+a)eAx,(3+a)eAx,(5+a)eAx,..

4Z(x+ EAx)
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APPENDIX

The explicit expressions for the transitional probabilities
T(x;x’,1) used in Eq. (27) can be obtained by summing over
all lengths (or, in other words, over even multiples of eAx [if
2x/(eAx) is an even number] and over odd multiples of eAx
[if 2x/(eAx) is an odd number]). A change in the position of
the center of mass from x to x+5Ax can be made by adding
(removing) lattice sites from the left (right) end of a cell
which results in

> {exp BAE,ength Ax L- 8Ax>:|(1) E(x,L) - E(x - —Ax L

> {exp ,BAE,eng,h x4 Ax L- )]@ E(x,L) - E<x+ ~Ax,L

- (
ool Axm))}
- (
il |

- sAx)) + exp{ ,BAEleng,h<x+ —Ax,L+ sAx D E(x L)- E(x +—Ax,L+ sAx) }

1

&
T(x + —Ax;x,t) =
2 4Z(X) L=(1+a)eAx,(3+a)eAx,(5+a)eAx,. ..

> {exp[— ,BAEleng,h(x,L)]q)(E(x + gAx,L - 8Ax) - E(x,L))

+exp[— ,BAE,mgth(x,L)](I)(E<x + gAx,L + sAx> - E(x,L)) } ,

1
T(x - gAx;x,t) = 2

{CXP[— BAElength(x’L)]q)(E<x - EAX,L - SAX) - E(X,L))

4Z()C) L=(1+a)eAx,(3+a)eAx,(5+a)eAx,. ..

+exp[— ,BAE,ength(x,L)]CI)(E<x - gAx,L + sAx) - E(x,L)) } ,

X X
a=1 for — =n, a=0forT=n+l/2, ne N, (A1)

EAX EAX

Here the partition function Z(x) is given by (12). Z(x) is x dependent in the discrete case considered in this appendix. This x
dependence is eliminated after going from a discrete summation in Eq. (12) to an integral [as in Eq. (13)]. We evaluate the
transitional probabilities Tx;x+ %Ax,t) and Tx+ SAx, 1) numerically using Eq. (A1) for each value of x once at the beginning
of each simulation and then calculate the discrete evolution of Eq. (27).

Notice that in the limit of small € — 0, the continuous equation (19) can be derived directly from Egs. (12), (27), and (A1).
However, this derivation is more tedious compared with the two-step derivation in Secs. IV and V where continuous equation
(7) is first derived and then integrated (7) over L which results in Eq. (19).
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