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Textural transformations in islands on free standing smectic-C” liquid crystal films
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We report on and analyze the textural transformations in islands, thicker circular domains, floating in very
thin free standing chiral Smectic-C” liquid crystal films. As an island is growing, an initial pure bend texture
of the ¢ director changes into a reversing spiral at a critical size. Another distinct spiral texture is induced by
changing the boundary condition at the central point defect in the island. To understand these transformations
from a pure bend island, a linear stability analysis of the c-director free energy is developed, which predicts a
state diagram for the island. Our observations are consistent with the theoretical phase diagram.

DOI: 10.1103/PhysRevE.73.051705

I. INTRODUCTION

Defects and singularities of the director field in two- di-
mensional (2D) ordered molecular systems with in-plane ori-
entational order cause fascinating textures, easily visible by
means of polarized-light microscopy. In this paper, we report
on a detailed experimental and theoretical study of a set of
simple textural transformations in a system formed by blow-
ing smoke over a thin free standing film of chiral smectic-C
(SmC”) liquid crystal. Submicron smoke particles nucleate
islands, circular regions of added smectic layers, which grow
to a certain equilibrium size, with the smoke particle as a
point disclination at the center of the island. The island main-
tains azimuthal symmetry during growth, initially with the
c-director field, a unit vector ¢, defined by the projection of
the tilted long molecular axis onto the layer, tangentially ori-
ented. We find that this initially stable pure bend texture can
transform to two other equilibrium spiral splay-bend tex-
tures, either as the islands grow, or when they are momen-
tarily perturbed by external forces. To understand these trans-
formations among stable or metastable textures, we develop
a linear stability analysis for this general class of textures,
which predicts a state diagram, as a function of island radius,
that agrees well with our observations.

Important precursors to this work include an initial report
of these phenomena [1], the report of a reversing spiral
texture first discovered in domains at the air/water interface
when the SmC” film is both polar and chiral [2], and study of
the boojum, a point disclination occurring at the edge of a
circular domain [3,4]. The theoretical analysis of the stability
of textures around topological defects has been investigated
for Langmuir monolayers with a tilted phase and for free
standing SmC films [5-8]. Especially important, Loh et al.
[9] pointed out that there can be more than one stable or
metastable texture for a point defect centered in a circular
domain, and described the reversing spiral texture of a
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circular domain in a chiral system, which can be energeti-
cally stable or metastable. The remarkable growth of islands
to an equilibrium size, once they are nucleated, is a conse-
quence of their chirality and their resulting polar (ferroelec-
tric) symmetry [1].

II. TEXTURAL TRANSFORMATIONS OF ISLANDS

Samples are prepared by drawing a small amount of
smectic- C" liquid crystal material across a 6 mm diameter
hole in a thin metal sheet. Materials were prepared from the
CS series of mixtures available from Chisso Co. Typical
films as drawn were on the order of 10 smectic layers thick
[10]. To create islands, smoke from burning paper was
wafted across the film. Watching the sample using a polariz-
ing microscope with crossed polarizers, one could observe
the growth of islands nucleated by some of the smoke par-
ticles. The islands were brighter than the very dark back-
ground film, their brightness being proportional to their
thickness. Once nucleated, islands grew in area but not in
thickness. As the islands grew, one could observe their inter-
nal texture due to their birefringence. Although sometimes
the smoke particle was the center of a point defect at the
periphery of the island, a so-called boojum, most often the
subvisible smoke particle was centered in the island as a +1
point disclination, as shown in Fig. 1.

There are four possible textures for the intensity pattern
shown in Fig. 1. For a SmC” film of thickness d with angle ¢
between ¢ and either of the polarizers, with crossed polariz-
ers, the intensity of transmitted light is

wAnd )

I=1, sin22¢sin2< (1)
where N\ is a wavelength of the incident light and An is a
birefringence for light propagating normal to the film.

We neglect the effects of the twist of ¢ through the film
thickness, since the islands are thin compared to the helical
pitch of the spontaneous twist produced by molecular chiral-
ity. The helical pitch in the materials studied was in the range
of 3 to 15 micrometers, while the islands were in the range
of thickness of 0.06 to 0.15 micrometers [10]. If the ¢ direc-
tor is parallel to either of the polarizers, =0, or =m/2,
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FIG. 1. Tangential or radial? An island observed with crossed
polarizers and four possible ¢- director configurations, tangential
(clockwise or counterclockwise) or radial (outward or inward).

then 7/=0. At ¢y==xw/4, £37w/4, I is a maximum in
Eq. (1). Hence, the four orientations of ¢ indicated in Fig. 1
are possible.

To distinguish among these cases, the lower edge of the
sample holder is lifted producing a small tilt with respect to
the microscope stage. After the floating islands move to the
edge of the film due to gravity, their appearance changes to
that shown in Fig. 2. The increased intensity on the right half
of the islands indicates that their c-director texture is tangen-
tial counterclockwise, since in that case, the added tilt in-
creases the molecular tilt, relative to the propagation direc-
tion of the light, and thus the apparent birefringence, on the
right, and decreases it on the left of the center. All the +1

e
B
-

Sample holder
Smectic film

Microscope stage

FIG. 2. Islands observed when the lower edge of the sample
holder is raised with respect to the microscope stage by about 10°.
The texture is tangential counterclockwise.
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FIG. 3. The textures after blowing on islands with pure bend
texture. (a) A pure bend island switches to a “simple spiral” with
radial ¢ director at the core. (b) A pure bend island exhibits a tran-
sient (unstable) reversing spiral texture, when the core boundary
condition is unchanged.

central defect islands, as shown in Fig. 1, have this “pure
bend” texture throughout the island.

To explore the stability of pure bend islands, which are
apparently at equilibrium, we blew on the film with a small
jet of gas. The resulting swirling often induced two kinds of
distinct changes from a pure bend texture. In all cases, the
boundary condition at the outer edge of the island remained
tangential counterclockwise. However, the boundary condi-
tion at the smoke particle at the core of the point defect
would (a) sometimes change from tangential to approxi-
mately radial, or (b) remain tangential. Right after blowing,
there was often a very tightly wound spiral in the texture,
which slowly relaxed to equilibrium, as shown in Fig. 3.
Over the course of minutes, as the c-director relaxes, in case
(a) this texture equilibrates to a final state with roughly +7/2
rotation from radial at the core to tangential at the outer
boundary [bottom of Fig. 3(a)]. We call this spiral texture a
simple spiral. We have observed the simple spirals with ra-
dial inward or outward boundary conditions at the core, and
right- or left-handed spirals. Neither the sense of the spiral
nor the sign of the radial boundary condition is meaningful,
since observing the sample from the other side would clearly
reverse both these characteristics. There is a size dependence
in this textural transformation; pure bend islands of a small
size are hardly ever transformed into simple spirals. This
indicates that there is only a small interaction energy be-
tween the molecular orientation and the smoke particle, since
the pure bend texture is being stabilized by the torque trans-
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FIG. 4. Transformation of a pure bend island into a reversing
spiral island. It took around 30 min.

mitted from the outer island boundary to the defect core.

However the other spiral texture resulting from blowing,
case (b), which maintains its tangential boundary condition
at the core, which we call a “reversing spiral,” goes back to
the pure bend texture, as shown in Fig. 3(b), when it started
from an apparently stable pure bend texture.

Remarkably, as shown in Fig. 4, as a stable pure bend
island grows, at some critical size the c-director texture
spontaneously starts to evolve into a reversing spiral. This
transition is driven by a competition between the bend and
splay elastic energies. If the splay elastic constant is less than
the bend constant, this enables the transformation from a
pure bend texture to a reversing spiral in a large enough
island. The time it takes to reach equilibrium depends on the
thickness of the island. The thinner the island, the less time.
It took 30 min for the pure bend island in Fig. 4 to reach
equilibrium.

II1. LINEAR STABILITY ANALYSIS

To explore the stability of the texture in the islands, we
employ linear stability analysis. To find the equilibrium con-
figuration of ¢ in the islands, we should minimize the follow-
ing free energy consisting of an integral of the elastic energy
density over the area of the island, and the edge energy at the
sample boundaries

F= J [K,(V - &)+ K,(V X &)*dA + 35 a(p)dl, (2)

where K and K, are the 2D splay and bend curvature elastic
constants, respectively. ¢ is defined as the angle between ¢
and the outward radial vector 7. o(¢) is the anisotropic en-
ergy per unit length of edge. Note that it is a periodic func-
tion, o(p—2m)=0(¢p). Generally, it is written as

o($) = oo+ 2, [a, cos(nd) + ¢, sin(ne)], 3)
n=1

in which o, is an isotropic term [5,11]. In the areal free
energy density, the possible linear terms, VX ¢ and VX ¢, are
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converted to line energies by the divergence theorem and
Stoke’s theorem. Therefore, the first-order terms a; cos ¢
and c¢;sin ¢ in Eq. (3) arise from a spontaneous splay
(VX ¢é) and a spontaneous bend (V X ¢) respectively. How-
ever in a free-standing film, which is physically the same
when viewed from the top or bottom, no spontaneous splay
of ¢ is possible; for films floating on a liquid this term is
allowed [2] by the polar symmetry of the sample. So a; must
vanish. ¢; arises directly from the spontaneous bending (in
our case, left turning) produced by the molecular chirality in
the SmC”, and it is directly responsible for the minimum
energy textures having a counterclockwise tangential bound-
ary condition at the outer edge of all the islands we observed.
We include in o(¢) only the lowest terms for the line energy,

o(¢) =0y +a,cos2¢+c sin ¢. (4)

For the islands we have created by a heterogeneous nucle-
ation with a strong anchoring tangential boundary condition
at r=R (outer radius of island) and a weak anchoring bound-
ary at r=€ (radius of the particle at the center), the line
energy is

j@ o(p)dl = 277R(r<§> +2men(d(e)). (5)

The first term on the right side is the line energy for the outer
boundary and the second is for the inner boundary. The total
free energy for a island in Eq. (2) can be rewritten as the sum
of the areal elastic free energy and the line energy of Eq. (5)
in terms of x=In(r/¢€).

X0 2
F:TrKf {(1+Mcos2¢)<d—¢) +2,usin2d>d—¢
0 dx dx

+ (1 — wcos 2¢)}dx+ 2mea(p(0)), (6)
where
xo = In(R/e),
K+ K,
K= s b,
2
_—K+K,
=k vk,

The constant term 27Ro(m/2) in the total free energy is
ignored, because it has no effect on ¢(x). Here we assume
that the radial configuration of the ¢ director, ¢=0 or ¢p=r,
in the areal free energy is a state for minimum energy, based
on our observation that ¢ tends to rotate toward a radial
orientation in large enough islands. Hence, K;<K,, which
means w ranges from O to less than 1.

The equilibrium condition for ¢(x) from the Euler-
Lagrange equation derived from Eq. (6) is
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2

2
(1+ wcos 2(1))%) M sin 2¢<d¢> —usin2¢=0.

(7)

The boundary condition at x=0 obtained from [d7n(p)/dd
—19f/(9¢/]|x=0=0 is

do

= €—

x=0 d¢

{(1 + L cos 2¢)( ¢) + p sin 2({)}

x=0
(8)

where f and 7 are the areal and edge free energy densities.

We found ¢(x) numerically, using strong anchoring at the
outer boundary, ¢(x,)=7/2, as required by our observation.
However, depending on the choice of parameters, there
might be one or more numerical solutions. Linear stability
analysis is used to determine if these solutions define local
minima for the free energy. For the analysis, we need to
manipulate the total energy in Eq. (6). Defining

A(p) =1+ ucos2d¢, 9)
B(¢) = 2 sin 2, (10)
C(p)=1-pcos2dg, (11)

Equation (6) can be rewritten as

F= WKfXO dx[A((ﬁ)(fld)) B(¢) + C(¢):|
0

+2mea(p(0)). (12)

Let’s start with the second term in the integral.
X0 d¢ &(xp)
WKf B(¢p)—dx = WKJ B(¢)d o
0 dx 4(0)

= 7K u[cos 2¢(0) — cos 2d(xy)]
= mKu[cos 2¢(0) + 1]. (13)
We rewrite Eq. (12)

fxo[ <d¢)2 } 1
F=mK A(p)| — | +C(P)g |dx+ —mKS((0)),
0 dx 2

(14)

where 1/27KS(p(0)) =2mea(p(0)) + mK u cos(2(0))
+ 7K. We next incorporate the line energy into the integral
and symmetrize the problem around x=0, obtaining

7TK

. {A(@( ¢) +c<¢>+5<x)s<¢(x>)}dx

(15)

-xq

in which &(x) is a Dirac delta function.

Now we expand the above free energy to second-order in
a small fluctuation ¢=¢— ¢, in which ¢, is a solution that
makes the total free energy F an extremum. The boundary
conditions are @(—xg)=¢(x;)=0 due to the strong anchoring.
The expanded free energy OF is
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=% f ° HA(¢0)+A’(¢O)¢+%A”(%)QDZ}
o
y [(d_fﬁo>12d_<z>od_¢+(d_w>2]
dx dx dx dx
1
+ {C(Q{’o) +C' () + EC"(d’o)(Pz}

+ 5(X)<S(¢o) +S8" (o) + %S"(%)@z) }dx, (16)
where the notation ' and ” denote first and second deriva-
tives with respect to ¢.

Since we are expanding around an extremum solution, the
first functional derivative 6F;=0. As a result, the lowest term
is the second-order derivative of the free energy,

e[ [l

+A<¢0)(d [EETUTNE R

dx

1 1
+ EC"(qﬁo)@Z + 6(x)58"(¢o)¢2]dx. (17)

We next convert the second-derivative terms to a symmetric
form by integration by parts.

de\? A dtnd
A(%)(;‘f) Al 0 o= Ald) e,
2
24 (4) 20 E "(%)( ¢°> A R

(18)
After substituting Eq. (18) into Eq. (17), we obtain

L e I VPN TS P
OF,= 2 _XOQD[ dx(A(d)O)dx) (d’o)( x)

2¢0 1 1" 1 "
—A’ (¢o) +5C (¢0)+55(X)S (¢(0)) | pdx.
(19)
OF, has the form of
OFy=— J [eLeldx, (20)

-xq

where L is the operator —d/dx[A(¢y)d/dx]+V(x) and V(x) is
completely determined by the solution ¢y(x). This symme-
trized second-derivative term in L is now Hermitian or self-
adjoint, as is V(x). The operator L has an infinite set of eigen-
functions which form a complete orthogonal set of functions
for constructing all suitable functions satisfying the boundary
conditions on the integral [12]. The eigenfunction with the
lowest eigenvalue does not cross zero between the +x, end
points, while sequentially, each higher eigenvalue corre-
sponds to an eigenfunction with one more zero crossing. Let
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FIG. 5. A plot showing the minima of the free energy of
an island as a function of the initial slope of ¢ at the outer boundary
for the following parameters, K=1, u=0.13, ec;=1.0, and
€a,=0.6. At initial slope 0, the free energy is for a pure bend island.

us expand a test function ¢ in the eigenfunctions of
L, ¢=Za;¢p;, in which ¢; is normalized so that

X0
f (pizdx=1, (21)

-xq

and each eigenfunction ¢; has an eigenvalue C;. Then

K [0 K
OF, = %f oLedx = 777 > alc, (22)

-xq

If the lowest eigenvalue C; >0, JF), is positive, and ¢, mini-
mizes the free energy with respect to small variations. If
C, <0, then ¢, clearly lowers the free energy and ¢, is not a
minimizing function. To test a solution ¢, we find the eigen-
function of the operator L, which does not cross zero be-
tween the endpoints, and determine its eigenvalue. A nega-
tive eigenvalue indicates instability.

IV. RESULTS

We have described the procedures to obtain the equilib-
rium textures and to examine their stability against infinitesi-
mal fluctuations to understand what we observe, which is
that there can be more than one stable or metastable solution,
for the texture of an island. To find minima of the free en-
ergy, we numerically solve the Euler-Lagrange equation Eq.
(7) with the boundary conditions, Eq. (8) at the core and
strong anchoring ¢=/2 at the outer boundary. We adopt the
shooting method, in which starting from the outer boundary
with ¢=m/2, we vary the slope of ¢, and integrate to the
inner boundary. The discrepancy from the desired inner
boundary condition is used to adjust the initial slope, repeat-
ing until the solution is obtained.

In Fig. 5, we show the free energy of functions ¢ as the
slope at the outer boundary is varied. The local minima rep-
resent solutions of the Euler-Lagrange equation that satisfy
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FIG. 6. Stable solution for a simple spiral. K=1, u=0.13,
ec;=1.0, and €a,=0.6 at In(R/€)=6.0. (b) Texture of the solution as
seen between crossed polarizers. (c) A simple spiral we observed,
after blowing on the sample.

the boundary condition at the inner boundary. For the four
island sizes shown, compare the free energy of the pure bend
island, with initial slope zero, to that of the other local
minima. The global minimum at large initial slope represents
a simple spiral, while the local minimum that appears for
island size just above In(R/€)=5.5 is a reversing spiral. Ac-
tually many local minima can exist at larger initial slope, but
they have much higher free energy than the free energy of
the pure bend island. The linear stability analysis of the pure
bend texture shows that once the reversing spiral solution
appears, the pure bend texture is unstable.

An example of a stable simple spiral is illustrated in Fig.
6. In Fig. 6(a), ¢ varies monotonically from the core to the
outer boundary. This is an illustration of the lowest-energy
configuration for u=0.13, K=1, ec;=1.0, and €a,=0.6 at
In(R/€)=6.0. Figure 6(b) represents the appearance of the
island, as seen between crossed polarizers, for which ¢(x) is
shown in Fig. 6(a). The island in Fig. 6(c) is a typical simple
spiral we created by blowing. Note that in the case calculated
here, the stable boundary condition at the core is not radial
but almost reversed tangential, but the part of the solution
with values of ¢<<0 is so close to the core that it is essen-
tially invisible at optical resolution, since the radius of the
island is only on the order of 20 micrometers. The important
qualitative observation is that ¢ increases monotonically
from the core. In fact we do not know the precise core size,
just that it is subvisible.
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FIG. 7. Stable solution for a reversing spiral. K=1, u=0.6,
ec;=1.0, and €a,=0.5 at In(R/e)=4.5. (b) The texture seen between
crossed polarizers. (c) A typical reversing spiral island.

In the reversing spiral seen in Fig. 7, ¢ rotates in one
direction from the inner boundary until reaching a minimum
angle, and then rotates in the other direction to match the
outer boundary condition. This configuration does not
represent an absolute minimum of the free energy, but is
locally stable for u=0.6, K=1, In(R/€)=4.5, ec;=1.0, and
€a,=0.5. Figure 7(b) shows the appearance of the island as
seen between crossed polarizers, for the solution ¢(x) shown
in Fig. 7(a). Figure 7(c) is the texture of an observed revers-
ing spiral. Again, the detailed texture near the core is unre-
solved, but qualitatively it is clear that the spiral reverses
curvature at very small radius.

Figure 8 is a state diagram for an island, as a function
of its radius, obtained by numerical calculation, where
the simulation parameters are K=1, u=0.13, ec;=1.0, and
€a,=0.6. At small radius, the energy for a simple spiral is
much higher than the energy of a pure bend texture. This
explains why we cannot observe the simple spirals in islands
of small size. Above a certain size, the pure bend island is
only metastable, but there is a sizable energy barrier for tran-
sition to the simple spiral. However, above a second critical
size, the pure bend island becomes unstable relative to a
reversing spiral with a lower energy, without any energy bar-
rier. The transition size is sensitive to K, and K. If K, and K,
are the same, the size of the transition diverges. The bigger
M, the smaller the size for this second-order transition.

For island radius larger than the radius for the crossing of
the free energies of the pure bend texture and the simple
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FIG. 8. State diagram for an island. K=1, ©=0.13, ec;=1.0, and
€a,=0.6.

spiral, around In(R/€)=2 in this case, the pure bend texture
can be transformed into a simple spiral as a first-order tran-
sition. We think blowing on the sample makes this possible
in our experiments, because the highly curled transient spiral
state it produces provides the torque needed to change the
inner boundary condition. The spiral then relaxes into the
stable simple spiral state.

V. DISCUSSION

We have observed the textures of circular islands of a
ferroelectric smectic-C* liquid crystal, especially studying
first- and second-order transformations of textures as a func-
tion of island size. First our basic observations confirm the
fact that the chirality of the smectic-C” phase induces a pre-
ferred bend curvature in the plane of the smectic layers, lead-
ing in the case of the materials we studies, to a general left
turning bend texture as their ground state. Second, using an
elastic model in which the difference of elastic constants,
K,—K,, provides a driving force, and the anchoring of the ¢
director at the core of the central disclination is weak, we
construct a plausible state diagram that agrees with our ob-
servations. The circular geometry of the island, combined
with the strong tangential anchoring of the ¢ director at its
outer boundary, demand a curved texture, which makes the
difference between the splay and bend curvature elastic con-
stants crucial. The continuous transition from the pure bend
island to the reversing spiral is completely analogous math-
ematically to the behavior of a plane parallel sheet of nem-
atic with tangential boundary conditions, in a perpendicular
magnetic field. As the sheet grows thicker, at a critical thick-
ness, a continuous Frederiks transition occurs, in which the
director rotates toward the external field direction. Here, that
effective field direction is radial, converting bend into splay,
and lowering the energy.

In studying different materials, using the textural transfor-
mation from pure bend to reversing spiral as a diagnostic, we
saw a strong correlation between the spontaneous electrical
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polarization of the ferroelectric phase and the apparent dif-
ference between the bend and splay elastic constants; high
polarization materials matched our model of a material with
a high bend elastic constant. This result correlates well with
the fact that bend curvature of the ¢ director produces diver-
gence of the spontaneous polarization, resulting in space
charges which interact to increase the free energy of the bent
state. In low frequency, or quasi-static, conditions, the result-
ing space charge is partially screened by free charges in the
material, reducing the otherwise long-range electrostatic in-
teractions to an effective local contribution to the free en-
ergy, which can be expressed as an increase in the effective
bend elastic constant [13]. The fact that our state diagram
and the textures we calculate from the elastic model agree
well with our observations leads us to hypothesize that we
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have successfully approximated the electrostatic interactions
and energy by using a large bend elastic constant K, to ac-
count for the behavior of high polarization materials. The
high value of K, pushes the critical island size for the ap-
pearance of the reversing spiral to very small values, as one
would expect qualitatively, and as we do observe for high
polarization materials. To explore this hypothesis further, we
made independent studies of the elastic constants and the
interactions of bend distortions with free charges in free
standing SmC” films, comparing high-frequency and quasi-
static behavior. To accomplish this, we performed light scat-
tering experiments on c-director fluctuation dynamics, with
electric field quenching of fluctuations, with analysis includ-
ing both bend-induced polarization charge and conduction
charge screening. They will be reported elsewhere.
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