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Measurements of the three-dimensional shape of ice crystals in supercooled water
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Experimentally grown ice crystals from ultrapure supercooled water are imaged by means of Mach-Zehnder
interferometry. By analyzing the fringe patterns the phase information and thus the three-dimensional shape of
the ice crystals is recovered quantitatively. The integral parameters height of the basal plane, volume, and
surface of the crystals are measured as a function of time and supercooling. It is found that all measured
parameters follow a power law as a function of time and the exponents are found to be independent of the
supercooling. The shape transition from the prismatic to the basal face along the main growth direction of the
ice dendrites as a function of the distance from the tip is found to be a power law as well. Our findings support
the validity of universal growth laws in pattern forming systems.
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I. INTRODUCTION

The formation of patterns in nature is ubiquitous [1,2].
Famous examples are cloud formation [3], bacterial colonies
[4], and grain structures in metals [5] or rocks [6]. Apart
from the technological importance of understanding the mi-
crostructure formation in metals in order to produce better
casts, pattern formation, especially the most prominent den-
dritic morphology, is also of theoretical interest (e.g. [2]).
Dendrites are a prototypical system evolving from homoge-
neous starting conditions into complex spatio-temporal pat-
terns far from equilibrium.

Experiments on dendritic growth were mostly focused on
systems with simple molecular structures (mostly fcc/bee
such as xenon [7,8], SCN or PVA [9]). In these systems
fourfold symmetric 3D dendrites are found. Ice on the other
hand was studied for a long time already e.g. [10,11] since it
is relatively simple to perform experiments. Ice has a more
complicated molecular structure; it crystallizes hexagonally
and shows rough and therefore dendritic growth along the a
axis and faceted growth along the ¢ axis.

Most studies on dendritic growth even if the actual ex-
periments were performed in 3D were concentrating on the
2D projection. Growth parameters such as growth velocity,
tip radii, and side branch spacing have been determined from
these projections and compared to theoretical models and
computer simulations. These parameters describe only the
behavior of the tip of the growing dendrite. Properties of the
whole crystals can be described by integral parameters [7]
such as fractal dimensions [8,12], contour length, projection
area [7], or surface and volume in 3D [13,14].

Recently the research has tended to include 3D aspects of
the dendritic crystals as well. First attempts to obtain a quali-
tative view of a growing ice dendrite were given by Shimada
and Furukawa [15,16]. Teraoka et al. [17] report on the shape
of the cross sections of ice crystals along the growth direc-
tion and find a square root dependence of the height as a
function of the distance from the tip for different supercool-
ings. Singer and Bilgram have quantitatively reconstructed
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the three-dimensional shape of experimentally grown xenon
dendrites [13] and measured volume and surface as a func-
tion of the distance from the tip, time, and supercooling [14].

In this paper we report on the full three-dimensional re-
construction of growing ice crystals by means of Mach-
Zehnder interferometry fringe pattern analysis and present
for the first time results for the volume and surface growth of
ice, which were inaccessible up to now.

II. EXPERIMENTAL SETUP AND INTERFEROMETRIC 3D
RECONSTRUCTION

Our experimental setup consists of a cylindrical growth
cell (r=10 mm and z=40 mm) with optically flat
glass plates, which is immersed in an ethanol heat bath with
glass windows. The ice crystal is grown by the capillary
injection technique [18]. Nucleation of the crystal occurs in-
side the capillary reaching into the growth vessel, thus en-
abling the crystal to grow freely in 3D once it reaches the
opening of the capillary. The water is purified by means of
deionization, distillation, and filtration. The resistivity was
measured to be higher than 107 Q) cm. The in situ observa-
tion of the growing crystals is recorded by a video camera on
an SVHS video with a resolution of 720X 480 pixels and
finally digitized to 8-bit gray scale images on a computer.
The temperature regime in which experiments were per-
formed was AT=T, T, and 0.1 °C<AT<1.0 °C with
T,,=0 °C the melting temperature and T, the temperature
of the experiment.

The crystal is observed via a Mach-Zehnder interferom-
eter. A dendrite grown at AT=0.5 °C is shown in Fig. 1. If
no crystal is present the split ray paths of the laser beam
exhibit a regular interference fringe pattern. If a crystal is
present the fringes change their intensity according to the
height of the crystal. It is well known that the fringe pattern
intensity is then given by

I(x,y) = a(x,y) + b(x,y)cos[27f x + ¥(x,y)], (1)

where a(x,y) is a slowly changing background intensity,
b(x,y) is the contrast component also varying slowly, f is
the carrier frequency, and W(x,y) corresponds to the phase
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FIG. 1. Growing ice dendrite in supercooled water with
AT=0.5 °C observed via a Mach-Zehnder interferometer. From the
interference fringes the height distribution of the crystal can be
calculated.

distortion introduced by the crystal. The height or thickness
distribution of the growing crystal is given as

d(x’)’) = )\\P(X’)’)/[Z"ﬂ”z_”wu (2)

with the wavelength A=632.8 nm and the refractive indices
of ice n,=1.3078 and water n,,=1.3327 at 0 °C, respectively.

In earlier approaches to obtain the three-dimensional
shape of growing ice crystals [15,16] a carrier frequency f,
was chosen so that the distance between neighboring inter-
ference fringes was large compared to the ice crystal dimen-
sion. Then the fringes on the ice crystal could be considered
in an raw approximation as iso-height lines of the crystals
and the height difference between two successive fringes in
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FIG. 2. (a) Wrapped phase data after subtracting the interference
fringes phase without crystal. (b) Unwrapped phase data. Unwrap-
ping was performed by solving Eq. (4).
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FIG. 3. Three-dimensional representation of the unwrapped
phase data of the growing ice crystal.

the crystal was calculated to be 25.4 um. Although this ap-
proach gave first qualitative insights on the 3D shape it did
not reveal enough details to reconstruct the crystal fully as a
function of time.

We have reconstructed the three-dimensional shape of the
crystal in a more general way—independently of the carrier
frequency f,. The method is also used in Synthetic Aperture
Radar Imagery (SAR) for geographical height measurements
from planes or satellites. The key point is to reconstruct the
phase profile W(x,y). The wrapped phase profile [as all the
W values are in the interval —7<)W(W) <, where W()
denotes the wrapping operator] is determined by Fourier
methods: The two-dimensional Fourier transform of Eq. (1)
of the intensity profile with and without crystal are calcu-
lated. By back transforming the first order peaks only and
subtracting the results from each other the wrapped phase
profile W(W) is obtained. The wrapped phase plot is shown
in Fig. 2(a). In order to calculate the actual phase W from
W(W) many phase unwrapping (PU) algorithms have been
proposed (e.g., [19-21]). As our data shows quite a large
amount of residual points (typically around 12%—15%) path
following PU algorithms could not be used. On the other
hand Fourier based methods, which minimize an error func-
tion (especially the unweighted ones) tend to underestimate
the actual height of the data. We have thus chosen a recently
proposed algorithm [22], which is very robust and does not
use a minimization function; additionally as it calculates the
Laplacians by Fourier methods the influence of residues is
less noticeable. The basic idea is that

W(x,y) = W) +2mn(x,y), (3)

where n(x,y) indicates an integer field of multiples of 27r.
In order to solve this problem it can be shown [22] that
VW can be expressed as a function of V2W(V):
V2 =cos W(W)V2(sin W(P)) +sin W(F)V2(cos W(T)).
By rearranging Eq. (3) we find

n(x,y) = %TV‘Z(VZ\P - VIW(VP)), (4)

where V? and V=2 are the 2D Laplacian and inverse Laplac-
ian, respectively. We can now solve Eq. (4) by Fourier meth-
ods and round the found field n(x,y) to the nearest integer
values. The found result of the phase unwrapped data of Fig.
2(a) is shown in Fig. 2(b). Finally the background of Fig.
2(b) is removed by subtracting the background average from
the image and extracting only the heights, which are in the
mask given by the contour of the crystal. A three-
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FIG. 4. (Color online) Height of the basal plane as a function of
time for different supercoolings.

dimensional view of the reconstructed crystal is shown in
Fig. 3.

III. RESULTS

We have measured the height of the basal plane as a func-
tion of the time in the interferometric observations of the ice
crystals for different supercoolings. The measurement was
performed as follows. A reference interference fringe outside
the crystal and a fringe on the basal plane were chosen.
When the height of the basal plane is increasing, the fringe
intensity is changing as well. A uniform fringe shift is ob-
served on areas with equal heights. By extracting (1+1)
space-time plots from the data it was possible to calculate the
distance between the two selected fringes as a function
of time. This distance is proportional to the height of the
crystal. The results of the measurements are given in Fig. 4.
We find that the height of the basal plane increases as a
power law h(r)=ho(AT)t*, where h is a parameter depend-
ing on supercooling. The exponent « was found to be
a=0.35+£0.02 independent of the supercooling. This is in
good agreement with the findings of Teraoka er al. [17]
who found that the growth velocity of the facet decays as
v.(t)=vy- 17097,

With the phase unwrapping method explained above
we have calculated the 3D shape of the temporal evolution
of crystals for different supercoolings. The results for
the volume and the surface of the crystals are given in

o
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FIG. 5. (Color online) Volume of the dendrite as a function of
the time for different supercoolings.

PHYSICAL REVIEW E 73, 051606 (2006)

non-dimensional time t*

FIG. 6. (Color online) Surface of the dendrite as a function of
time for different supercoolings.

Figs. 5 and 6, respectively. The time was nondimensional-
ized r"=v(A)t/d, with v(A) the supercooling dependent tip
velocity and d,=2.88 X 10~® cm the capillary length of wa-
ter. The length scale d, was chosen for nondimensionaliza-
tion since there is no unique other length scale available as in
the 3D crystal now two different tip radii occur (in the x-y
plane, along the a axis p, and perpendicular in the x-z plane
p.), which behave entirely different upon the change of su-
percooling [15]. In order to not favor one supercooling de-
pendent scale over the other the constant value of d, pro-
vided the necessaries conversion. As d, is very small
compared to typical lengths of the crystal, this leads to big
numbers in the nondimensional time ¢°, as can be seen in
Figs. 5 and 6.

We have found that both volume and surface obey a
power law and that the exponents are independent of the
supercooling. We find therefore that V(r)=V,(AT)t” and
S(t)=S,(AT)t? with the volume exponent y=1.52+0.08 and
the surface exponent S=1.07+0.02.

In Fig. 7 the cross sections along the main growth
axis rescaled by the respective generalized tip radius [23]
are shown. It can be clearly seen that the shape is identical
for different supercoolings. A fit of the data shows that
the measurements of Teraoka er al. [17] fitting the cross
sections along the axis with a parabola (exponent 0.5) must
be considered as a crude approximation of the real power
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FIG. 7. (Color online) Cross sections along the main axis of
growth in units of the generalized tip radius [23]. The shape is
independent of the supercooling.
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law. More accurately the fit is described with the exponent
0=0.54+0.02 as a function of the distance from the tip, this
means that the shape is not a parabola but a power law with
the exponent 1.85+0.04.

IV. DISCUSSION AND CONCLUSION

We have found a power law dependence on the time for
all measured parameters height of the basal plane, volume,
and surface. The exponents are independent of the supercool-
ing. In particular it is interesting to note that despite the high
anisotropy of the crystal, which includes faceting in one
growth direction the growth exponents found, are identical to
the ones, which would be expected for the growth of the
completely isotrgpic case of a sphere in diffusional growth,
growing with \¢ per dimension leading to #'* in 3D. The
results indicate that only the diffusion is rate limiting, despite
the clear faceting along the ¢ axis of the ice crystal.

In [15] it was shown that the tip velocity along the a axis
behaves according to the theoretical expectations of the
L-MK-theory [24]. At the same time however it was shown
that the stability constants 0':<=Ddg/(vpi2), i=a,c behave
completely different for rough and faceted growth. While the
rough growth showed a constant O'Z for p,, the stability con-
stant 0': calculated from p,. was strongly dependent on the
supercooling. Combining these results with the results found
for the volume solidification rate dV/dt=1.52%V(A){**? in
this paper it follows that the total solidification rate for the
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whole crystal and therefore also the stability constant is de-
pendent on the supercooling. This is also in accordance with
[25] stating about the L-MK theory in highly anisotropic
systems (p. 20): “It seems to me that the present form of the
theory cannot be adequate to describe so highly anisotropic a
system, and that, in particular, anisotropic attachment kinet-
ics must be included in both the steady state calculation and
the stability analysis.”

The cross sections along the growth axis exhibit a super-
cooling independent growth shape when rescaled by the re-
spective tip radius and can be described by a power law as a
function of the distance from the tip.

The results found from our measurements suggest that in
spite of the complex growth shapes exhibited in pattern
forming systems like ice, xenon or SCN integral parameters
of these substances such as volume or surface, which take
also into account the nonlinear interaction between compet-
ing side branches are (i) a reliable method to reproducibly
measure experimental data and (ii) the growth of the crystals
can be described by very simple growth laws. The indepen-
dence of the exponents from the driving force of the super-
cooling indicates that the growth process is universal and the
exponents are only dependent on material properties.

ACKNOWLEDGMENTS

The author thanks Professor Y. Furukawa for the use of
the experimental setup. This work was supported by a grant
of the Japanese Society for the Promotion of Science (JSPS).

[1] Branching in Nature, edited by V. Fleury, J. F. Gouyet, and M.
Leonetti (Springer, Berlin, 2001).

[2]J. S. Langer, in Chance and Matter: Les Houches, Sessions
XLVI, 1986, edited by J. Souletie, J. Vannimenus, and R. Stora
(Elsevier Science, Amsterdam, 1987), pp. 629-711.

[3]J. Feder, Fractals (Plenum, New York, 1988).

[4] T. Matsuyama and M. Matsushita, Crit. Rev. Microbiol. 19,
117 (1993).

[5] D. M. Stefanenscu, Science and Engineering of Casting Solidi-
fication (Kluwer Academic, New York, 2002).

[6] S. S. Augustithis, Arlas of the Textural Patterns of Ore Miner-
als and Metallogenetic Processes (de Gruyter, Berlin, 1995).

[7] E. Hiirlimann, R. Trittibach, U. Bisang, and J. H. Bilgram,
Phys. Rev. A 46, 6579 (1992).

[8] U. Bisang and J. H. Bilgram, Phys. Rev. E 54, 5309 (1996).

[9] M. E. Glicksman and N. B. Singh, J. Cryst. Growth 98, 277
(1989).

[10] S. H. Tirmizi and W. N. Gill, J. Cryst. Growth 85, 488 (1987).

[11] K. K. Koo, R. Ananth, and W. N. Gill, Phys. Rev. A 44, 3782
(1991).

[12] H. M. Singer and J. H. Bilgram, Physica D (in press).

[13] H. M. Singer and J. H. Bilgram, Europhys. Lett. 68, 240

(2004).

[14] H. M. Singer and J. H. Bilgram, Physics Rev. Lett. (unpub-
lished).

[15] Y. Furukawa and W. Shimada, J. Cryst. Growth 128, 234
(1993).

[16] W. Shimada and Y. Furukawa, J. Phys. Chem. 101, 6171
(1993).

[17] Y. Teraoka, A. Saito, and S. Okawa, Int. J. Refrig. 27, 242
(2004).

[18] M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Metall.
Trans. A 7A, 1747 (1976).

[19] D. C. Gighlia and A. Romero, J. Opt. Soc. Am. A 11, 107
(1994).

[20] M. D. Pritt, IEEE Trans. Geosci. Remote Sens. GE-34, 728
(1996).

[21] T. J. Flynn, J. Opt. Soc. Am. A 14, 2692 (1997).

[22] M. A. Schofield and Y. Zhu, Opt. Lett. 28, 1194 (2003).

[23] H. M. Singer and J. H. Bilgram, Phys. Rev. E 69, 032601
(2004).

[24]7J. S. Langer and H. Miiller-Krumbhaar, Acta Metall. 26, 1681
(1978).

[25] J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).

051606-4



