PHYSICAL REVIEW E 73, 051604 (2006)

Scaling properties in the average number of attempts until saturation in random sequential
adsorption processes
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In the present paper we investigate the exact average number of attempts until saturation when a square
lattice is ceaselessly bombarded with B-bell (8= 1) particles, i.e., linear particles that require B consecutive
lattice sites to be adsorbed. When that average number is normalized with the corresponding single-particle
average, a scale invariant behavior is revealed with a scaling exponent a=0.017+0.001, independent of B
(B>1). The scale behavior is suggested by the branching characteristics governing the sequential random
adsorption of B-bell (B> 1) particles, which is indeed a consequence of configurational correlations.
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I. INTRODUCTION

Chemisorption on single-crystal surfaces, at low tempera-
tures where surface diffusion is inhibited, provides a natural
application of random sequential adsorption (RSA) pro-
cesses. In the (100) face of single-crystal fcc substrates the
adsorption sites form a square lattice. We are interested in
considering RSA processes of molecules that can occupy
more than one site in a lattice space. In such systems there is
configurational correlation in the sense that if a compartment
is occupied, then at least one of its neighbors is also occu-
pied.

Much attention has been placed in the scientific literature
to study the kinetic aspects of RSA processes as well as the
jammed coverage values [1-10]. In the present paper we
wish to focus the attention on another interesting question
within RSA processes, that is, what is the average time to
arrive at a jamming state when a large square lattice is cease-
lessly bombarded by linear particles? As we shall consider
linear particles of varying length B (=1,2,3,4,...,), B-bell
particles, a unit of time based on the average number of
impacts per lattice site is adopted. We then calculate the
Monte Carlo steps to saturate a lattice of S-bell particles,
(Sphrcn

For small lattices and arbitrary values of B, we have de-
veloped a branch counting probability approach to calculate
(Shmxn exactly [11,12]. Also, (Sg_1)yxy can be exactly de-
termined for arbitrary size lattices, i.e., M X N values [13].

In the present paper we calculate, by Monte Carlo simu-
lations, (S )y for both arbitrary B values and arbitrary
large lattice sizes. We find a scale invariant behavior and
determine the scaling exponent a=0.017+0.001, indepen-
dent of S.

The paper is organized as follows. In Sec. II a brief de-
scription of how to find the exact (Sg)yxy value for small
lattices is outlined. For comparison purposes in Sec. III we
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present the exact (Sgi)yxy Vvalue for lattices of arbitrary
size and no configurational correlation, i.e., S=1.

In Sec. IV numerical simulations are presented for large
lattice sizes and with configurational correlations, i.e., 8> 1.
In Sec. V the conclusions of the present paper are summa-
rized.

II. EXACT SOLUTION FOR SMALL LATTICES AND
ARBITRARY 3 VALUES

In a previous paper [11,12] we derived analytical expres-
sions to describe the average number of attempts (1) until
the jamming state when small lattices (3X4,3X5) are
ceaselessly bombarded by B-bell (8=2) particles. The goal
of the present paper is to investigate this property for very
large lattices M X N by computer simulations.

To evaluate (mﬁ> on small lattices it was necessary to
previously identify all the different microstates that can be
distinguished with 1,2,3,..., adsorbed particles until the
jammed state. The number of microstates increases very fast
as the lattice size increases. For example, Fig. 1 shows those
18 microstates found for trimers (8=3) on a 3 X5 lattice.
The asterisk indicates a jamming microstate. Figure 2 shows
the complex branched structure generated by the intercon-
nected microstates with the corresponding probabilities to
pass from one to another or to remain in a given microstate.
There are two ways to come into the branched structure,
either through microstates A or B with probabilities 1/2 in
each case. Once in microstate A we can go on to C,D,E, or
F with probabilities 4/60, 8/60, 8/60, and 12/60, respec-
tively, and there is a probability 28/60 to remain in A. An
analogous procedure can be followed if we start from B. This
“diffusion” probability process ends up when we arrive at the
sink microstates (or jamming) identified by K*, P*, and R"
with probabilities %, %, and % These probabilities were
found by developing a branch counting probability approach
for this random sequential process [12]. The method allows
an easy evaluation of the probability of observing the differ-
ent jammed microstates, once the branching structure formed
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FIG. 1. The 18 microstates (A,B,C,...,I,J,...,0",R") found
on a 3 X5 lattice. The asterisk indicates a jamming microstate.

These probabilities, together with their corresponding
jammed coverages %, 1%, and 1 for K, P*, and R, respec-
tively (see Fig. 1), enable us to find the average saturation
coverage when a 3 X5 lattice is ceaselessly bombarded by
trimers. At the jamming limit we found a coverage value

(O,

3129 41073 5369 21761

P T )

(Oy=oo+ 2 + = .
5704 54928 5616 24640

The average number of attempts from the i-microstate m;
until the corresponding jammed microstates K, P*, or R" is
a summation of probabilities on a branched structure. Let us
see how this summation is if we wish to evaluate m,

28 4 8 8 12
my=1l+—my+—mc+—mp+—mp+—mp. (2)

60 60 60 60 60

In an analogous way m, mp, mg, mp should be evaluated

38 2 4 12
me= 1 +&n’lc+ 5”1]4‘ @m‘]‘l‘ &mL, (3)
6
mg= 1+ @mE, (5)
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46 4 4 6
%mF+ &mL+%mM+%mN. (6)

mF=1+

The procedure should be applied now to evaluate m;, my,
my, my,, and my. If this branching method is repeatedly ap-
plied we arrive at the result mA:% ~22.087---. In an
analogous way, if we come into the branched structure
through microstate B we find that mBz% ~27.873--.

Finally, the average number of attempts until the jamming
state (mg_3) is reached on a 3 X5 lattice is

1152271

1
(mps) =1+ Jlmy+mgl=—r ==

~25980---. (7)

If the average number of adsorption attempts {nng) is nor-
malized by (M X N)/fB, we obtain the average number of
Monte Carlo steps (S .1}y for lattice saturation. (Sgysn
is then defined as

<Sﬁ>M><N= B<m3>/M XN. (®)

By defining a Monte Carlo step as M X N/ attempts to
fill the lattice, we imply that the average occupation number
per lattice site is equal to one.

III. EXACT SOLUTION FOR =1 AND ARBITRARY
LATTICE SIZES

To investigate the particular case of single particles (sp)
that is, particles that require a single adsorption site (8=1)
and that upon the collision with the lattice are irreversibly
adsorbed, we consider a two-dimensional lattice with n ad-
sorption sites [13]. Without loss of generality we can con-
sider a square lattice n=M X N. The results can be extended
straighforwardly to lattices of an arbitrary symmetry (hex-
agonal, honeycomb, etc.) because with this kind of particle
there is no configurational correlations.

Figure 3 shows the chain of configurations that results in
a sequential filling process. Configuration 1 [C(1)] repre-
sents the n possibilities to place the first particle on the lat-
tice, all of which are equivalent. For the present purposes
there is an equivalence between occupied and unoccupied
lattice sites, a property that is absent when linear particles
with 8>1 are considered. There are n—1 possibilities to
place the second one and to arrive at Configuration 2 [C(2)]
and one possibility to remain in C(1). In general there will be

n-2,n=-3,...,n—(i—1),...,1 possibilities to place the
third,...., fourth,... ith,...., and nth particles, respectively,
and to arrive at C(3),C(4),...,C(i),...,C(n)". Consequently
there will be 2,3,....,i—1,...,n—1 possibilities to remain

in C(2),C(3),...,C(i-1),...,C(n—1). The asterisk identi-
fies the final configuration, that is, when the surface is com-
pletely saturated.

In Fig. 3 the rings are linked by the probability p(i—i
+1) to arrive at C(i+1) from C(i), see Eq. (9). Figure 3 also
shows the probability p(i — i) to remain in the same configu-
ration, see Eq. (10).
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n—i

pli—itl)="— (9)

i
pli—i)=— (10)
n

The average number of adsorption attempts, m;, from the
configuration C(i) until the saturated configuration C(n)", is

calculated as

+my iy (11)

n
my_;="
1

with the boundary condition m,,=0.
The average number of adsorption attempts from C(1)
until lattice saturation will be

n-1

m,:nzl.. (12)

i=1 1

At configuration C(1) we arrive in just one step with
probability one, therefore the average number of adsorption

1/n 2/n

1 (n-1)/n
(s0) == ()=
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FIG. 2. The branched structure
generated by the interconnected
microstates with the correspond-
ing probabilities to pass from one
to another or to remain in a given
microstate. From Ref. [12].

attempts (mg) from C(0) (the clean lattice) until saturation,
C(n)", will be

n

<m/3:]>= L+m, =n2

i=1 1

L (13)

If the average number of adsorption attempts (m4_;) from
C(0) to C(n)" is normalized by the number of adsorption
lattice sites n=M X N, we obtain the average number of

mp=1) . .
Monte Carlo steps (Sp_1)yxn= 35y for lattice saturation

MXN

1
<Sﬁ:1>MXN= 2 ; (14)
i=1

If the number of adsorption sites is very large, then the
summation can approach In(M X N). Therefore the average
number of Monte Carlo steps to saturate a lattice of any
symmetry, with single particles, is an extensive quantity
given by the following equation

(Sp=tmxny = In(M X N). (15)

(i+1)/n {n-1)/n

(n-iyn 1/n
—= (o)== o)) (o)

FIG. 3. The sequential adsorption process of single particles as a chain of configurations. p(i —i+ 1) links the rings and is the probability
to arrive at C(i+1) from C(i). p(i—i) is the probability to remain in the same configuration. Ref. [13]
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FIG. 4. (a) Average number of attempts, in Monte Carlo steps
(Sguxn- until the jamming state, against the log;o(M X N). (b) De-
pendence of (S 1)yxn/{Sg=1)yxn on log;o(M X N), see Eq. (16).
Circles: dimers, Triangles: trimers, Squares: tetramers. The dashed
line is the exact solution for monomers, Eq. (14).

IV. NUMERICAL SIMULATION FOR ARBITRARY f8
VALUES AND ARBITRARY LATTICE SIZES

We have simulated the random sequential filling process
of a two-dimensional lattice space with periodic boundary
conditions, with dimers, trimers and tetramers. Figure 4(a)
shows the average number of attempts, in Monte Carlo steps
(Sghmxn- until the jamming state is attained plotted against
the log;o(M X N).

For comparison purposes in the same figure we include
the corresponding values for single particles derived from
Eq. (14), where the linear behavior is a consequence of Eq.
(15).

Figure 4(b) shows the dependence of

<£8>l>ﬂvvslof_;loM><N. (16)

(Sp=Daxn
Dimers, trimers, and tetramers seem to approach a com-
mon behavior for large lattices. On the other hand, from the
analysis made on small lattices we realized that the proce-
dure that enables us to find {(m ﬁ>, B>1 keeps a close resem-
blance to processes of diffusion on a fractal structure towards
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FIG. 5. (a) Dependence of log;o({Sg=1)mxn/{Ss=1)mxn) ON
log,o(M X N), see Eq. (17). (b) A closer view of the linear behavior
observed in Fig. 5(a). Circles: dimers, Triangles: trimers, Squares:
tetramers.

the jamming microstates. We therefore seek a scale invari-
ance dependence of the LHS of Eq. (16) on the lattice size
M X N such as

M%[MXN]Q. (17)
(Sp=1)mxn

Figure 5(a) shows a log,g—log;y plot of Eq. (17). A
power-law behavior is observed at lattice sizes M X NZ 104,
as well as a remarkable parallelism for the three kinds of
particles. Figure 5(b) shows a closer view of the linear be-
havior when the lattice size is increased even 256 times.
From these simulations, a scaling exponent «
=0.017+0.001 is determined, independent of B (8>1).

From the exact analysis made with B-bell particles (with
B>1) on small lattices, we also observe that the number of
ways to come into the branched structure and the number of
jamming microstates increase as the lattice size increases
(see Fig. 2). Computer simulations reveal that as the lattice
size increases, the coverage distribution values of the jam-
ming microstates become strongly peaked at the average
jammed value (6)y; .
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V. CONCLUSIONS

In the present paper we investigated the average number
of attempts (Sg))/y until saturation (in Monte Carlo steps)
when a square lattice M X N is ceaselessly bombarded with
B-bell particles, S=1. When that average value is normal-
ized with the corresponding single particle average [LHS of
Eq. (16)], a scale invariant behavior is revealed with a scal-
ing exponent @=0.017 independent of B (B>1). The
branching characteristics governing the sequential random
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adsorption of B-bell (8>1) particles (which is a conse-
quence of configurational correlations), see Fig. 2, suggest
the existence of scaling properties in the RSA process.
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