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We performed extensive simulations accompanied by a detailed study of a two-segment size random se-
quential model on the line. We followed the kinetics towards the jamming state, but we paid particular attention
to the characterization of the jamming state structure. In particular, we studied the effect of the size ratio on the
mean-gap size, the gap-size dispersion, gap-size skewness, and gap-size kurtosis at the jamming state. We also
analyzed the above quantities for the four possible segment-to-segment gap types. We ranged the values of the
size ratio from one to twenty. In the limit of a size ratio of one, one recovers the classical car-parking problem.
We observed that at low size ratios the jamming state is constituted by short streaks of small and large
segments, while at high values of the size ratio the jamming state structure is formed by long streaks of small
segments separated by a single large segment. This view of the jamming state structure as a function of the size
ratio is supported by the various measured quantities. The present work can help provide insight, for example,
on how to minimize the interparticle distance or minimize fluctuations around the mean particle-to-particle
distance.
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I. INTRODUCTION

Since the 1939 paper by Flory �1�, for the deposition of
dimers on lattices, and the 1958 paper by Rényi �2–4�, for
the deposition of segments on a line, the random sequential
adsorption �RSA� model has become a paradigm for the
study of many natural phenomena, not only in the traditional
area of physical chemistry �reaction in polymer chains,
chemisorption, colloids, etc.�, but also in the less traditional
areas such as biology, ecology, and sociology �5–10�. For
instance, the use of RSA to determine the limiting coverage
on surfaces requires an uniform deposition from stabilized,
diluted suspensions of particles sized from 100 Å up to a
micron by convective flow �10�. Actual objects involve pro-
teins and submicron colloidal particles �11�. Recently, ex-
perimental interest has also included deposition on patterned
surfaces, prepared by lithographic methods �12�, and some
theoretical work has been also performed �13,14�. The basic
dimer deposition model has suffered several extensions and
generalizations, namely, cooperative sequential adsorption
with adsorption rates dependent on the local environment
�5�, inclusion of relaxational mechanisms such as detach-
ment �15,16� and diffusion �17,18�, and multi-layer deposi-
tion �19,20�. Also, the RSA model and its extensions have
been studied in one �21–34� and two dimensions
�25–27,29,30,35–37� either in the continuum and lattice ver-
sions. More extended accounts can be found on recent re-
views by Privman �6,7,9,10� and Evans �5�.

Quite recently, interest in the field has shifted towards the
competitive deposition of mixtures of segments with differ-
ent sizes on the line, with some controversial results �32,34�.
Apart from issues concerning the competitive deposition and
consequent adsorption of particles at interfaces, there is a

strong motivation for the study of the resulting “patterned”
structure, either induced by the kinetics of deposition �13� or
by more controlled means, e.g., by patterning the surface
available for deposition �14�. In this paper, we focus our
interest on the study and characterization of the interparticle
distance distribution functions of binary mixtures in one di-
mension. We were, thus, able to perform a more detailed
study of subtle correlations developed during deposition, by
measuring not only the time dependence of the coverage, but
also, more refined quantities, such as the distribution func-
tions of the distance between particles. From these basic
measurements of particle-to-particle distance at the jamming
state, we studied the size ratio dependence of the first four
cumulants. More specifically, since the third and fourth cu-
mulants are straightforwardly related to the skewness and
kurtosis, respectively, we actually used the latter quantities in
order to characterize the gap-size distribution functions. We
observed nontrivial effects, as we varied the size ratio of the
segments being deposited, and we were able to explain phe-
nomenologically some of the qualitative features observed in
our simulation. Therefore, it is justifiable to put some effort
to understand such a clean study case, where one can learn
the actual effects leading to the cooperative behavior induced
by deposition towards the jamming state. Moreover, despite
our model being one-dimensional, our analysis can serve as a
guide to interpret and/or compare with similar results in
higher dimensions. The paper is organized as follows: we
present the model and the particulars of the simulations in
Sec. II. In Sec. III, we present our results and discuss them.
Finally, we present our conclusions in Sec. IV.

II. THE MODEL AND THEORY

We consider the competitive deposition on the line of seg-
ments of two different sizes, namely short segments, which
we denote as A segments, and long ones, which we denote as
B segments, under the condition that they must not overlap
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with each other upon adsorption, and therefore, mimic an
excluded volume, short-range interaction. The fraction of the
line occupied by the adsorbed segments defines the coverage.
We notice that it is possible to rescale, without loss of gen-
erality, the length scale of the system so that A segments are
of unit length, while the size of B segments is R. In this
respect, one can regard the ratio of the length of B segments
relatively to the length of A segments as the size ratio

R =
Length of a B segment

Length of an A segment
. �1�

The deposition flux represents the number of incoming seg-
ments per unit length �in one dimension� and per unit time.
Let us denote by � the corresponding deposition flux of A
segments and by � that of B segments, therefore, having a
total incoming flux of segments, �+�. The probability of
having an A segment attempting deposition on the line dur-
ing an interval of time dt is

pA =
�

� + �
, �2�

while that of a B segment is

pB =
�

� + �
, �3�

i.e., pB=1− pA as expected.
Adsorption on the line can only take place if the incoming

particle does not overlap with a previously adsorbed seg-
ment, thus mimicking an excluded volume, short-range inter-
action. To make a more straightforward comparison with ex-
perimental results, we measure time in terms of the number
of layers of segments, which attempted deposition whether
these segments actually adsorb on the substrate.

We performed a series of Monte Carlo simulations for
various values of the size ratio and equal fluxes of incoming
segments. To reduce the uncertainties in the various quanti-
ties, it is more relevant to increase the size of the system than
the number of samples. Therefore, to characterize the jam-
ming state, we simulated a system size of 107 units and gen-
erated 102 samples. Whenever we followed the time depen-
dence, we used a different algorithm to simulate, which is
computationally more demanding both in time and allocated
memory. Consequently, the simulated system size is smaller,
104, and we let time evolve up to 100 units, and obtained 102

samples. As soon as the total size of the segments, which
attempt adsorption on the line, equals the size of the system,
we increase time by one unit, regardless of the fact that the
segments actually adsorb, or not.

We now present some useful definitions and relations. For
the sake of simplicity, the definitions are valid for the jam-
ming state. However, extension to intermediate states at spe-
cific times only requires the explicit time dependence taken
into account and also set the upper limit of integration to
infinity to account for gap sizes of all lengths. The probabil-
ity distribution of empty space is defined as

P0�x�dx

=
Number of empty intervals of size x within dx

Total number of empty intervals
dx ,

�4�

in the limit of dx being an infinitesimal quantity and the
number of ensembles going to infinity. Thus, P0�x�dx for the
jamming state has the property

�
0

1

P0�x�dx = 1. �5�

Therefore, the jamming coverage is given by

�J = 1 − �
0

1

xP0�x�dx = 1 − �x�0. �6�

Discriminating all gaps between pairs of consecutively
adsorbed segments by AA, AB, BA, and BB and defining
density distribution functions Pb�x�, with b
� �AA ,AB ,BA ,BB	, one obtains the relation

P0�x� = PAA�x� + 2PAB�x� + PBB�x� , �7�

where we exploited the fact PAB�x�= PBA�x� for the present
random sequential adsorption model. Note from Eqs. �5� and
�7� that the Pb�x� are not normalized. Keeping in mind the
above definitions, it is now straightforward to reckon higher
moments of the gap-size distribution functions, defined by

�xn�a =

�
0

1

xnPa�x�dx

�
0

1

Pa�x�dx

, �8�

with a� �0,AA ,AB ,BA ,BB	. Using Eq. �7� one can relate
the moments of the gap distribution functions with the cor-
responding moment of the global distribution function given
by Eq. �8� yielding

�xn�0 = �xn�AA�
0

1

PAA�x�dx + 2�xn�AB�
0

1

PAB�x�dx

+ �xn�BB�
0

1

PBB�x�dx , �9�

defined for all values of n=0,1 ,2 , . . .. We also compute the
cumulants, �m

a , of a distribution function defined as

ln Ga�k� = 

m=1

�
�ik�m

m!
�m

a , �10�

where Ga�k� is the so called characteristic function defined
by �38�
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Ga�k� = �eikx�a =

�
0

1

eikxPa�x�dx

�
0

1

Pa�x�dx

. �11�

Therefore, from Eqs. �8�, �10�, and �11� one derives the first
four cumulants as

�1
a = �x�a, �12�

�2
a = �x2�a − �x�a

2, �13�

�3
a = �x3�a − 3�x2�a�x�a + 2�x�a

3, �14�

�4
a = �x4�a − 4�x3�a�x�a − 3�x2�a

2 + 12�x2�a�x�a
2 − 6�x�a

4,

�15�

where �1 is just the mean value and �2 is the variance. The
third and fourth cumulants are used in the definition of the
skewness

Sa =
�3

a

��2
a�3/2 , �16�

and kurtosis

Ka =
�4

a

��2
a�2 , �17�

respectively �38�.

III. RESULTS AND DISCUSSION

We start by presenting our results with a study of the
coverage for the particular case of equal fluxes of incoming
segments. In this respect, our study represents the particular
case of q=1/2 of reference �34�, but with a wider range of
size ratios. In fact, results presented in �34� are valid for
values of R�2. Our study also includes quantities, such as
the dispersion, the fraction of empty spaces, etc., which are
not possible to be computed by their method. In Fig. 1�a�, we
show the time dependence of the coverage, ��t�, for some of
the values we simulated of the size ratio, R. However, we
performed simulations for a wider range of values of the size
ratio, namely for values of 1, 1.05, 1.1, 1.2, 1.25, 1.3, 1.4,
1.5, 1.6, 1.75, 2, 2.1, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5,
5, 5.5, 6, 7, 8, 10, 12, 14, 16, 18, and 20. Notice that our
model for a size ratio of one boils down to deposition of
segments of unit size on the line. The value of
74.759 58% ±0.0067% for the jamming coverage is quite
close to 74.759 792 02%, first obtained by Rényi and subse-
quently calculated with larger precision by Blaisdell and So-
lomon �2,32,34,39�.

The jamming coverage increases monotonically as a func-
tion of the size ratio, as shown in Fig. 1�b� and Table I. This
result is not entirely surprising, since for equal relative fluxes
of incoming segments and for large, asymptotic values of the
size ratio, a stretch of the line is either fully covered by a
large segment or paved by the small, unit size, segments with

an upper limit of the coverage given by the above Rényi
value. As both segment sizes can attempt deposition with
equal probability, we get 1 /2�1+0.7476��87.38%. How-
ever, this upper limit is not attained as one increases the
value of the size ratio: the limiting value of the coverage
around 84.5%, obtained for a size ratio of 20, remains lower
as one can observe in Fig. 1�b�.

In order to better analyze the structure of the jamming
state, we now proceed to characterize the fraction of empty
space distributed in terms of the different pairs of segments
as we vary the size ratio. In Fig. 2�a�, we plot the fraction of
the substrate left empty at the jamming state as a function of
the size ratio for each pair of consecutive segments, namely
of type AA, AB, and BB. In Fig. 2�b�, we also present the
corresponding normalized population of the gap types. Con-
sequently, in the latter case, the sum of the contributions of
the four gap types adds up to the unit for every value of the
size ratio. We observe that the fraction of empty space due to
the AA gaps increases monotonically with the size ratio. This
can be understood by considering the significant drop in the
population of BB gaps at the jamming state as the size ratio
increases, since these gaps must be smaller than unit. The
probability of having two consecutive B segments adsorbed
on the line rapidly decreases with the size ratio. Not only
does the adsorption of both large segments imply a clean
substrate, for example by the absence of smaller segments

FIG. 1. Coverage dependence on the size ratio for equal depos-
iting fluxes of each segment size. �a� Plot of the coverage up to 100
time units for various values of the size ratio, namely, 1, 1.1, 2, 4,
and 10. �b� Plot showing the jamming coverage dependence on the
size ratio.
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previously adsorbed on the line, but also both large segments
must adsorb at a distance smaller than unit to prevent an A
segment to fit in. The latter situation becomes less and less
probable as the size ratio increases, and, to reach the jam-
ming state, the leftover empty space between these large seg-
ments must be filled with segments of unit size, thus, con-
tributing to a higher fraction of empty space associated with
AA gaps and, consequently, to a higher value of the cover-
age. The slower decrease of the AB gaps population and of
the corresponding coverage indicates a jamming state consti-
tuted by alternating streaks of A segments separated by a
single B segment. This argument is further substantiated by
the strong decay of the fraction of empty space associated
with the BB gaps for increasing values of the size ratio. This
is also corroborated by the smoother decay of both the frac-
tion of empty space and of the population of the AB gap

type, due to the breakdown of the BB gap type as the size
ratio increases. Finally, it can be seen in Fig. 2�b� that as the
size ratio diverges, the relative population of AB and BB gap
types as compared to the corresponding population of the AA
gaps becomes less and less relevant, therefore leaving, in this
limit, long streaks of A segments.

In Fig. 3�a�, we show the distribution functions, P0�x�,
PAA�x�, PAB�x�, and PBB�x�, at the jamming state, for a size
ratio of one. Of course, at this size ratio �R=1�, all gap types
are equal as there is a single segment size. Therefore, one
expects, as shown in Fig. 3�a�, to observe the collapse of the
PAA�x�, PAB�x�, and PBB�x�, onto a single curve. The P0�x�
distribution function also satisfies the relation P0�x� /4
= PAA�x�= PAB�x�= PBB�x� in agreement with Eq. �7� for a
size ratio of one. In the case of part �b� of the same figure, we
merely changed the value of the size ratio to 2.0, thus break-
ing the symmetries between the various gap types. Once
again, adding the various gap distribution functions, for ev-
ery value of x, accordingly to Eq. �7�, actually reproduces
P0�x�. As compared to part �a�, the AA gap type increases its
dominance, as pointed out above, while the AB gap slightly
lowers its contribution. The BB gap significantly drops its
influence, because it becomes less probable to have consecu-
tive deposition of B segments with gap lengths smaller than
unit.

TABLE I. The table presents the coverage, �J, as a function of
the size ratio, R, while � represents the associated error. These
results are for a system size of 107 and for 102 samples.

R �J �

1.00 0.747 595 8 0.000 067

1.05 0.754 475 3 0.000 062

1.10 0.759 982 9 0.000 063

1.20 0.768 365 2 0.000 058

1.25 0.771 635 8 0.000 063

1.30 0.774 437 7 0.000 054

1.40 0.778 994 6 0.000 063

1.50 0.782 552 0 0.000 064

1.60 0.785 434 9 0.000 053

1.75 0.789 001 6 0.000 066

2.00 0.794 103 8 0.000 058

2.10 0.796 141 4 0.000 053

2.25 0.799 166 1 0.000 058

2.50 0.803 644 4 0.000 060

2.75 0.807 399 6 0.000 065

3.00 0.810 517 2 0.000 066

3.25 0.813 185 0 0.000 060

3.50 0.815 559 0 0.000 065

3.75 0.817 667 5 0.000 073

4.00 0.819 550 0 0.000 070

4.50 0.822 754 0 0.000 063

5.00 0.825 366 7 0.000 067

5.50 0.827 584 8 0.000 074

6.00 0.829 448 1 0.000 076

7.00 0.832 453 7 0.000 076

8.00 0.834 772 9 0.000 094

10.00 0.838 111 2 0.000 097

12.00 0.840 369 5 0.000 10

14.00 0.842 060 3 0.000 11

16.00 0.843 318 7 0.000 13

18.00 0.844 318 6 0.000 12

20.00 0.845 137 7 0.000 12

FIG. 2. In both plots, one has the AA, AB, and BB gap types
represented by circles, squares, and triangles, respectively. �a� Frac-
tion of available empty space, at the jamming state. �b� Normalized
population of gaps at the jamming state. In the insets the size ratio
varies between 1 and 20. Please, refer to the text for further details.
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Now, we proceed to the analysis of quantities involving
cumulants up to the fourth order, more specifically, the mean
distance, dispersion, skewness, and kurtosis, as defined in
Eqs. �12�–�17�. For each of the latter quantities, we studied
their dependence on the size ratio at the jamming coverage
limit as shown in Fig. 4. Both the AA and AB gap types have
rich nonmonotonic behavior, for the mean gap size, disper-
sion, skewness and kurtosis. For example, the minimum val-
ues of the gap size for the AA and AB gaps are not coinci-
dental, as the minimum of the AA gap occurs at a slightly
higher value of the size ratio. The behavior of the dispersion
shows the presence of both a minimum and maximum val-
ues. However, the opposite happens for the maximum value:
the value of the size ratio at which it occurs is slightly lower
for the AA gap type. The minimum value occurs at the same
value of R for these two gap types, within the error bounds.
The skewness shows a maximum occurring at the different R
values, namely, 1.34 and 1.29 for the AA and AB gap types,
respectively. The kurtosis reveals a single maximum for
these two gap types, once again noncoincidental in their size
ratio value, with the maximum of the size ratio of the AA gap
slightly above, than the corresponding one found for the AB
gap. All these values of R are summarized in Table II. Re-
garding the BB gap type, one finds a less rich behavior as

FIG. 3. Gap-size distribution functions at the jamming state: �a�
For a size ratio of one, the solid curve represents P0�x�, while the
remaining AA, AB, and BB gap types are identical, and therefore
fall onto a single curve. �b� For a size ratio of 2.0, one observes the
splitting of the various gap types. Please, refer to the text for further
details.

FIG. 4. Plots involving cumulants up to the fourth order of the
gap-size distribution functions for each gap type as a function of the
size ratio. We use the same legend as in Fig. 2 �a� Average distance
between pairs of segments. �b� Dispersion of the distance between
pairs of segments. �c� Skewness. �d� Kurtosis.
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compared with the other gap types. For this gap type the
mean gap size strictly increases monotonically with R, while
it decreases strictly monotonically for both the skewness and
kurtosis. The exception to this behavior for the BB gap re-
gards the dispersion, where it shows a minimum for R
=1.01 as shown in Table II and Fig. 4�b�. Finally, the disper-
sion of both the BB and AB gap types intersect at R=6, as
shown in the inset of Fig. 4�b�.

If one were to solely deposit large segments, then all gap
sizes smaller than R would be present. Since we are con-
comitantly depositing unit segments, all gap sizes larger than
unit must disappear at the jamming state. As soon as the
typical size of gaps drops below R, the large segments stop
adsorbing on the line. The smaller, unit segments, contrary to
larger segments, have to fit into all available space, i.e., in all
gaps larger than unit. For size ratios R�1.55 the population
of BB gaps remains significant, as compared to the AA gap
one, with the consequent formation of B segments gap sizes
close to unit. Some of these gaps are really close to unit, but
strictly larger than unit, in size, and we call these events snug
fits. As R increases the number of BB gaps decreases, to form
AA and AB gaps, therefore, increasing the probability of snug
fit events. The probability that for large values of R BB gaps
form a snug fit also decreases. Consequently, the importance
of snug fits decreases for large values of R in agreement with
Fig. 4, where one observes monotonic behavior of the vari-
ous cumulants in this regime. However, the large number of
these events for values of R�1.55 accounts for such rich
behavior of the cumulants up to the fourth order. For ex-
ample, the existence of minimum values of the AA and AB
gaps sizes can now be understood as events from late stage
kinetics close to the jamming state. The same argument also
applies to the minimum values of the dispersion, since this
events tend to lower the uncertainties of adsorbed segments.
More suble, it is the presence of maximum values for the

both the AA and AB gaps and a minimum of the BB gaps for
values of R�1.05. Since the difference in size of both seg-
ments is small, both segment sizes compete until coverage
values become close to the jamming state, thus leading to
snug fit events of the BB gap. This competition leads to
lessen the uncertainty in the BB gaps, but it increases the
uncertainties of the AA and AB gap types. For values of R
	1.55, the significant drop in the population of BB gaps can
be understood of the early onset of a mean gap size smaller
than R at low coverage values, which effectively blocks the
adsorption of large segments. Consequently, one expects a
flatter distribution function of the BB gap type with increas-
ing values of the size ratio, i.e., the net effect of increasing
the size ratio is to diminish the asymmetry of the BB gap
distribution function. The monotonic behavior of the BB gap
for large size ratios �R
1.55� stems from the absence of a
competing mechanism. Finally, the nonmonotonic behavior
of the remaining gap types is due to snug fit events, which
the latter tend to askew the corresponding gap-size distribu-
tion functions by favoring small gap sizes.

The jamming state for large size ratios, follows, therefore,
the picture of alternating streaks of A segments interfaced
with a single B segment for large values of the size ratio. The
presence of such streaks of A segments interfaced with a
single B segment, prevents the AB gap population to de-
crease slower than that of the BB gap one. The snug fits
events also tend to favor small gap sizes, and this effect
makes the distribution function less flat and more askewed,
thus increasing the value of the kurtosis and skewness of
both the AA and AB gaps. �Figs. 4�c� and 4�d� and Fig. 3�

IV. CONCLUSION

We analyzed in detail the jamming structure of a model of
random sequential adsorption on the line with two-segment

TABLE II. The table summarizes the estimated values of R, where the first four cumulants take maximum
and minimum values, all measured with an error of ±0.005. The corresponding values of the cumulants are
also included.

Gap types Minimum Maximum

R Value R Value

Distance AA 1.31 0.292 489 5

AB 1.22 0.329 130 2

BB �a� �a�

Dispersion AA 1.55 0.268 166 2 1.02 0.282 550 7

AB 1.55 0.278 869 2 1.05 0.282 559 3

BB 1.01 0.281 573 0 — —

Skewness AA 1.34 0.922 795 0

AB 1.29 0.725 340 1

BB �a� �a�

Kurtosis AA 1.40 −0.229 040 2

AB 1.36 −0.628 134 0

BB �a� �a�
aThe BB gap is strictly monotonic.
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sizes depositing with equal fluxes. The structure of the jam-
ming state is determined by the population of the various gap
types, namely, the AA, AB, and BB gap types. For large
values of the size ratio, i.e., for size ratios greater than 1.55,
snug fits become less significant, and the average distance,
dispersion, skewness, and kurtosis monotonically approach
their asymptotic values. For values of the size ratio below
two, the behavior of the above quantities for the AA, and AB
types are nonmonotonic due to the presence of snug fit
events. The jamming state at values of R above 1.55 is char-
acterized by streaks of A interrupted by a single B segment.
At sizes ratios smaller than 1.55 a rich, nonmonotonic be-
havior of the above quantities plays develops due to the in-
terplay provided by snug fits. From an experimental point of
view, the study provides to some extend, among others, the

insight on how to tune up the mean interparticle distance or
how to minimize the flutuactions of the interparticle distance
around the mean value.
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