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We study the front characteristics of the A+B— C reaction-diffusion system with initially separated reac-
tants in disordered media, exemplified by two-dimensional (2D) percolation. We investigate the front charac-
teristics as a function of the disorder degree in this system, in particular close to criticality. We show that the
front width exponent is larger than the mean-field (MF) exponent of 1/6, and at criticality it approaches 1/4,
which is the one-dimensional (1D) exponent. We show that previous predictions in the literature for the 2D
percolation cluster at criticality are wrong. The results are discussed in the context of other systems with

attenuated transport where the front width exponent is smaller than the MF exponent. We also study the
short-time behavior of the front width exponent, and discuss the validity of the scaling relations between the

relevant exponents.
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I. INTRODUCTION

Is anomalous diffusion on a regular lattice equivalent to
regular diffusion on spatially disordered substrate? It is com-
monly believed that the answer to this question is positive. In
this work we show a case where this is not necessarily true.
The system under study is the A+B— C reaction-diffusion
system with initially separated components on the two-
dimensional (2D) percolation system. Following the pioneer-
ing work of Gélfi and Racz (GR) [1], such systems have
attracted great interest, both theoretically [2-18] and experi-
mentally [19-22]. When the two reactants are initially sepa-
rated in space, the reaction takes place in a localized region
where the two species meet, exhibiting a dynamic reaction
front with rich spatio-temporal behavior. At the mean-field
(MF) level, this process is described by the reaction-
diffusion equations for the A and B concentrations, p,(x,?)
and pg(x,1),

pa= DAVZPA — kpaps,

pp= DBVZPB — kpaps, (1)
where D4, Dy are the diffusion constants and k is the reaction

rate constant. These equations are subject to the initial sepa-
ration condition

pA(x’O) :AOH(_ )C), pB(x’O) :BOH(X)’ (2)

where H(x) is the Heaviside step function and A, B, are the
initial densities. This initial condition is one-dimensional,
since the separation is along the x coordinate, but the system
may be of a higher dimension. The local production rate of C
is given by R(x,7) =kp,pg, which, asymptotically, is assumed
to obey the scaling form [1],

X—x t))

R(x,t) = h(t)S( e

h(r) ~ B, (3)

In these expressions, distances x are measured relative to
the reaction front center x/(r) ~ "2, which is the point where

w(t) ~ 1,
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R(x,1) is maximal. The width of the front, w(z), is the second
moment of R(x,) and the height A(z) is the value of R(x,?) at
xy (Fig. 1). GR [1] showed that the MF exponents, i.e., above
the upper critical dimension d,=2 (Ref. [4]), are

a=1/6, B=2/3. (4)

These results have been confirmed experimentally in a hori-
zontal glass reactor [19] and a gel-free quasi two-
dimensional (2D) system [22].

The width exponent @=1/6, which was argued [1] to be
much smaller than 1/2, the exponent associated with length
scales in standard diffusion problems, introduces a new
length scale into this problem. Therefore it has been consid-
ered in many publications as the basic quantity for charac-
terizing this reaction-diffusion system with initially separated
reactants. Below the critical dimension, i.e., for d <2, in par-
ticular in one dimension (1D), the properties of the reaction
front are dominated by fluctuations tending to increase its
width. The exact value of the width exponent in 1D has been
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FIG. 1. A schematic sketch of the local production rate R(x,?).
The global production rate R(z), which is the integral of R(x,7), is
the area under the curve. In regular systems, it can be approximated
by the width-height product (shaded rectangle).
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the issue of a controversy in the literature [7-12]. However,
it is now accepted that the width (@) and height (8) expo-
nents in 1D are

a=1/4, B=3/4. (5)

The exponents in Egs. (4) and (5) obey the scaling rela-
tion assumed by GR [1],

a-B=-1/2, (6)

where the right-hand side is the exponent of the global
production rate of C in the system, formally defined as
R(t)=[7 R(x,t)dx. The scaling relation in Eq. (6) results
from approximating the production rate within the reaction
zone by the multiplication of the width and the height of the
reaction front w(r)h(z) (Fig. 1). It is valid when R(x,r) is
symmetric around its center, and may not be always valid.
Indeed, the above results have been obtained for ordinary
diffusion in regular space. However, diffusion in a real sys-
tem may be avoided in certain points, due to spatial defects
or contaminations. It is therefore interesting to find out how
such impurities influence the properties of the reaction-
diffusion front. Moreover, the theoretical difference between
ID and 2D (MF) may be relevant when a spatial confine-
ment, such as disorder, is introduced into a 2D system. In
that case, the dimension may be effectively lower than the
critical dimension d,.=2.

Reaction-diffusion fronts in such systems have been par-
tially considered in the literature [3,13-15]. In Refs. [3,14],
some results were presented for a fractal substrate, specifi-
cally for the infinite percolation cluster in 2D close to criti-
cality. The results were expressed in terms of d,,, the anoma-
lous diffusion exponent, defined by the mean displacement
of a particle r~ 4w rather than r~ '/ for normal diffusion.
For the global production rate R(r), it was argued [3,14] and
supported numerically that R(r) ~r1=14)_ This follows di-
rectly from the time derivative of the total number of prod-
ucts up to time ¢, which is assumed to scale as /v [14]. In
Ref. [3], a prediction was made for the width and the height
exponents,

a=1/d,, pB=1. (7)

This prediction was based on the numerical values
a=0.375 and B=0.99, assuming d,,=~?2.88 for this fractal
substrate [15]. Combining this result with the result for R(z),
one obtains the generalization of Eq. (6),

a-B=-(1-1/d,). (8)

However, the prediction of Eq. (7) has a few drawbacks.
First, while the exponent for R(z) [right-hand side of Eq. (8)]
gives the correct result in the limit of a regular system,
d,, =2, the predictions for « and B in Eq. (7) are inconsistent
with the MF results [Eq. (4)] in this limit. Second, the results
were based on only 200 realizations, and, as was pointed out
in Ref. [13], more extensive simulations are needed. It
should be noted, however, that Eq. (7) does predict qualita-
tively that the width exponent « for this disordered system is
larger than the MF value of 1/6.
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FIG. 2. A schematic sketch of the 2D percolation cluster at
criticality with initially separated A, B reactants at t=0. Gray re-
gions represent blocked sites. At criticality, one can observe clusters
of all sizes, only some of them cross the boundary at x=0.

In this paper we study the 2D percolation system, this
time with better averaging and longer times, in the entire
range between order and disorder criticality. We also con-
sider a smaller reaction constant, which allows the investiga-
tion of the short-time behavior [3] as well. Our results show
that the prediction cited in Eq. (7) is wrong, and the width
exponent is limited by the 1D value of 1/4. This means that
the width exponent « is indeed larger than the MF value of
1/6, but is limited by 1/4. We discuss this result in the
context of attenuated transport in other systems embedded in
2D Euclidean space [23-27]. We also obtain an interesting
short-time behavior of a.

In the next sections, we first describe in detail our numeri-
cal methodology, then present the results for the long- and
short-time limits, discuss the validity of the scaling relations,
and conclude with several remarks regarding suggested ex-
periments and possible future work.

II. METHODOLOGY

We carried out a series of Monte Carlo simulations, in a
2D lattice of 300 X 100 sites (Fig. 2). We denote by p the
fraction of free sites in the system, so that g=1-p is the
probability that a given site is blocked. It is well known [26]
that when the fraction of free sites is above the critical con-
centration p,=0.593 (i.e., ¢ <0.407), percolation through the
system is possible. When the free sites concentration is be-
low this value, namely the blocked sites concentration is
above the percolation threshold (¢>0.407), all the clusters
are finite, and percolation between the edges of system is
impossible. At criticality, g=¢q,.=0.407, there is a single infi-
nite cluster, in addition to clusters in all sizes.

The A species were initially placed at x<<150 and the B
species at x> 150. As a result, A+ B reaction is possible only
in those finite and infinite clusters that cross the boundary at
x=0 (Fig. 2). Other isolated clusters of either A or B do not
contribute to the reaction process. All possible sites were
initially occupied and the reaction constant is just the prob-
ability that a reaction occurs when a pair of A and B particles
meet. k=1 means a perfect reaction and we chose k=0.05 to
allow us to study the short-time behavior, still obtaining the
asymptotic behavior in a reasonable time scale (+>k"'). The
diffusivities of the two species were set arbitrarily to D=1,
Dp=0.5.
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TABLE I. Reaction front exponents, as obtained by simulations with ¢=0, compared to the theoretical
MF results for ordered systems, in the short- [3] and long-time [1] limits.

a B Y
Theory Simulations Theory Simulations Theory Simulations
Short time 1/2 0.519 Const. Const. 1/2 0.436
Long time 1/6 0.157 2/3 0.639 -1/2 -0.532
In the simulation, each step is split into a diffusion step III. RESULTS

and a reaction step. In the diffusion step, all the particles in
the system are updated sequentially. Each particle has an
equal probability to stay in its position or to move to one of
the four neighboring sites, regardless whether the site is free
or blocked (“blind ant” scheme [24]). If the chosen site is
blocked, the particle remains in its previous position. There
is no limitation for the number of particles that can occupy a
given site. After the entire lattice is updated, the reaction step
takes place. If an A particle and a B particle are located in the
same site, they react with a probability k. When reaction
occurs, the A and B particles are removed from the system,
and a C particle is created in the same site, contributing to
the spatiotemporal production rate R(x,y;?). The C particle
is not considered further in the diffusion process, and is as-
sumed not to disturb the diffusion of the A and B particles.
The production rate along the x axis, R(x,?), is defined as the
sum over all y values,

R(x,0)= 2 R(x,y;0). 9)

y=—®

This quantity is the basis for calculating the characteristics of
the reaction-diffusion front. The reaction width is the discrete
version of the second moment of R(x,7) around the instanta-
neous position of the front center x;[2,4], and the height /(z)
is simply the value of R(x,?) at x;. In addition, we studied the
global production rate R(z) ~ 1Y, which is the integration over
x of R(x,7). The exponent v is in fact the generalization of
the right-hand side of Egs. (6) and (8).

The reaction rate R(x,7) was traced at specified times and
averaged over 2000 realizations. This number of realizations
was determined by analyzing continuously the deviations in
the calculated reaction characteristics (width, height, etc.) as
the number of realizations is increased. We found that when
the number of realizations exceeds 1700, the relative devia-
tion is less than 1%. Therefore, for maximal reliability, the
results were averaged over 2000 realizations.

Regarding possible finite-size effects, we claim that the
size of our system (300X 100) can be considered as “infi-
nite” in the studied time region. Regarding the x direction,
the active reaction zone (as well as its width) are about 30
times narrower than the system size. Moreover, we found
that the initial A, B concentrations near the system edges re-
main unchanged during the entire simulation time, which is
another indication that the system is large enough. Regarding
the y direction, we have repeated our calculations for sys-
tems of size 300X 300, as well as 300 X 50. The results are
practically the same.

In the limit g—0, i.e., a regular 2D system, we expect to
recover the MF results, since d.=2 is the upper critical di-
mension. The results for the exponents «, B, y compared
with the corresponding theoretical predictions, are summa-
rized in Table 1. Details can be found in Ref. [28]. The cross-
over from the short-time to the asymptotic-time behavior oc-
curs at £ ~k'=100 time steps (k=0.05). The slight
deviations from MF exponents could be attributed to correc-
tions to scaling at the critical dimension. We next studied the
exponents «, B3, y for increasing values of the blocked sites
concentration g, below, at, and above ¢, in both the short-
and long-time regimes.

A. Long-time limit

The results for the long-time limit are shown in Fig. 3.
Each point in these plots is the slope of the log-log plot of
the corresponding measure (width, height, etc.) as a function
of time for a given ¢. The error of the fit of the log-log plot
to a straight line is indicated by the error bars. One can see
that the error increases when the disorder increases, due to
larger fluctuations in the reaction profiles. Above criticality,
i.e., ¢>q.=0.407, fewer A, B clusters around the separation
line x=0 exist. Hence the diffusion will be significantly sup-
pressed and the reaction front properties will be subject to
strong fluctuations. Moreover, above criticality, there exists
no infinite cluster, and the reaction occurs only in the finite
clusters across x=0, until they vanish.

The results shown in Fig. 3 indicate that the exponents
remain unchanged for ¢ < ¢.=0.407, i.e., far from criticality,
since the reaction is still not affected by the constrained
diffusion. Near the critical concentration, usually above
q=0.3, the exponents 3 and 7y sharply decrease as the con-
centration of blocked sites increases, since there is a signifi-
cant decrease in the feasibility of reaction events in the re-
maining unblocked sites. The behavior of the width exponent
« is more interesting. Above ¢==0.3 it increases up to criti-
cality, at criticality a=0.22, and above criticality it sharply
decreases. The approach to criticality of « can be fitted to a
function typical to critical phenomena, a=a.+C(g.—q)"
with C=-0.186+0.087 and v=0.468+0.31. The value of «.
as obtained from this fit is «,=0.229+0.021 which agrees
very well with the value obtained at g=¢,... Similar functions
can be fit to the other exponents [28].

The value of a=0.22, obtained close to criticality, is
larger than the MF value of 1/6, and close to the 1D results
of 1/4. This can be explained by the strong spatial fluctua-
tions in these systems, which result in a much wider reaction
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FIG. 3. The reaction front exponents as a function of the frac-
tion of blocked sites ¢ in the long-time regime: (a) Width exponent
a; (b) Height exponent B3; (c) Global reaction rate exponent y. A
vertical dashed line is drawn at ¢.=0.407.

zone than in MF systems, as the reactants must explore dis-
tant regions in order to find their counterparts for reaction.
This is essentially different from anomalous diffusion (such
as subdiffusion) in free space, where the active reaction zone
is much more localized. Qualitatively, this conclusion could
be drawn from the result @=0.375 that was obtained for
¢=0.4 in Ref. [3]. However, our result for a, which has been
obtained with much better statistics and longer times, dis-
agrees with that value. Rather, it indicates that « goes to the
1D result, 1/4, at criticality. This can be explained by ob-
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FIG. 4. The width and the height of the reaction front as a
function of time, in a log-log scale, for ¢=0.405 (almost at critical-
ity) and k=1. (a) The width obeys w~1¢ with a=0.246; (b) The
height obeys h~r# with 8=0.919.

serving that at criticality, the average number of free nearest
neighbors is about two, such as in 1D, and not four as in free
2D systems. This is another difference between regular dif-
fusion in disordered media and anomalous diffusion in free
space.

In order to verify the value of the exponent « at criticality,
we have performed another set of simulations, in a larger
system (300 X 300), with g=0.405 and with a reaction prob-
ability k=1, where the asymptotic region should set in from
the very beginning. The graph of the width w as a function of
time (in a log-log scale) is presented in Fig. 4(a). The slope is
a=0.246 which is very close to the 1D result of 1/4. The
simulation was run up to O(10%) time steps, when the reac-
tion rate has reduced to less than 107> of its maximal value
and strong fluctuations show up [as shown in Fig. 4(a)].
However, since the reaction width is a much smaller length
scale than the normal diffusion scale, this time limit is con-
sidered asymptotic.

The result > a),r should be discussed in the context of
other nonregular systems in 2D. Intuitively, one could expect
that any attenuation of the transport will results in a growth
of the front slower than MF. Several authors [16—18] have
investigated the properties of the reaction front subject to
various manifestations of anomalous diffusion [23-27].
Araujo [16] studied the case of quenched power-law distri-
bution of transition rates and Koza and Taitelbaum [17] con-
sidered the Sinai walk. Recently, Yuste er al. [18] replaced
the diffusion by subdiffusive motion [27], using a fractional
reaction-subdiffusion equation, in which both the motion and
the reaction terms are affected by the subdiffusive nature of
the process. In all of these works it was found that the width
exponent « decreases as the anomaly grows, compared
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FIG. 5. The reaction front width exponent « as a function of the
blocked site fraction g, in the short-time limit. The exponent de-
creases monotonically for any ¢>0, reaching the value 0.37 at
criticality. A vertical dashed line is drawn at ¢,.=0.407.

to the corresponding normal diffusion. For example, in both
works of Araujo [16] and Yuste er al. [18], a=1/3d,
(d=2), limited by d,,=2 for ordinary diffusion. Following
these results, one could expect that attenuation of the trans-
port in a system embedded in 2D Euclidean space will have
the effect of decreasing the front width growth exponent.
While this is indeed the case for these systems, it is not the
case in others, such as in our system, where the width expo-
nent increases. That means that in the context of the
reaction-diffusion system with initially separated reactants,
there is a difference between attenuation due to anomalous
transition rates and anomaly due to a disordered substrate.
We find this surprising.

In some sense, this observation resembles the issue raised
by Sheu et al. [29,30]. They considered two types of reac-
tions, with and without sources, and showed rigorously that
for one of the cases, A+B — 0 in the absence of sources, the
asymptotic behavior depends not only on the spectral dimen-
sion, which combines inherent transport properties and lat-
tice structure (as commonly believed), but also on the fractal
dimension which represents the structure only.

The result for the height exponent B at criticality is 0.919,
as is shown in Fig. 4(b). This is not very different from the
prediction of Ref. [3], B=1 [Eq. (7)]. For the global reaction
rate exponent y, we obtained the value —0.722. This is not
significantly different from the prediction of Havlin et al.
[14,15] for this exponent when the entire system (and not
only the infinite cluster) is considered,

- (1-1/d,) - (d-dp)ld, =-0.653-0.036 = - 0.689.
(10)

In this expression, d=2 is the Euclidean dimension and
df:91/ 48 1is the fractal dimension. The difference term,
0.036, is due to the reactions in the finite clusters which cross
the x=0 line (Fig. 2), but since these reactions are expected
to vanish relatively early, the main contribution to the front
characteristics is due to the infinite cluster. We found that this
difference has a slight, insignificant effect (not more than
0.02), on the results for the width exponent a.
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FIG. 6. A comparison of @— /3 and 1, as a function of g. The two
values are very close for a small amount of blocked sites, but differ
for a concentration of about 0.4 and up. A vertical dashed line is
drawn at ¢.=0.407.

B. Short-time limit

An interesting behavior of the width exponent o was
found in the short-time limit, where it is shown (Fig. 5) to
decrease monotonically for any g>0, from its MF value of
1/2 (Ref. [3]) down to the value 0.37 at criticality. In the
short-time regime, prior to effective A, B mixing, the reac-
tion front properties are governed by diffusion [3]. Therefore,
the width w is expected to be influenced by any change in the
diffusion properties of the system as the blocked sites con-
centration ¢ increases. As was first shown by Gélfi and Racz
[1], it is only in the long-time regime that the width w is
affected also by the reaction, resulting in a new length scale
with a new exponent 1/6. Similar findings have been ob-
tained for the behavior of the location of the reaction front
center x, (Ref. [28]), which is the other length scale in the
problem.

C. Scaling relations

Back to the long-time limit, another issue to be looked at
is the validity of the relation a—B=17 [Egs. (6) and (8)], first
suggested by Galfi and Racz [1]. For ¢g=0 this relation is
obeyed within an error of 10%, a-B=0.157-0.639
=-0.482, whereas y=-0.532. We next look at the validity of
this relation as a function of the blocked sites concentration
¢, by comparing the value of a— with vy. The results are
presented in Fig. 6. Far from criticality, the value of a—f3 is
very close to the value of y. Close to the critical value of
q.=0.407, the difference between the two values increases,
and above ¢, the relation seems not to be valid anymore. For
example, for g=0.55 the deviation from the predicted rela-
tion reaches 21%.

The physical interpretation of this deviation is as follows.
As mentioned above, the a— =" relation is derived from
the approximate assumption that the multiplication of the
width and the maximal height behaves as the overall area
under the function (Fig. 1). This assumption implies that the
function behaves “normally,” i.e., no infinite tails and no
sharp decrease around the maximum. In a disordered system,
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this assumption is not necessarily valid. Due to the suppres-
sion of diffusion, the reaction around the front is active much
longer than the reaction in regions far from the initial bound-
ary x=0 (Fig. 2). As a result of this localization, the relation
a— =17, which was shown to be valid for ordered systems,
breaks down as the disorder concentration reaches criticality.
Figure 6 shows that a— B>y (namely |a—B| <|v|), which
confirms that the global reaction rate in the entire system
(represented by 7y) decays faster in time than the reaction rate
in the vicinity of the front (represented by a—p). This im-
plies that in this region one cannot estimate the width and
height exponents based on the global reaction rate exponent.

IV. SUMMARY

In summary, we studied the influence of quenched disor-
der on the reaction front exponents in the 2D percolation
system, for the entire range of disorder concentration ¢, from
complete order (¢=0) to criticality (4=0.407) and beyond.
We showed the change of the scaling exponents above
¢=0.3 in the long-time limit, and the change of the width
exponent « for any ¢ in the short-time limit. Near the perco-
lation threshold, the system exhibits 1D features. In particu-
lar, the front width exponent in the long-time limit is
a=0.246, which is very close to the 1D result of 1/4. This
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result contradicts earlier results in the literature, and demon-
strates that in disordered media, below the critical dimension
d.=2, the width exponent is /arger than in MF.

The experimental system of Park et al. [22], which
is quasi-2D, can be used to test our predictions. This
system consists of two microscope slides with dimensions
75 mm X 25 mm and a gap of 150 wm in between. The spa-
tial confinement resulting from the narrow gap allows nor-
mal diffusion, rather than convection, even without a gel.
The exponents of the front characteristics were found to
agree with the MF results within the experimental error. In
order to study experimentally our findings, one can add im-
purities to this system in order to create a 2D percolation
system. Another possible future work is to consider dynamic
disorder, which changes in time during the process. For ex-
ample, the product particles (C) may dynamically block the
diffusion of the A and B particles so that the disorder in-
creases in time.
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