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Analytic solution of neural network with disordered lateral inhibition
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The replica method has played a key role in analyzing systems with disorder, e.g.,

the Sherrington-

Kirkpatrick (SK) model, and associative neural networks. Here we study the influence of disorder in the lateral
inhibition type interactions on the cooperative and uncooperative behavior of recurrent neural networks by
using the replica method. Although the interaction between neurons has a dependency on distance, our model
can be solved analytically. Bifurcation analysis identifies the boundaries between paramagnetic, ferromagnetic,
spin-glass, and localized phases. In the localized phase, the network shows a bump like activity, which is often
used as a model of spatial working memory or columnar activity in the visual cortex. Simulation results show
that disordered interactions can stabilize the drift the of bump position, which is commonly observed in

conventional lateral inhibition type neural networks.
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I. INTRODUCTION

Human and animal brains can capture, store, and retrieve
complex patterns in the real world. The retrieval process was
first successfully described by Hopfield [1]. Advances in
mean-field spin-glass theory have revealed the stability of
the associative memory embedded with extensive numbers
of patterns, and the memory capacity of the network [2,3]. In
a capturing process such as visual perception, Hubel and
Wiesel have found columnar activity in the cat visual cortex
responding to a bar stimuli with a specific orientation [4].
Neural networks that can model local excitation are often
described by lateral inhibition type networks. The lateral in-
hibition denotes recurrent excitation with nearby neurons and
inhibition between distant neurons [5]; it is also referred to
as the Mexican-hat-type interaction. In these models, a bump
activity, which is the locally activated network state, is stable
depending on the input and configuration of the network in-
teraction. The stability of one bump has been analyzed ex-
tensively [6—10] in several neuron models ranging from ana-
log neurons to spiking neurons.

Recent progress in the analysis of lateral inhibition type
networks without connection randomness shows that the
mean field theory can be applicable [8] even to neural net-
works that have distance-dependent interactions. The trick is
to represent the connection function with a combination of
linearly independent functions, e.g., a Fourier series. lateral
inhibition is usually described by the difference of Gauss-
ians, or the second derivative of a Gaussian, but Fourier se-
ries expansion of the interaction function with lower order
and periodic boundary conditions allow us to describe the
system state using order parameters. Even though most of
the lateral inhibition type models do not include random in-
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teractions, it was clear from the start that deterministic inter-
actions is just a simplification of the real system. To analyze
a system with random interactions, one finds the replica
method is a powerful tool. In this paper, we study the stable
states of an Ising spin neural network with disordered lateral-
inhibitory interactions.

II. MODEL DEFINITIONS

We study an Ising spin neural network, which is modeled
by an N-neuron state vector S=(Sy,,Sy,, ..., Sy ) € {~1,1}",
Here Sg =1 if neuron i ﬁres and Sa =—lifitis at rest. Neu-

ron i is located at angle 6= 7 —ar on a one-dimensional ring
indexed by 6; € [, 7) as shown in Fig. 1. The Hamiltonian

of the system we are going to study is

= E Jo.05050, —hE So,»

H(S)=-
2 24,

(1)

where £ is a common external input to neurons. The interac-
tion J 6, is defined to be disordered lateral inhibition, it is a
function only of (6;,—6,) plus noise:

(2)

Jo i
Too, =N N cos(0; = 0;) + &g,q

Jz
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where J; is a uniform ferromagnetic interaction, J; is a lat-
eral inhibition type interaction, and §9i9j=§0j0i are quenched
disordered interactions term independently drawn from an
identical Gaussian distribution with mean 0, and variance
J?IN. Thus, there is no correlation between §g0 and &, 0,

3)

*Electronic address: hammer@brain.riken.jp; URL: http:// Here we assume that J, and J, are non- negatlve real num-
www.brain.riken.jp/labs/mns/hammer/ bers, and J can be either a positive or negative real number.
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FIG. 1. Network model: N spins indexed with §; € [—7, ) on a
ring are interacting with recurrent disordered lateral inhibition.

III. REPLICA CALCULATION OF THE FREE ENERGY
AND ORDER PARAMETERS

In this section, we calculate the free energy per neuron
and relevant order parameters by using the replica method.
To calculate the partition function Z, let us circumvent aver-
aging In Z by using

VARSS |
In Z=1lim
n—0 n

: (4)

which allows us to compute InZ from Z". The latter is a
partition function of n copies, or replicas, of the original
system. We write

7" ="Trg exp(—ﬁz H(S“)), (5)
a=1

where « is the replica index running from 1 to n. The free
energy F=—8'InZ is a function of quenched disorder
{60[_0]_}. Instead of studying free energy based on each realiza-
tion of disorder {e, 0/} we study averaged F over the prob-
ability distribution of €00, We refer to this average as the
configurational average and write it as [---]

The configurational average of the free energy is given via

[Z"] = Trg 11 dq“BH dmOH dm Hdm
a<pf
NJ*B? NpBJ,
XCXP{ ZB E ( a,B)Z 502( (0)1)2
a<f

2 12
NS {2+ o+ L4 B J4N”}, ©)
where

L=2 {ﬂ/? > S58hq P+ ﬁJoE Somg
7

i a<p

+ ,BJIE [m cos(6) +my sin(&,-)]S;’i + th S?jl}
(7)

Here we defined the following order parameters:

WSS, P=N1S sish
1 1
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m=N""D cos(6)S%, m*=N"'"> sin(6)S5. (8)

where my is the magnetization, ¢ is the spin-glass order pa-
rameter, and m,. and m, are order parameters which show
how spins are aligned in the same direction locally, but not
globally, around 6=0, 7/2. The network state is said to be in
the bump state, or locally activated, if m, or m, are nonzero.
We note that m,. and m, depend on the position of the bump,
but our interests are rather the size and the position of the
bump. So we introduce the following transformation to sepa-
rate the size and position of the bump:

(m)* = (m)* + (my)?, )

¢* = tan” (m%/m?). (10)

The alternative order parameters, m; and ¢, are global mea-
sure of the activity profiles that indicate the degree of activ-
ity localization and its angle, respectively. It is easy to find
that the third term in Eq. (7) can be rewritten as
BJ = m{lcos(6;- d)‘”)]Sﬁ;[. The difference between our model
and the SK model is the localized magnetization, i.e., the
(m,, @) terms.

A. Replica symmetry ansatz

First, we derive the replica symmetric solution, and then
consider the replica symmetry breaking conditions later.
Here we assume replica symmetry, that is q“ﬁ=q,m8‘=m0,
my=m;, ¢*=¢. The introduction of replica symmetry as-
sumption and Gaussian identity exp( Sz)
=Dz, exp(\sz(,) where Dz=(27)"2 exp(-z*/2) s1mp11fy
Trg exp(L) in Eq. (6) to

Trg exp(L) = Tr] | J Dz, exp{ [,BJV";Z(,[ + BJym
0;

+ BJym, cos(6,— ¢) + ﬁh](E S%)}

NnpB*J*  NnpBJ?
X exp| — 5 q+ 1

= H f Dz(,l_[2 cosh BH(Z@I_, 0,— )"
0;

NnB2)?2  NnB2J?
Xexp(— n,;B + n,8 ,

4 (11)

where f](zgi,ﬂi)=J\e’Ez0i+J0m0+J1m1 cos(6;)+h. From this,
we get

12g
[Z”]:qudmodmcdmsexp n/p [(1-n)g*>-2g+1]
NnBly , NnBJ, ,
Ty My

+ 1n<f Dz(,l_[Z cosh ,Bfl(z(,i, 0,— d))]”) } (12)
6;
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[Z']-1
The free energy per neuron B[f]———[ln Z]=-lim,_o—,— is

evaluated in the thermodynamic limit. The summation of 6;
is now replaced by an integral over 6. Free energy per neu-
ron is

ﬁlo = BlL , B

- Blf]= —omi+ (1 -q)

+— dﬁJ Dz In[2 cosh BH(z, 60— ¢)].

2w)_,
(13)

The order parameters are determined through the saddle
point equations as below:

mO:f;i—foDz tanh[ BH(z, 60— ¢)], (14)
deo ~
ml:f;Tszcos(G—(l))tanh[,BH(z,ﬁ—(ﬁ)]’ (15)

= J o f Dz tanh?[ BH(z,6 - ¢)]. (16)
2

The bump is neutrally stable in the direction of ¢ because the
partial derivative of the free energy with respect to ¢ is zero,

™ de (7 ~ .
_f —f Dz tanh BH(z,0— ¢)sin(6— ¢) =0.
2]

(17)

This is natural because the physical meaning of ¢ is the
position of the bump, and the bump is stable anywhere on
the ring layer as long as the external input is spatially uni-
form, i.e., h=const. In this case, the Hamiltonian is rotation-
ally invariant, and the network is said to have the line attrac-
tor. Henceforth, we consider only the m,, m; and g order
parameters when discussing the stability of the system.
Equations (14)—(16) have four types of solutions, which are
locally stable in the direction of m, m;, and g. The stable
states of the network are (1) paramagnetic (P): my=m,=q

-1 L
&y“ﬂo"yy‘sN InTre
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=0, (2) ferromagnetic (F): my# 0, m;=0, ¢ # 0, (3) localized
(L): my=0, m; #0, g#0, and (4) spin-glass (SG): mo=m,
=0, g #0.

IV. REPLICA-SYMMETRY BREAKING CONDITION

In this section, we study the condition for the replica-
symmetry breaking (RSB) condition via a de Almeida—
Thouless-type argument [11]. We come back to the partition
function in Eq. (6). Since terms in the exponential in Eq. (6)
are proportional to N, we can evaluate the integral with
saddle-point method:

2 2
ES (g0 N[;J"E( ay2
a<pf

[Zz'] = exp{

- %E (mf‘)z}exp(ln TrseL)exp(

BZJan> B
2

N{ PES, (g5 - B0 gy
a<,8 2n @
12( “)2+—1nTrSe g (18)

By using the transformation y*#=BJqF, x§=(BJy)"’my,

x{=(BJ,)"’>m{, the free energy per neuron can be written as

[Z']-1
- = lim
B[f] n—0 nN
== 2 (y*)? - —E (x5)* = —E (xf)?
2n a<pB
1 2J2
+— In Trgel + —. 19
NSO Ty (19)
. o 1] /]
From the saddle-point condition, we have 7= =0, ——==0,
a1 0
and — =0. To check the stability of the replica-symmetry

P
condltlon we first show second partial derivatives of
N'In TrseL around the replica-symmetric point in the direc-
tions of y*# and y??,

Trg[N' 2, S585S3Shexp(Le)]  {Trg[N™'> 5555 exp(Lo) I{Trs[N~' >, 5755 exp(Lo) I}

_ 2
=(8)) Trg exp(Lg)

= (BIH(S5S0STS L, = (SeSDL (SIS}

[Trg exp(Lo)]*
(20)

Here we defined (---) L= 1) g—: I Dz exp(Ly), and L, corresponds to the replica-symmetry (RS) L case. The details of the
calculation of taking traces in Eq. (20) is shown in the Appendix. From Eq. (20), expansion of [f] around the RS to the second

order, using y*?=y+ 7* gives
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N=ly+5 3 S

a<B y<5 0. aﬁf?}’yan 7]

=[fl,+ > %[G(Q,B)('yﬁ)naﬁﬂys]’ (21)

a<p y<é

where G is the Hessian matrix, and

Glapap =1 = (B (1= (S5SH)) = P
Glapan =~ (BI((S5SP1, ~ (S350, = Q

Glapiye == (BI)(SGS5SISoL, — (SeSDL(SISP,) = R
(22)

We look for an eigenvector that are symmetric under in-
terchange of all but two of the indices. That is the eigenvec-
tor u which has 7**=c for specific replicas ¢, & and 7**
=7t*=d, for any a, and 7*#=e¢ for the other replicas. From
the orthogonality conditions from the other two eigenvectors
that are symmetric under interchange of all indices, and all
but one indices, the eigenvalue \ is given as

A=P-20+R. (23)

The condition that the eigenvalue given by Eq. (23) is posi-
tive can be written in the form

ﬁ>f j—j_sz sech'[ BH(z, )]. (24)

This gives the replica symmetry breaking condition.

V. RESULTS
A. Phase diagrams and order parameters

It is of our main interest to see how networks with lateral
inhibition type interactions differ from those with ferromag-
netic interactions. For this purpose, hereafter, we set h=0 for
simplicity. From Egs. (14)—(16), we analyze the stability of
P, F, L, and SG phases. First, we apply a bifurcation analysis
to compute the second-order transition lines away from the P
phase. We assume that my=m;=¢=0, and that the deviation
from P state in the direction of F, L, SG is very small. By
expanding Eqgs. (14)—(16) up to first order, we can obtain the
stability condition of P through F, L, and SG direction as
follows:

P—F:Bly=1, (25)
7

P—>L:&=1, (26)
2

P—SG:B/=1. (27)

Similar bifurcation analyses gives the transitions from SG
—{F,L} directions as follows:

SG — F:BJy(1-¢q) =1, (28)
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FIG. 2. Phase diagrams showing the limit of stability of the AT
solution in the absence of an external input. (a) No lateral inhibition
(J1=0) which is equivalent to the SK model. (b) No ferromagnetic
interaction (J,=0) in which the localized phase exists instead of the
ferromagnetic phase in (a) At low temperature and small disorder.

SG— L:BJ,(1-¢)/2=1. (29)

The local stability of F' and L phases are also obtained as
L—F:Bl(1-9)=1, (30)
F—LBL(-¢/2=1. (31)

Phase diagrams in Fig. 2 show the stability of the F' and L
phases in (1/BJ,Jy/J) and (1/BJ,J,/J) space. Transitions
from P to L occur at lower temperatures, indicating that L
phase is less stable than the F phase. The AT line also shifts
in the direction of J;/J, indicating again that lateral-
inhibitory interactions are less effective at maintaining the L
state than ferromagnetic interactions are in the F state.
Next we study the interaction between the ferromagnetic
(Jo) and lateral-inhibitory (J;) interaction. The phase dia-
gram is analyzed in (BJ,,BJ;) plane with fixed disorder J
={0,0.5,2} as shown in Figs. 3(a)-3(c). Depending on the
relative strength of BJ, and BJ;, F or L phases are stable
once they exceed certain thresholds. Between these two,

(a) (b)

20

—theory

15

2
Blo
FIG. 3. Phase diagrams with fixed J in the intersection of
(BJy,BJ,) plane. From (a) to (c), J is set to J={0,0.5,2}, respec-

tively. (d) The three-dimensional phase diagram in
o/ T, I, 1,11 BT).
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FIG. 4. (a) Phase transition from P to L, with fixed parameters
B=1,J=0, Jy=0.5 with varying J; parameter from 1.5 to 2.5. Solid
line is obtained by solving the self-consistent Egs. (14)—(16). In
simulations, N=40 000 spins are evolved with Glauber dynamics
with initial state my=0, m;=1/ until it reaches stable states, and
m; values obtained from 10 trials are plotted. (b) Phase transition
from L to F, with fixed parameters S=1, /=0, J,=3 with varying J,
parameter from O to 5. Theoretical results are obtained as in the
same way in (a). Diamonds and squares represent order parameters
calculated in simulations with N=8000, and initial states are set to
different values; one is ferromagnetic state, and the other is local-
ized state. Squares initial states are sets to either my==+1, m;=0,
and initial states of diamonds are my=0, m;=1/1.

there are bistable regions where both F' and L phases are
locally stable. The bistable region gradually shrinks as J in-
creases. The P phase region does not change its size in
(BJy,BJ,) space for BJ<1. Once the spin-glass interaction
exceeds the threshold value BJ=1, the P phase is replaced
by SG phase. As B/ increases, as one would expect, the SG
region expands. Since we have three free order parameters in
our model, we give the full three-dimensional phase dia-
gram. (Jo/J,J,/J,1/BJ) space is shown in Fig. 3(d).

In Fig. 4, we compare the results of simulations and
theory in the region of the phase boundary. In simulations
spins evolved at maximum 2000 time steps with Glauber
dynamics until they reached a meta-stable equilibrium point.
The time is in units of updates per spin. Here, parameters are
set to B=1, J=0. Figure 4(a) shows the order parameters m,
along J,=0.5 line where a phase transition occurs from P to
L. The simulations confirm our theoretical prediction that the
phase transition point is at £J,=2 from P to L. In Fig. 4(b),
we also show the phase transitions from L to F phase. We set
initial states to different values in the simulations, so that we
can observe bistable F+L states. Parameter of this network is

PHYSICAL REVIEW E 73, 051104 (2006)

the same as above except that J;=3 and J, is varied. In
relatively small BJ, region (0<BJy<1), the L phase is
stable. In relatively high BJ, region (2> BJ,), the F phase is
stable. In between, we observe bistable states F'+L.

B. Motion of the bump position

In this subsection, we study the relationship between the
disorder and the stability of the bump state through rotational
direction. Throughout this subsection, we consider the case
where the network is in a L phase where the bump state is
stable, otherwise we cannot define the position of the bump
¢. The lateral inhibition network without disorder has neu-
trally stable states in the direction of ¢, unless there is spa-
tially modulated external input to the system. The bump state
is stable anywhere in the ring network, and a shift in the ¢
direction does not change the free energy of the state. There-
fore, even small noise from the external heat bath or finite
system size causes the bump position fluctuate and move
around the ring network as a Brownian particle diffuses on a
frictionless surface.

Here, our interest is on the bump state in the brain. The
model of working memory requires the network to keep ac-
tive without an external input, and these lateral inhibition
type networks are often adopted as a model of spatial work-
ing memory [8]. It is known, however, that the bump posi-
tion in lateral inhibition network is unstable and easily fluc-
tuates, which corresponds to memory loss. In leaky
integrate-and-fire neuron models of spatial working memory,
the bump state shows systematic drift for a small synaptic
time constant [9]. Therefore it is of wide interest to prevent
the bump state drift in spatial working memory models. In
the model studied here, the noise from the system itself van-
ishes in the thermodynamic limit, and the bump position is
stable. However, in a biologically realistic situation, neural
network consists of a large but finite number of neurons.
Taking this point into account, we study the drift of bump
position in a finite sized system by using Monte Carlo simu-
lations.

What happens when we introduce disorder? It is known
that disorder leads to a spinglass phase, and energy landscape
takes on many-valley structure. Under the region where rep-
lica symmetry is broken, the system is nonergodic because
some valleys are separated by infinitely high energy barriers.
Therefore, we expect that bump position can be stabilized by
the introduction of disorder, because it embeds many-valley
structure in the flat-energy landscape of neutrally-stable line
attractor, and the bump state is trapped in local minima along
the ring network.

To test this hypothesis, we studied how disorder affected
the variance of ¢(¢) in a finite size network of N=4000 neu-
rons. Figure 5(a) shows the dynamics of ¢, with fixed pa-
rameters, B=1, Jy=0, J;=8, and various J which give J,/J
=[1.8,2.5,3,4,8,80,800,]. Here the disorder {691_9_} is
quenched to one realization throughout the simulations. At
t=0, we set the network to a bump state with my=0, m,
=1/ at 6 different positions of the ring, which are ¢(0)
=[-m,-2/37,-1/37,0,1/37,2/3]. For each initial posi-
tion ¢(0), we calculate 5 trials of ¢(z) dynamics for 2000
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FIG. 5. (Color) (a) Dynamics of ¢(z) on left column and ¢(r)
—@(0) on the right column. Some parameters are fixed, B=1, J,
=0, J;=8, and the order of disorder J is varied to give J/J
=[1.8,2.5,3,4,8,80,]. For every 6 initial positions ¢(0), 5 trials
of spin dynamics are performed, therefore 30 trials are performed
for one parameter. The different line colors represent different ini-
tial position ¢(0). (b) Dynamics of variance of ¢(1)— ¢(0) calcu-
lated from the 30 trials. In the insets, a line of (8J)"'=8J7! is
shown. The squares on the line corresponds to the parameter J,/J
=[1.8,2.5,3,4] with fixed J,=8, which colors correspond to the
line colors.

steps. As a total, 30 trials of simulations are calculated for
one fixed J.

In Fig. 5(a), we plotted ¢(z) on the left column, and
¢(t)— ¢(0) on the right. Different line colors represent dif-
ferent initial positions ¢(0). The bottom panels in Fig. 5(a) is
the case where J,/J=% (J=0) and the network has line at-
tractor, thus the dynamics of ¢ is Brownian motion. Intro-
duction of disorder to some small extent, such as J,/J=800
(J=0.01) case does not change the network dynamics quali-
tatively because the fluctuation of the dynamics is stronger
than the energy barrier. Further increasing the disorder re-
duces the fluctuation of ¢ as shown in Fig. 5, J;/J=4 or 8.

PHYSICAL REVIEW E 73, 051104 (2006)

However, ¢() converges to specific positions. Such limited,
small number of stable states in the network dynamics is
undesired property in the light of configuring spatial working
memory model because spatial working memory requires the
model to have continuous, or at least very large number of,
stable points in ¢. When disorder J exceeds a certain thresh-
old, RSB occurs and the bump can stay in nearby region
from their initial positions. For this parameter set, RSB oc-
curs at J,/J=3. The dynamics of ¢(7) after the RSB are
shown in top three panels of Fig. 5(a) and their parameters in
the (1/BJ,J,/J) space are shown in the inset of Fig. 5(b).

Figure 5(b) shows the dynamics of variance of ¢(z)
—(0), var] (1) — $(0)], which is calculated from 30 trials of
simulations with different initial positions ¢(0)’s. They illus-
trate how the bumps deviate from their initial positions. In
the neutrally stable states with J,/J=c0 (J=0), variance in-
creases linearly, which indicates that the bump undergoes
Brownian motion. Introduction of a small degree of disorder
such as J;/J=80 (J=0.1) leads to higher variance in the
early phase of the dynamics, because a small number of at-
tractors accelerates the drift of bumps. When the disorder
becomes stronger (J;/J=3,4,8), the transition of bumps to
those attracting points becomes fast and the bumps quickly
settle down to those points. Such behavior is clearly shown
in the plateau-like dynamics of the variance. After the disor-
der has reached a certain value, the bump states can settle to
nearby stable equilibrium points and do not deviate largely
from their initial position. J;/J=2.5 is the region where rep-
lica symmetry is breaking and localized activity is stable.

So far, we considered the dynamics of the bump in the L
phase. We actually show a case of SG phase, J;/J=1.8. In
the analogy of remnant magnetization in SG phase, the full
transitions from L to SG state is extremely slow [12]. Since
the initial state of the network is set to bump states (m,
=1/m), the network states still shows nonvanishing m, val-
ues during this simulation duration. This parameter gives the
least bump fluctuation in the parameters used. We confirmed
that all the states shown in above have a nonzero value of
my. These results indicate that disorder can change the en-
ergy landscape, and the bump positions become stabilized,
which might be a useful property for maintaining spatial
working memory in the brain.

VI. CONCLUSION

In this paper, the stability of four phases and the stability
of the replica-symmetry ansatz in an Ising spin neural net-
work with disordered lateral inhibition are studied. Similarly
to the SK model, the network has a stable spin-glass phase
even in a regime where lateral inhibitory interactions are
dominant compared to ferromagnetic interactions. We used a
Fourier expansion method to analyze the stability of a spin-
system which interaction depends on distance of two spins.
This method is applicable to any system with distance-
dependent interaction.

The disorder changes the energy landscape, and in a phase
where replica-symmetry breaking coexists with an L phase,
we found that the drift of bump state, which represents a
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memory state of the brain, can be stabilized. We also note
that analysis of associative memory models have their basis
in the SK model [2]. Recently, associative memory with spa-
tially localized structure with threshold-linear neurons [13]
was studied with self-consistent signal-to-noise analysis (SC-
SNA) [14]. Since replica-symmetry breaking cannot be stud-
ied with the method of SCSNA, it would be intriguing task
to study the spatially localized associative memory by using
our method.

TrS(N_IE S';Sg)exp(Lo) = TrS(N_lz SZSg) f Dz exp{E
0 0

= N—lTrS(Sflegl f Dz exp[ BH(z, 01)(52‘1 + S'gl)]exp{

X eXp[,BH(z, 01)(

y*a.B

>

X exp
6+ 6,

Xexpl BH(z, 0,)(S5, + 55 )]

X exp{ H;HN [ BH(:, 0)@ Sg) ] }exp[ BH(z, am(%ﬁ SgN) D .

After taking the trace,

=N f Dz{2 sinh[ BH(z, 91')]}2(
6;

In the limit of n—0 and N— 0, we use Trge0— 1 to get

Four-pair correlation is also calculated as

[BH(Z, 0)( 3 S‘;) ] }eXP[BH(z, 02)<
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APPENDIX: CALCULATION OF TRACE IN EQ. (20)

[BJ\’ZZ+ BJm, cos(6- qﬁ)(E S'f,‘)}}

af 3

0

>

00,

> S;/1>] + Szzsgz f Dz exp[ BH(z, 6,)(S5, + S'gz)]

yFaB

> ng)]+ +sgNS§Nsz

(A1)
TT 2 cosh[ BH(z, e)])”(z cosh[ BH(z, 6)])".
6+6;
(8455 = f Z—i f Dz tanh?[ BH(z, 6)]. (A2)
(A3)

do
(5458555 = N—lTrS<E sgsﬁsgs;?)exp@o)ﬂ f b J Dz tanh*[ BH(z, 6)].
0 v
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