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We analyze the explicit contribution of fluid inertia and fluid unsteadiness to the force acting on a solid
sphere moving in a vertical solid-body rotation flow, in the limit of small Reynolds and Taylor numbers. This
problem can be thought of as a test case where the flow induced by the particle is both unsteady �in the
laboratory frame� and convected by the unperturbed flow. Many authors assume that the contributions of these
two effects can be approximately superposed, and postulate that the particle motion equation is composed of
the classical Boussinesq-Basset-Oseen equation �obtained by neglecting the fluid inertia� plus an additive lift
force. In the present paper the simplicity of the unperturbed flow enables one to calculate analytically the
explicit contribution of each term appearing in the perturbed flow equation �by using matched asymptotic
expansions�. Our results show how the convective terms and the unsteady term do contribute to the particle
drag and lift coefficients in a very complex and nonadditive manner.
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The slow motion of isolated spherical solid particles in
nonuniform flows is often investigated by using the equa-
tions of Maxey and Riley �1�, which are valid in the limit of
vanishing fluid inertia. These equations generalize the well-
known Basset-Boussinesq-Oseen �BBO� equations, and give
fairly good results, for example, when the particle moves
freely in a vertical solid-body rotation flow �see Druzhinin
and Ostrovsky �2� and Candelier et al. �3,4��. They are also
extensively used in turbulent particle-laden flow simulations
�see, for example, Elghobashi and Truesdell �5��. These
equations read

mpẌp = mpg + F0 + F1,

where mp and Xp�t� denote the particle mass and position,
respectively, and F0 is the integral of the stress tensor corre-
sponding to the unperturbed flow �it contains the well-known
Archimedes force plus Tchen’s force�. The force F1 is the
integral of the stress tensor of the flow induced by the inclu-
sion, and reads �1�

F1 = − 6��aVs −
1

2
mf

dVs

dt
− 6�a2����

−�

t dVs

d�

d�

�t − �
,

where Vs is the slip velocity, mf is the mass of fluid within
the particle volume, a is the particle radius, and �, �, �
denote the fluid density, dynamical viscosity, and kinematical
viscosity, respectively. The first term appearing in this force
is Stokes’ drag. The two other terms �added mass and Bas-
set’s history force� are due to the unsteadiness of the induced
flow. These motion equations are valid when the unsteadi-
ness of the induced flow dominates inertia effects.

Nevertheless, even in the limit where the particle Rey-
nolds number is small, the motion equation of the induced
flow does not always reduce to the unsteady Stokes equation,
so that the above equation is not expected to be valid. Be-
cause these inertial terms are often responsible for lift effects
�Saffman �6��, many authors propose to add a lift force into
Maxey and Riley’s equation:

F1 = − 6��aVs −
1

2
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dVs

dt
− 6�a2����

−�
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d�
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+ 6��a�a2�

�
�1/2

CL�̂ 	 Vs, �1�

where � is the local shear rate of the unperturbed flow, �̂ is
the unit vector along the vorticity of the unperturbed flow,
and CL=O�1� is the lift coefficient. The purpose of the
present note is to examine the validity of Eq. �1� in the case
of a solid particle moving slowly in a vertical solid-body
rotation flow �see Fig. 1�. First, we rewrite Eq. �1� in this
case: see Eq. �3� below. Secondly, we solve asymptotically
the fluid motion equation, and integrate the stress tensor
around the inclusion, to derive a rigorous hydrodynamic
force which will be compared to �3�. Note that this force has
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already been obtained by Herron et al. �7� in the rotating
frame attached to the inclusion, where the flow is steady. In
contrast with these authors, and in order to follow the ex-
plicit contribution of fluid unsteadiness and fluid inertia to
the resulting force, our calculations are performed in the non-
rotating frame attached to the inclusion.

The rotation rate of the unperturbed flow is �, and the
particle velocity is taken to be of the form

Ẋp�t� = Uer + Rp�t��pe
 + Vzez, �2�

where er, e
, and ez denote the unit radial, azimuthal, and
axial vectors, respectively, at the particle center, Rp is the

distance to the rotation axis Oez, and U= Ṙp.
The motion is such that both the particle Reynolds num-

ber Re=Ua /� and the particle Taylor number Ta=a2� /� are
smaller than unity. In addition, we assume that Ta1/2�Re.
Under these conditions, experimental analyses �3,4� show
that both Vz and U are constant. �The radial velocity U grows
exponentially with a negligible growth rate of the order of
Ta���.� Also the angular velocity �p of the particle is
very close to � �no azimuthal slip�. The horizontal motion of
the inclusion has been shown to be independent of the verti-
cal motion �4�, so that one can take Vz=0 for the sake of
simplicity. �For a rigorous derivation of Vz see Childress �8�
and Herron et al. �7�.� In particular the slip velocity reads
Vs=Uer=U�cos �t e1+sin �te2�, and is a harmonic function
of time. This enables one to calculate the various terms of
Eq. �1�, and we are led to

F1 = − 6��a	I + �Ta

�2

2
−

�2

2
+ CL

�2

2
− CL

�2

2
� + O�Ta��

· Vs. �3�

In order to check the validity of this result, we now solve
asymptotically the fluid motion equation, to derive a rigorous
expression for F1.

In a reference frame moving with the inclusion, with axes
parallel to the laboratory frame, the particle-induced flow
equations read

� · w f
1 = 0, �4�

�w f
1

�t
+ w f

0 · �w f
1 + w f

1 · �w f
0 + w f

1 · �w f
1 = −

1

�
�P1 + � � w f

1,

�5�

where w f
1�x , t� denotes the velocity field of the flow induced

by the inclusion and P1 is the modified pressure. The veloc-
ity field w f

0 in the absence of the particle reads, in the moving
reference frame,

w f
0�x,t� = A · x + A · Xp − Ẋp, �6�

where the matrix A corresponds to the solid-body rotation
flow:

A = 
 0 − � 0

� 0 0

0 0 0
� .

It is understood that the total velocity field is w f
0+w f

1, and
that the gradient of the unperturbed flow is A. The boundary
conditions involve the particle velocity in the laboratory ref-
erence frame, which are given by Eq. �2�.

In order to estimate the order of magnitude, at distance r
from the particle center, of the various terms appearing in
�5�, one usually uses the steady Stokes solution, which
clearly shows that 
w f

1 
 �Ua /r and 
�w f
1 
 �Ua /r2. Also, the

time derivative of w f
1 scales like �U, as suggested by the

harmonic boundary condition below. Taking account of
Ta1/2�Re, the momentum equation reduces to

�w f
1

�t
+ ��A · x� · ��w f

1 + A · w f
1 = −

1

�
�P1 + � � w f

1. �7�

The three terms on the left-hand side of �7� scale like �U,
and none of them can be neglected so far. Under these as-
sumptions the boundary condition at the particle surface is
uniform and harmonic,

w f
1 = Vs = U�cos �te1 + sin �te2� when 
x
 = a . �8�

Also, the induced flow is set to vanish at infinity.
When the convective terms in Eq. �7� are set to zero, we

recover the well-known Basset-Boussinesq problem along
the axes e1 and e2. The corresponding hydrodynamic force
reads

F1 = − 6��a�I + �Ta��2/2 − �2/2

�2/2 �2/2
� + O�Ta�� · Vs,

�9�

where I is the unit matrix. When convective terms are taken
into account, the resulting hydrodynamic force can be ob-
tained �using matched asymptotic expansions� in the rotating
reference frame where the induced flow is steady and the
three left-hand side terms of Eq. �7� collapse into a Coriolis
acceleration. The result is �Herron et al. �7��

F1 = − 6��a	I + �Ta

5

7

− 3

5

3

5

5

7
� + O�Ta�� · Vs �10�

Clearly, since this last result has been obtained without ne-
glecting the convective terms, it is expected to be more ac-
curate than �9�. However, because �2/2�0.707 and
5/7�0.714, the drag corrections are so close that one could
believe that inertia terms have almost no net effect on the
drag, and only influence the lift force. Therefore, this result
seems to confirm a priori that an additional lift force could
be added to the classical Maxey and Riley’s motion equation,
as shown in Eq. �1�, in order to correctly predict the particle
trajectory in this case.

The goal of this note is to check whether this observation
is correct, by solving �7� asymptotically, and by “following”

BRIEF REPORTS PHYSICAL REVIEW E 73, 047301 �2006�

047301-2



the contribution of the convective terms. To achieve this goal
we introduce two nondimensional multiplicative coefficients
�“markers”� 
 and � as follows:



�w f

1

�t
+ ���A · x� · �w f

1 + A · w f
1� = −

1

�
�P1 + � � w f

1,

�11�

and solve this last equation by using the classical matched
asymptotic expansion approach �keeping in mind that,
strictly speaking, both 
 and � are equal to 1, even though
the following calculation is valid for any 
 and � held fixed
as Ta→0�.

In the vicinity of the particle �inner problem� the induced
flow is equal to the steady Stokes solution plus a corrective
term which has to match the solution of the outer problem
�Proudman and Pearson �9��:



�w f

1

�t
+ ���A · x� · �w f

1 + A · w f
1�

= − �P1 + � w f
1 + 6��cos te1 + sin te2���x� �12�

which corresponds to Eq. �7� written in a nondimensional
form �by using the Ekman distance a /Ta1/2 for lengths, U for
velocities, � for the time derivative, and �����1/2U for the
pressure�. Also, the boundary condition at the particle sur-
face is removed, and replaced by the classical Dirac source
term on the right-hand side of the momentum balance �12�.
Following the classical approach, we solve this last equation
by using the Fourier transform defined as

w̃�k,t� =
1

8�3�
R3

w f
1�x,t�exp�− ik · x�d3x .

We are led to



�w̃

�t
+ ���k1

�

�k2
− k2

�

�k1
�w̃ + A · w̃�

= − ikP̃ − k2w̃ +
3

4�2 �cos te1 + sin te2� . �13�

It is convenient to introduce the cylindrical coordinates
�k ,� ,k3� in the Fourier space �see, for example, Gotoh �10��,
k1=−k̂ sin � and k2= k̂ cos �, so that �13� now reads



�w̃

�t
+ �� �w̃

��
+ A · w̃� = − ikP̃ − k2w̃ +

3

4�2 �cos te1

+ sin te2� . �14�

Because the solution is periodic we also write the time de-
pendence as

w̃ = w̃+ exp�it� + w̃− exp�− it�

and

P̃ = P̃+ exp�it� + P̃− exp�− it� ,

and after some algebra we get


iw̃+ + �� �w̃+

��
+ A · w̃+� = − ikP̃+ − k2w̃+ +

3

8�2e1

+
3

8i�2e2. �15�

Taking advantage of the periodicity in the spectral azimuth �
we also write

w̃+ = w̃0 + w̃1+ exp�i�� + w̃1− exp�− i�� + w̃2+ exp�2i��

+ w̃2− exp�− 2i�� , �16�

and

P̃+ = P̃0 + P̃1+ exp�i�� + P̃1− exp�− i�� + P̃2+ exp�2i��

+ P̃2− exp�− 2i�� . �17�

By injecting these expressions into �15�, using the continuity
equation, and projecting on exp�ni��, we obtain an algebraic
system with 20 unknowns, which is solved analytically. In
this matched asymptotic expansion approach the nondimen-
sional force correction is given by

6��Ta��2 Re�I�cos t − 2 Im�I�sin t�e1

+ �2 Re�J�cos t − 2 Im�J�sin t�e2� , �18�

where Re�� and Im�� denote the real and imaginary parts,
respectively. I and J correspond to inverse Fourier trans-
forms of the velocity in the limit where 
x 
 →0 �inner limit
of the outer flow�

I = �
−�

� �
0

� �
0

2�

�ũ0 − ũ0
s�k̂d� dk̂ dk3,

J = �
−�

� �
0

� �
0

2�

�ṽ0 − ṽ0
s�k̂d� dk̂ dk3,

and the superscript “s” stands for “Stokeslet”, and corre-
sponds to the solution of our problem with 
=�=0 �Stokes
problem�. The variables ũ0 are the components of the Fourier
transform of the velocity, namely w̃0= ũ0e1+ ṽ0e2+ w̃0e3. In
order to achieve the analytical calculation of I and J we set

k3=k�sin � and k̂=k�cos � with �� �−� /2 ;� /2� and
k�� �0; � �, and we obtain �coming back to dimensional
variables�

F1 = − 6��a�I + �Ta�M11�
,�� − M12�
,��
M12�
,�� M11�
,��

� + O�Ta��
· Vs �19�

with

M11�
,��

=
�
 + ��3/2�
2 − 12
� + 57�2� + �3� − 
�3�
3� − 



280
�2

�3

�20�

and
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M12�
,��

=
�
 + ��3/2�
2 − 12
� + 57�2� − 
3� − 

3�
3� − 



280
�2

�3

.

�21�

Equations �19�–�21� are the main result of this note. The
mobility tensor of Herron et al. �7� is recovered when

=�=1, as expected �see also Table I�. Nevertheless, the
differences between �19�–�21� and �3� are striking. Result
�20� clearly shows that the convective terms do contribute to
the particle drag coefficient �M11�, but in a very complex and
nonadditive manner, in contrast with �3�. The unsteadiness of

the flow �manifested by the coefficient 
� is also of major
importance, and is strongly coupled to the convective terms.

In the unsteady creeping-flow limit �
=1 and �=0� we
recover the mobility tensor obtained by solving Maxey and
Riley’s equations �that is, Eq. �9��. Gotoh’s mobility tensor is
recovered in the steady case �
=0 and �=1�. The reason
why Gotoh’s mobility tensor differs from the results of Her-
ron et al. had already been investigated in the past by
Miyazaki �11�. Our analysis differs in that we follow sepa-
rately the contribution of unsteadiness and inertia, and with a
different formalism.

Finally, one can check, by applying the very same formal-
ism as the one used in this note, that if the particle is kept
fixed in the rotating flow �and if condition Ta1/2�Re is still
fulfilled�, the force experienced by the particle corresponds
to Gotoh’s mobility tensor �see Table I�. In particular, the lift
force strongly differs from the one appearing in Eq. �3�, since
they have different absolute values and opposite signs.
Clearly, this test case, like the centrifugated particle case,
invalidate the systematic use of an additive Saffman lift force
when the flow under the study is not a pure shear flow.
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TABLE I. Specific values of the mobility tensor coefficients.

Herron et al. Maxey and Riley Gotoh


=1 
=1 
=0

�=1 �=0 �=1

M11�
 ,��: 5
7

�2/2 3�2
280�19+9�3�

M12�
 ,��: 3
5

�2/2 3�2
280�19−9�3�
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