
Dynamics and thermodynamics of axisymmetric flows: Theory

N. Leprovost* and B. Dubrulle
DRECAM/SPEC/CEA Saclay, and CNRS (URA2464), F-91190 Gif sur Yvette Cedex, France

P.-H. Chavanis
Laboratoire de Physique Théorique (UMR 5152), Université Paul Sabatier, 118, route de Narbonne 31062 Toulouse, France

�Received 11 May 2005; revised manuscript received 5 October 2005; published 21 April 2006�

We develop variational principles to study the structure and the stability of equilibrium states of axisym-
metric flows. We show that the axisymmetric Euler equations for inviscid flows admit an infinite number of
steady state solutions. We find their general form and provide analytical solutions in some special cases. The
system can be trapped in one of these steady states as a result of an inviscid violent relaxation. We show that
the stable steady states maximize a �nonuniversal� H function while conserving energy, helicity, circulation,
and angular momentum �robust constraints�. This can be viewed as a form of generalized selective decay
principle. We derive relaxation equations which can be used as numerical algorithm to construct nonlinearly
dynamically stable stationary solutions of axisymmetric flows. We also develop a thermodynamical approach
to predict the equilibrium state at some fixed coarse-grained scale. We show that the resulting distribution can
be divided in two parts: one universal coming from the conservation of robust invariants and one non-universal
determined by the initial conditions through the fragile invariants �for freely evolving systems� or by a prior
distribution encoding nonideal effects such as viscosity, small-scale forcing, and dissipation �for forced sys-
tems�. Finally, we derive a parametrization of inviscid mixing to describe the dynamics of the system at the
coarse-grained scale. A conceptual interest of this axisymmetric model is to be intermediate between two-
dimensional �2D� and 3D turbulence.
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I. INTRODUCTION

The ubiquity of rotating systems in astrophysics and geo-
physics makes axisymmetric flows a classical paradigm. In
the laboratory, two axisymmetric devices, the Taylor-Couette
flow and the von Kármán flow, have become a standard to
investigate issues such as supercritical and subcritical stabil-
ity �1�, fluctuation of global quantities �2,3�, or turbulent
transport �4–6�. However, many basic issues regarding sta-
bility and turbulence in axisymmetric flows still remain un-
solved. For example, one still fails to understand the onset of
turbulence or the equilibrium state in Taylor-Couette with
outer rotating cylinder �7�, or the recent bifurcation of the
turbulent state observed in von Kármán flow �8�.

In the past, dynamical stability and equilibrium properties
of flows have often been studied using variational �9� or
maximization �10� principles. Examples of application to
axisymmetric flows include necessary criteria for instability
or turbulent velocity profiles in Taylor-Couette flow. Maxi-
mization or minimization principles have also been used to
give sufficient criteria of nonlinear dynamical stability �11�.
One interest of these methods is their robustness, in the sense
that they mostly depend on characteristic global quantities of
the system �such as the energy� but not necessarily on small-
scale dissipation or boundary conditions. More recently, op-
timization methods have been developed within the frame-
work of statistical mechanics for two-dimensional �2D�

perfect fluids. In that case, variational principles based on
entropy maximization determine conditions of thermody-
namical stability. Onsager �12� first used a Hamiltonian
model of point vortices and identified turbulence as a state of
negative temperature leading to the coalescence of vortices
of same sign �13�. Further improvements were provided by
Kuzmin �14�, Miller �15�, and Robert and Sommeria �16�
who independently introduced a discretization of the vortic-
ity in a certain number of levels to account for the continu-
ous nature of vorticity. Using the maximum entropy formal-
ism of statistical mechanics �17�, it is then possible to obtain
the shape of the metaequilibrium solution of Euler’s equation
as well as the distribution of the fine-grained fluctuations
around it. A variety of solutions are found and the bifurcation
diagram displays a rich structure as illustrated by Chavanis
and Sommeria �18� in a particular limit of the statistical
theory. Two-dimensional turbulence is, however, very pecu-
liar since it misses vortex stretching, one essential ingredient
in 3D turbulence. The adaptation of these methods to more
realistic situations is therefore not obvious.

In the case where the system admits a scalar invariant
�Dt�=�t�+u ·��=0�, one can show that a Liouville theorem
holds �incompressibility of the motion in phase space�. In-
deed, the proof given by Kraichnan and Montgomery �19� in
the case of 2D turbulence can be extended to any dimen-
sional turbulence with a conserved quantity. This is in fact
the case for axisymmetric flows where the symmetry im-
poses angular momentum conservation. Due to violent relax-
ation, the system is expected to reach a metaequilibrium state
which is a steady solution of the axisymmetric Euler equa-
tions. The purpose of the present paper is to derive explicit
results regarding nonlinear dynamical stability and thermo-
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dynamical equilibrium properties of axisymmetric flows us-
ing optimization methods.

In the first part of the paper �Sec. II�, we consider the
nonlinear dynamical stability of stationary solutions of the
axisymmetric Euler equations �i.e., without viscosity�. These
equations are written in Sec. II A and the general form of
stationary solutions is obtained in Sec. II B. In Sec. II C, we
list the conservation laws of the axisymmetric Euler equa-
tions. We find nontrivial invariants in addition to the usual
ones. In Sec. II D, we show that the equilibrium solutions
can be obtained by extremizing a functional built with all the
invariants. The fact that this optimization procedure returns
the general stationary solution means that we have found all
the invariants. In Sec. II E, we distinguish between fragile
�Casimirs� and robust �energy, helicity, circulation, angular
momentum,¼� invariants. We argue that, in the presence of
viscosity or coarse-graining, the metaequilibrium state maxi-
mizes a certain �nonuniversal� H function while conserving
the robust constraints. This is similar to the case of pure 2D
hydrodynamics �20–23� except for the replacement of vortic-
ity by angular momentum. In Sec. II F, we propose a numeri-
cal algorithm based on the maximization of the production of
an H function while conserving the robust constraints. This
can be used to compute numerically arbitrary nonlinearly
dynamically stable stationary solutions of the axisymmetric
Euler equations. This is similar to the relaxation equations
proposed by Chavanis �20–22� in pure 2D hydrodynamics. In
Sec. II G, we provide simple analytical steady solutions of
axisymmetric equilibrium flows. In the second part of the
paper �Sec. III�, we develop the statistical mechanics of such
flows to predict the metaequilibrium state. The statistical
equilibrium state is obtained by maximizing a mixing en-
tropy �Sec. III A� while taking into account all the con-
straints of the dynamics. This yields a Gibbs state �Sec.
III B� which gives the equilibrium coarse-grained angular
momentum as well as the fluctuations around it. We check
that the coarse-grained field is a stationary solution of the
axisymmetric Euler equations. However, since the Casimirs
are not conserved on the coarse-grained scale, the distribu-
tion of fluctuations is nonuniversal and depends on the initial
conditions �or fine-grained constraints�. This is also the case
for the coarse-grained field. In Sec. III D, we use a maximi-
zation of the entropy production to derive relaxation equa-
tions towards the statistical equilibrium state. This is similar
to the approach proposed by Robert and Sommeria �24� in
pure 2D hydrodynamics. Finally, in Sec. III E, we introduce
the notion of prior distribution of fluctuations for systems
that are forced at small scales. We show that the coarse-
grained field maximizes at statistical equilibrium a general-
ized entropy fixed by the prior distribution. Thus, the relax-
ation equations based on the maximization of the production
of generalized entropy �Sec. II F� can also provide a param-
etrization of axisymmetric turbulence in the presence of a
small-scale forcing �20–22�.

II. DYNAMICAL STABILITY OF AXISYMMETRIC
FLOWS

A. The axisymmetric Euler equations

The Euler equations describing the dynamics of an invis-
cid incompressible axisymmetric flow can be written in cy-
lindrical coordinates �r ,� ,z� as

1

r
�r�ru� + �zw = 0,

�tu + u�ru + w�zu −
v2

r
= −

1

�
�rp ,

�tv + u�rv + w�zv +
vu

r
= 0,

�tw + u�rw + w�zw = −
1

�
�zp , �1�

where �u ,v ,w� denote the components of the velocity in a
cylindrical referential. Note that the third equation expresses
the conservation of the angular momentum �=rv. The two
other equations for u and w involve a pressure field deter-
mined through incompressibility. However, it can be elimi-
nated by using the stream-function vorticity formulation
�25�. The two new scalar variables are the azimuthal compo-
nent of the vorticity ��=�zu−�rw and the stream function �
defined by

u = −
1

r
�z� and w =

1

r
�r� .

The existence of a stream function results from the incom-
pressibility and the axisymmetry of the flow. In this formu-
lation, the system �1� can be rewritten

�tv −
1

r
�z��rv +

1

r
�r��zv −

1

r2�z�v = 0,

�t�� −
1

r
�z��r�� +

1

r
�r��z�� + �z�

��

r2 = �z�v2

r
� . �2�

By definition, the azimuthal component of the vorticity is
related to the stream function by

�r�1

r
�r�� +

1

r
�z

2� = − ��. �3�

We now introduce two new fields, the angular momentum
�=rv and � which is related to the azimuthal component of
the vorticity by �=�� /r. Changing variables from �r ,z� to
�y ,z� where y=r2 /2, we can finally recast Eqs. �2� and �3� as

�t� + ��,�� = 0,

�t� + ��,�� = �z� �2

4y2� ,

	*� 	
1

2y
�z

2� + �y
2� = − � , �4�

where �� ,
�=�y��z
−�z��y
 is the Jacobian and 	* is a
pseudo-Laplacian. We also note that uz=�y�=w and uy
=−�z�=ru. This formulation of the axisymmetric Navier-
Stokes equation has to be supplemented by appropriate
boundary conditions. For reasons which will become clear
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later, we delay this topic until the discussion of the conser-
vation laws �Sec. II C and Appendix A�. In the following, we
study axisymmetric equilibrium flows by using the system of
equations �4� instead of Eq. �1�. We look for stationary solu-
tions and investigate their stability by using variational meth-
ods. Notice that only two scalar variables are sufficient to
prescribe such flows: we use �, related to the azimuthal com-
ponent of the velocity field and �, related to the azimuthal
component of the vorticity.

B. Stationary solutions

We now derive the general form of stationary solutions of
the axisymmetric Euler equations �4�. Noting that


 �

2y
,�� = − �z� �2

4y2� , �5�

the stationary equations can be written

��,�� = 0 and ��,�� + 
 �

2y
,�� = 0. �6�

The first equation is satisfied if

� = R��� , �7�

where R is an arbitrary function. Using the general identity

�R���,�� = R������,�� = ��,�R����� , �8�

the second equation becomes

��,�R����� + 
 �

2y
,�� = 0 �9�

or, equivalently,


�,�R���� −
�

2y
� = 0. �10�

Therefore, the general stationary solution of Eqs. �4� is of the
form

� = R��� and �R���� −
�

2y
= G��� , �11�

where R and G are arbitrary functions. If R is monotonic, we
can set f =R−1 and we get �= f��� and

� −
f���
2y

1

R�„R−1���…
= g��� . �12�

Using the identity

1

R�„R−1���…
= f���� , �13�

we finally obtain

� = f��� ,

− 	*� = � =
f���
2y

f���� + g��� , �14�

where f and g are arbitrary functions. We can obtain these
equations directly if we note that the first expression of Eq.

�6� is satisfied if �= f���. Then, using the general identity


 �

2y
, f���� = 
 f�����

2y
,�� , �15�

we can rewrite the second expression of Eq. �6� in the form


�,� −
f���f����

2y
� = 0, �16�

which leads to the second expression in Eq. �14�. This ex-
pression is the fundamental differential equation of the prob-
lem which must be supplemented by appropriate boundary
conditions. Some particular solutions of this equation will be
given in Sec. II G. We will first show that the stationary
solutions can be found by a variational principle depending
only on the conservation laws of the system.

C. Conservation laws

Axisymmetric inviscid flows satisfy a number of conser-
vation laws. We here give the expression of these conserved
quantities and postpone corresponding proofs in Appendix
A. To derive the two first conservation laws, we must assume
that the function � vanishes on the boundary of the domain
which amounts to considering that the normal component of
the velocity is zero at the boundary. This condition is not
sufficient for deriving the third conservation law and one
must also suppose that either � or � vanishes at the boundary.

The first conserved quantity is the total energy

E =
1

2
� �u2 + w2�rdrdz +

1

2
� v2rdrdz

=
1

2
� ��dydz +

1

4
� �2

y
dydz . �17�

Here, we have normalized the energy by 2� and used inte-
gration by parts to obtain the second expression.

Because of the first expression of Eq. �4� any function of
the angular momentum is also an invariant noted as

If =� f���dydz . �18�

These functionals are called the Casimirs. The conservation
of all the Casimirs is equivalent to the conservation of all the
moments of �, denoted In=
�ndydz. The first moment is the
total angular momentum I=
�dydz. If �=0 or, more gener-
ally, �=��y�, then � is conserved via the second expression
of Eq. �4�. In that case, � is called a potential vorticity �or a
pseudovorticity� and there is an additional class of Casimir
invariants: Ih=
h���dydz. We ignore this difficulty linked to
a sort of “degeneracy” for the time being. Note that the situ-
ation where only the pseudovorticity is conserved �i.e., the
case �=0� has been treated in Ref. �26�. In that case, the
generalization essentially amounts to replacing the Laplacian
	 in pure 2D flows by the pseudo-Laplacian 	*. The situa-
tion that we consider here is complicated by the existence of
additional invariants such as helicity discussed below. This
makes our situation intermediate between pure 2D turbu-
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lence and 3D turbulence, an interesting feature of our model.
As in any 3D flows, the total helicity, H=
v ·�rdrdz

=
��dydz is also an invariant. However, more generally, we
show in Appendix A the conservation of a generalized helic-
ity

HF =� �F���dydz , �19�

where F is an arbitrary function. In particular, the total vor-
ticity H0=�=
�dydz is conserved.

D. Nonlinear dynamical stability

From the integral constraints discussed previously, we can
build a functional F=E+ If +HF. This functional is an invari-
ant of the inviscid dynamics. This is an extension of the
Energy-Casimir functional considered in Ref. �11�. It is also
similar to a free energy in thermodynamics. We now show
that a critical point of F determines a stationary solution of
the axisymmetric Euler equations. Furthermore, following
Ref. �11�, a minimum or a maximum of F provides a condi-
tion of formal nonlinear dynamical stability. This means that
a perturbation will remain close �in some norm� to this mini-
mum or maximum. Writing


F = 
�E + If + HF� = 0, �20�

and taking variations on � and �, we obtain

� + F��� = 0 and
�

2y
+ f���� + �F���� = 0. �21�

Setting R=−F and G= f�, we recover Eqs. �11� characteriz-
ing a steady solution of the axisymmetric Euler equations.
Since we obtain the general form of steady states it means
that we have found all the conservation laws of the axisym-
metric Euler equations.

In order to gain some physical insight in the problem, we
consider from now on a simpler model where only the usual
helicity H and the total vorticity � are conserved instead of
all the generalized helicities. This is similar to our choice of
restricting ourselves to the Chandrasekhar model in axisym-
metric magnetohydrodynamics �MHD� �27�. We define

S��� = −� C���dydz , �22�

where C is an arbitrary convex function, i.e., C��0. Such
functionals are exactly conserved by the axisymmetric equa-
tions �they are particular Casimirs�. Therefore, as in 2D hy-
drodynamics �28�, the maximization of S at fixed energy E,
helicity H, circulation � and angular momentum I deter-
mines a nonlinearly dynamically stable stationary solution of
the axisymmetric Euler equations. This refined stability cri-
terion is stronger than the maximization of J=S−�E−�H
−��−�I which just provides a sufficient condition of formal
nonlinear dynamical stability �11�. The difference between
these two criteria is similar to a notion of ensemble inequiva-
lence in thermodynamics �where S plays the role of an en-
tropy and J the role of a free energy� �20,29�. We shall not
prove the nonlinear dynamical stability result in this paper

and refer to Ref. �28� for a precise discussion in 2D hydro-
dynamics. In Sec. II E, we show, however, that this maximi-
zation principle is consistent with the phenomenology of axi-
symmetric turbulence provided that � is interpreted as the
coarse-grained angular momentum.

To first order, the variational problem takes the form


S − �
E − �
H − �
� − �
I = 0, �23�

where �, �, �, and � are appropriate Lagrange multipliers.
This variational problem determining nonlinearly dynami-
cally stable stationary solutions of the Euler equations is
similar to a variational problem in thermodynamics where S
plays the role of an entropy and � the role of an inverse
temperature �20,21�. Using the expression of S, E, H, �, and
I, we find that the solutions of Eq. �23� valid for any 
� and

� satisfy

�� = − �� − � ,

− C���� = �
�

2y
+ �� + � , �24�

which is a particular case of Eq. �11�. Thus, the variational
principle selects stationary solutions of the axisymmetric Eu-
ler equations. We note that when only the ordinary helicity is
considered �instead of the general helicity�, we obtain a lin-
ear relationship between � and �. This is similar to the linear
relationship between velocity V and magnetic field B in
MHD �27�. Note that we have just considered the first order
variations here. To check if solutions �24� are real maxima of
S, one has to look for second-order variations as discussed in
Appendix B.

E. H functions and generalized selective decay principle

We now introduce the notion of fine-grained and coarse-
grained fields. The first one refers to the original field defined
on all points of space and time and the second one to a
smooth version of it, where a local average of the field has
been performed. The coarse-grained field is also defined on
every point of space but contains less small-scale structure
than the original field. Since the functionals �22� calculated
with the fine-grained field � are particular Casimirs, they are
rigorously conserved by the fine-grained dynamics. In con-
trast, as Tremaine et al. �30� have shown for the Vlasov
equation in stellar dynamics, the functionals of the form �22�
calculated with the coarse-grained field increase as mixing
proceeds. This is similar to the Boltzmann H-theorem in ki-
netic theory except that the Vlasov equation does not single
out a particular functional. This property is true also in the
present context since the first expression in Eq. �4� plays the
same role as the Vlasov equation. Therefore, S��̄�
=−
C��̄�dr increases along the dynamics in the sense that
S��̄�r , t���S��̄�r ,0�� for all C and all t�0 where it is as-
sumed that, initially, the flow is not mixed: �̄�r ,0�=��r ,0�
�note that nothing is implied concerning the relative values
of S�t� and S�t�� for t�0, t��0�. Following Ref. �30�, these
functionals will be called H functions �or generalized H
functions�. They also increase �in that case monotonically� in
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the presence of viscosity since the equations of motion now
become

�t� + ��,�� = �r�	
�

r
−

�

r3� = ��	� −
2

r

��

�r
� ,

�t� + ��,�� = �z� �2

4y2� +
�

r
�	�r�� −

�

r
� = ��	� +

2

r

��

�r
� ,

�25�

and by integration by part, one can show that Ṡ=�
C����
�����2dr�0. By contrast, the integrals E, �, H, and I are
exactly or approximately conserved on the coarse-grained
scale �i.e., when they are calculated with the coarse-grained
field� or in the presence of a small viscosity. For example, in
the presence of viscosity, the kinetic energy evolves such that

Ė=−�
�2dr. It is easy to show that for axisymmetric fields,
the total vorticity �=r�e�+�� �� /re�� vanishes in the long
time limit. The demonstration is similar to Cowling’s �31�
theorem of dynamo theory which states that an axisymmetric
magnetic field cannot grow in an axisymmetric velocity
field: the first equation in Eq. �25� shows that �→0 for large
time and, consequently, the source term in the second equa-
tion �z��2 /4y2� vanishes in the long time limit, which im-
plies that �→0. Thus, for axisymmetric flows, both compo-
nents of the vorticity vanish in the long time limit and the
energy is approximately conserved. In a similar way, it can
be shown that �, H, and I are approximately conserved and
must therefore be strictly taken into account in the con-
straints. Therefore, the functionals S can be viewed as fragile
invariants while the constraints E, �, H, and I are robust
invariants. This generalizes the notion of selective decay in
pure 2D turbulence where the enstrophy decays while the
energy is approximately conserved. In fact, minus the enstro-
phy is a particular H function �20,21,23�. The same discus-
sion applies in the present context. On the basis of this phe-
nomenological principle, we expect that, due to chaotic
mixing and violent relaxation, the system will reach a me-
taequilibrium state which maximizes a certain H function
�nonuniversal� at fixed E, �, H, and I. This phenomenologi-
cal argument returns the variational principle �23�. Since this
metaequilibrium state results from turbulent mixing, it is ex-
pected to be particularly robust and should possess properties
of nonlinear dynamical stability. Therefore, the stability ar-
guments given previously are consistent with the phenom-
enology of axisymmetric turbulence, provided that � is in-
terpreted as the coarse-grained angular momentum �̄. This is
remarkable because the two arguments are relatively inde-
pendent: there is no direct notion of decay �of −S� in the first
argument while this lies at the heart of the second. In fact,
the phenomenology of violent relaxation explains how an
inviscid system can reach a nonlinearly dynamically stable
stationary state on a coarse-grained scale which is a maxi-
mum of a certain H function at fixed robust constraints
�while S��� is rigorously conserved on the fine-grained
scale�. The point is that during mixing D�̄ /Dt�0 and the H
functions S��̄� increase. Once it has mixed D�̄ /Dt=0 so that

Ṡ��̄�=0. If �̄�r , t� has been brought to a maximum �̄0�r� of a

certain H function �as a result of mixing� and since S��̄� is
conserved �after mixing�, then �̄0 is a nonlinearly dynami-
cally stable stationary solution of the axisymmetric Euler
equation according to the stability criterion of Sec. II D.

F. A numerical algorithm for the dynamical stability
problem

We shall construct a set of relaxation equations that in-
crease S��� while conserving all the robust constraints E, �,
H, and I. These relaxation equations, which solve the opti-
mization problem of Sec. II D, can serve as powerful numeri-
cal algorithm �44� to compute arbitrary stationary solutions
of the axisymmetric Euler equations. In addition, they guar-
antee that these solutions are nonlinearly dynamically stable
with respect to the inviscid dynamics. Such relaxation equa-
tions therefore have a clear practical interest. They extend
those obtained by Chavanis �20–22� in 2D hydrodynamics.

We write the dynamical equations as

��

�t
= − � · J�,

��

�t
= − � · J�, �26�

where J� and J� are the currents to be determined. We have
not added advective terms since we here use these equations
just as numerical algorithms, not as a description of the dy-
namics �see, however, Sec. III E�. By construction, these
equations satisfy the conservation of the total vorticity and
total angular momentum. On the other hand, the conserva-
tion of energy and helicity impose the constraints

Ė = 0 =� J� · ��dr +
1

2
� J� · ���

y
�dr , �27�

Ḣ = 0 =� J� · ��dr +� J� · ��dr . �28�

Finally, the time variations of S��� are given by

Ṡ = −� C����J� · ��dr . �29�

We derive the optimal currents which maximize Ṡ with Ė

= Ḣ=0 and the additional constraints

J�
2

2
� C��r,t� and

J�
2

2
� C��r,t� , �30�

putting an upper bound on the currents. Writing the varia-
tional principle in the form


Ṡ − ��t�
Ė − ��t�
Ḣ −� �
� J�
2

2
�dr −� ��
� J�

2

2
�dr = 0,

�31�

we obtain the optimal currents

J� = − D��� +
�

C����
� � �

2y
� +

�

C����
� �� ,
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J� = − D��� � � + � � �� , �32�

where ��t� and ��t� are Lagrange multipliers which evolve
in time so as to conserve energy and helicity. They are de-
termined by substituting �32� in the constraints �27� and �28�.
Plugging the optimal currents in �26� we get

��

�t
= � · 
D��� +

�

C����
� � �

2y
� +

�

C����
� ��� ,

��

�t
= � · „D��� � � + � � ��… . �33�

It is straightforward to check that the system �33� increases

the functional �22�, i.e., Ṡ=
�C����J�
2 /D+J�

2 /D��dr�0, and
that the stationary state is given by Eqs. �24�. Using the same
principle, we can also write relaxation equations which mini-
mize F. The optimal currents are

J� = − D��� +
1

f����
� � �

2y
� +

1

f����
� „�F����…� ,

J� = − D�„�� + �F���… . �34�

and they return as an equilibrium state, the stationary solu-
tions �21�.

G. Analytical solutions in simple cases

The steady state equations �14� admit analytical solutions
for simple shapes of the arbitrary functions f and g. We will
here derive some of these solutions and show that they are
critical point of simple functionals.

1. g=0

Let us first consider the case where g=0. In that case, the
steady solution obeys

� = f��� and − 	*� = � =
f���
2y

f���� . �35�

This equation admits simple solutions independent of y. In-
deed, the second equation becomes

d2�

dz2 = −
1

2

d

d�
�f2� , �36�

which is equivalent to the motion of a particle in a potential
1
2 f2��� where � plays the role of position and z the role of
time. Multiplying both sides of Eq. �36� by d� /dz, and then
integrating twice, the solution can be put under parametric
representation as

z = �� d


�K2 − f2�
�
, �37�

where K is an integration constant and we have returned to
original variables. For example, for linear f , one obtains �
���cos�Kz�.

2. Constant g and linear f

Consider now the case where g is a constant g=C and f is
a linear function of �, f =A+B�. The equations become

� = A + B� ,

− 	*� = � =
AB + B2�

2y
+ C . �38�

Note that these equations arise as critical points of the func-
tional F0=E+�0H+�0�+�0I, i.e., they determine a state of
minimum energy at fixed H, � and I. The second expression
in Eq. �38� is an inhomogeneous linear equation for �. The
general solution is the sum of a special solution of the inho-
mogeneous equation superposed to the general solution of
the homogeneous equation. A special solution is easily found
as

� = −
A

B
− 2

Cy

B2 = −
A

B
−

Cr2

B2 ,

� = − 2
Cy

B
Þ v = −

Cr

B
. �39�

This solution corresponds either to a laminar Taylor-Couette
profile, or to a profile maximizing turbulent transport in
Taylor-Couette flow �10�. Notice that the present theory is
unable to capture the 1/r dependence of the Taylor-Couette
flow because the solutions have to be regular at the origin. To
reproduce such a behavior, one has to consider a domain
with two boundaries �corresponding to the inner and outer
cylinders�, one with �=0 and the other with ��0. Such a
procedure would introduce boundary terms in the conserved
quantities.

A general solution of the homogeneous equation can be
found by the method of separation of variables by writing
�=G�y�F�z�. It is then easy to show that F�z��cos��z+
�
where � and 
 are two constants. Then, one finds that G
obeys the following equation:

d2G

dy2 + �B2 − �2

2y
�G = 0 Û r2 d2

dr2�G

r
� + r

d

dr
�G

r
�

+ ��B2 − �2�r2 − 1�
G

r
= 0, �40�

whose solution can be expressed in term of Bessel function
of first order. The general solution for � is thus

�0 = �rJ1���B2 − �2�r�cos��z + 
� , �41�

where �, �, and 
 are integration constants. This solution is
a critical point of the functional FB=E+�0H, i.e., it mini-
mizes the energy at fixed helicity. In vectorial form, this
leads to curl�u�=�u such that vorticity and velocity are ev-
erywhere proportional. This is the so-called Beltrami solu-
tion which has proven to be important in the study of the
dynamo effect �32�, i.e., the generation of a magnetic field by
a conducting fluid. The most popular flow of this type is the
Roberts flow �33�. In the limit �→B, the homogeneous so-
lution tends to r2 and this solution becomes equivalent to one
of the nonlinear self-similar solution of the von Kármán flow
found by Zandbergen and Dijkstra �34�. In Fig. 1, we show a
contour plot of this solution.
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3. f and g linear

The case where both f and g are linear g=C+D� and f
=A+B� is similar to the previous one. The equations are
now

� = A + B� ,

− 	*� = � = �B2

2y
+ D�� +

AB

2y
+ C . �42�

Note that these equations are obtained by minimizing the
second moment of angular momentum I2=
�2dydz at fixed
E, H, �, and I. They represent, therefore, the counterpart of
the minimum enstrophy principle in 2D hydrodynamics,
leading to a linear relationship between vorticity and stream
function. The second expression in Eq. �42� is an inhomoge-
neous linear equation for �. The general solution is the sum
of a special solution of the inhomogeneous equation super-
posed to the general solution of the homogeneous equation.
Solutions of the homogeneous equation can be found by as-
suming separation of variable as previously �=F�z�G�y�.
The solution for F is F�z�=cos��z+
�, where � and 
 are
two integration constants. Then, the equation for G involves
a supplementary term compared to the one in the previous
section

d2G

dy2 + �B2 − �2

2y
+ D�G = 0. �43�

The two solutions of this equations can be expressed in terms
of Whittaker function �see Ref. �35�, p. 1059�
W�,±1/2�2�−Dy�, �= �B2−�2� /8D. These function behave at
infinity as y� exp�−y /2�. Turning back to original variable,
one can therefore express the general solution of Eq. �42� as

�0 = �W�,±1/2��− Dr2�cos��z + 
� , �44�

where � is an integration constant. Note that the negative-
ness of the coefficient D is imposed by an asymptotical
analysis of Eq. �43�: when y→�, we see that a positive

coefficient D would introduce an oscillatory, unphysical, be-
havior for G. Figure 2 shows a typical realization of this
solution.

III. STATISTICAL MECHANICS OF AXISYMMETRIC
FLOWS

A. The mixing entropy

Starting with a given initial condition, Eqs. �4� are ex-
pected to develop a complicated mixing process, with forma-
tion of finer and finer structure, leading to more and more
degrees of freedom. A precise prediction of the state of the
system would a priori require to keep track of all these de-
grees of freedom. Suppose however that we are only inter-
ested in the knowledge of the system at some coarse-grained
scale. Since mixing is continuously occurring at smaller and
smaller scales, we can expect the formation of a metaequi-
librium state on the coarse-grained scale. Our goal is to de-
rive its shape through thermodynamical arguments, based on
entropy maximization in the spirit of Ref. �17�. We focus
here on basics. More discussion about this procedure can be
found in Ref. �16�. We introduce coarse-grained and fine-
grained quantities. According to the third expression in Eq.
�4�, �=	*

−1� is expressed as an integral over �. It is therefore
a smooth function whose fluctuations can be neglected �

= �̄. We shall determine the distribution of fluctuations of
angular momentum � by an approach similar to that devel-
oped in 2D turbulence. We then introduce ��r ,��, the density
probability of finding the value �=� at position r. Then, the

FIG. 1. �Color online� Contour plot of the stream function asso-
ciated to the “Beltrami solution” for the parameters A=3, B=2, C
=2, �=1/2, �=�, and 
=0. The left hand side corresponds to the
homogeneous solution �41� and the right hand side to the sum of the
homogeneous solution and the particular solution �39�.

FIG. 2. �Color online� Contour plot of the stream function asso-
ciated to the “Whittaker solution” of Eq. �43� for the parameters
A=0, B=2, C=0, D=−3, �=1/2, �=�, and 
=0.
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coarse-grained angular momentum is �̄=
��d� and the lo-
cal normalization 
�d�=1. We introduce the mixing entropy

S��� = −� � ln �dydzd� . �45�

This functional S��� is equal to the logarithm of the disorder
where the disorder is the number of microstates correspond-
ing to the macrostate ��r ,�� which can be obtained by a
combinatorial analysis �see Ref. �23� for details�. The fact
that the entropy depends only on the distribution of angular
momentum guarantees that it will be conserved by the fine-
grained dynamics �however, it increases on a coarse-grained
scale as we will show subsequently�. As a drawback, we will
not be able to characterize the fluctuations of pseudovorticity
� by this method; we will simply get its coarse-grained value.
This difficulty may reflect the fact that we are in a situation
intermediate between 2D and 3D turbulence. In 2D turbu-
lence, the distribution of vorticity is enough to construct
equilibrium solutions whereas, in 3D turbulence, it is well
known that the average of fluctuating quantities �such as the
Reynolds stress� are very important. In Appendix D, we con-
sider another approach which puts the fluctuations of � and �
on an equal footing. This approach seems to indicate that the
fluctuations of � have a peculiar behavior that may give rise
to a sort of “phase transition.” Here, for simplicity and clar-
ity, we first concentrate on the simplified situation �similar to
2D turbulence� where the fluctuations of � are mild; how-
ever, we keep in mind that there may be another regime
�closer to 3D turbulence� characterizing axisymmetric flows.

The coarse-grained values of the constraints can be writ-
ten as

Ē =
1

2
� ��dydz +

1

4
� �̄2

y
dydz , �46�

H̄ =� ��̄dydz, � =� �dydz , �47�

In =� ��ndydzd� . �48�

For the coarse-grained energy, we made the nontrivial hy-
pothesis that the fluctuations of the energy could be ne-
glected and used the coarse-grained field �̄ to calculate the
mean energy. This is justified by the remark made in Sec.
II E that in the presence of a small viscosity �or a coarse
graining�, the energy is approximately conserved.

As indicated previously, E, �, H, and I are robust con-
straints. Thus they can be determined at any time since their
exact value is close to their coarse-grained value. They have
thus been expressed directly in terms of the coarse-grained
field. By contrast the higher moments In�1 are fragile con-
straints because they are altered by coarse graining. They can
be determined only from the initial conditions which are sup-
posed unmixed �or from the fine-grained field� since they are
affected by coarse graining in the sense that In�1��̄�
=
�̄ndydz� In�1���=
�ndydz=
��ndydzd�. Part of the Ca-
simirs goes into the coarse-grained field and part goes into

fine-grained fluctuations. In a sense, In�1 are “hidden con-
straints” because they cannot be determined from the coarse-
grained field. Therefore, the statistical theory assumes that
we know the initial conditions in detail and that these initial
conditions represent the fine-grained field. This poses a con-
ceptual problem because in real situations we are not sure
whether the initial condition is already mixed or not. Further-
more, if the initial condition already results from a mixing
process �such as vortices formed in a succession of mergings
in 2D decaying turbulence�, it is more proper to ignore its
fine structure and take its coarse-grained density as a new
“fine-grained” initial condition to predict the next merging
�see Ref. �18�, p. 284�. In fact, due to viscosity, the fine
structure of the field is progressively erased. These difficul-
ties are intrinsic to the statistical theory of continuous fields.

B. The Gibbs state

The most probable distribution at metaequilibrium is ob-

tained by maximizing the mixing entropy S��� at fixed Ē, H̄,

�̄, Ī, In and normalization. We introduce Lagrange multipli-
ers and write the variational principle in the form


S − �
Ē − �
H̄ − �
�̄ − �
Ī − �
n�1

�n
�� ��ndydzd��
−� ��y,z�
�� �d��dydz = 0. �49�

The last term in this equation corresponds to the normaliza-
tion of the probability density in each point of space and thus
needs the introduction of one Lagrange multiplier ��y ,z� for
each point �y ,z�. We shall treat the variations on � and �
independently. The variations on � imply

�� = − ��̄ − � . �50�

The variations on � yield the Gibbs state

� =
1

Z�y,z�
����e−����̄/2y�+��+���, �51�

where

���� = e−�n�1�n�n
. �52�

To prepare the approach of Sec. III E, we have distinguished
between the Lagrange multipliers �n�1 which account for the
conservation of the fragile constraints In�1 �they have been
regrouped in the function ����� from the Lagrange multipli-
ers �, � and � which are related to the robust constraints.
Therefore, the distribution �51� is the product of a universal
Boltzmann factor and of a non-universal function ���� de-
pending on the initial conditions. Note that instead of con-
serving the fine-grained moments In=
�ndydz
=
��nd�dydz of angular momentum, we can equivalently
conserve the total area ����=
�dydz of each level. The “par-
tition function” is determined by the local normalization con-
dition yielding
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Z =� ����e−����̄/2y�+��+���d� . �53�

We note that Z is a function of

� = �
�̄

2y
+ �� + � , �54�

expressed by a sort of generalized Laplace transform �this is
not exactly a Laplace transform since the variable � can take
positive and negative values�:

Z��� = �
−�

+�

����e−��d� 	 �̂��� . �55�

The coarse-grained angular momentum is given by

�̄ =
1

Z��� � �����e−��d� . �56�

It is straightforward to establish that

�̄ = −
� ln Z

��
= F��� and �2 =

�2 ln Z

��2 = − F���� , �57�

where

�2 = �� − �̄�2 = �2 − �̄2, �58�

is the centered variance of the local angular momentum dis-
tribution �we have noted �n=
��nd��. According to the sec-
ond expression in Eq. �57�, F is monotonically decreasing.
Therefore, relation �57� can be inverted and we get

�� = − ��̄ − � , �59�

�
�̄

2y
+ �� + � = F−1��̄� . �60�

Comparing with Eq. �11�, we check explicitly that the
coarse-grained flow is a stationary solution of the axisym-
metric Euler equations. Therefore, for given initial condi-
tions, the statistical theory selects a particular stationary so-
lution among all possible ones. We remark that the
differential equation for �, arising from Eq. �60� and the
third expression in Eq. �4� involves the inverse F−1 of the
function determined by Eq. �57� while in pure 2D turbulence
it involves the direct function F, i.e., −	�=F���+��. This
“inversion” is another striking particularity of our system.

Comparing Eq. �60� with Eq. �24�, we note that the equi-
librium coarse-grained angular velocity maximizes a certain
H function where C is related to F by F−1��̄�=−C���̄�, i.e.,

C��̄� = − ��̄

F−1�x�dx . �61�

The H function S��̄�=−
C��̄�dr selected by the statistical
theory can be viewed as a “generalized entropy” in the re-
duced �̄ space �20–23�. It depends on the initial conditions
through the function ���� which must be related to the fine-
grained moments of angular momentum �Casimirs�. There-
fore, in this approach where the constraints associated with
the Casimirs are treated microcanonically, the generalized

entropy in �̄ space can only be obtained a posteriori, after
having solved the full equilibrium equations and related the
Lagrange multipliers to the constraints.

Using �2=−d�̄ /d� according to Eq. �57� and �=
−C���̄� according to Eq. �24�, we get the identity

�2 =
1

C���̄�
. �62�

Therefore, at equilibrium, there is a functional relation be-
tween the variance �2 of the distribution and the coarse-
grained angular momentum �̄ through the second derivative
of the function C. This is similar to the “fluctuation-
dissipation” theorem �36�. Finally, we note that the most
probable value ����y ,z� of the distribution ��y ,z ,�� is such
that F���=−��+ln ���� is maximum yielding �ln ����0
and

��� = ��ln ����−1��� = G��� , �63�

where G is monotonically decreasing. In general, the most
probable value ��� of the distribution �51� does not coincide
with the mean value �̄. The condition ���= �̄ is equivalent to

− �ln �̂�� = ��ln ����−1. �64�

This equality holds if � is Gaussian. Furthermore, we show
in Appendix C that ��� is a stationary solution of the axisym-
metric Euler equations only when ���= �̄.

C. Particular cases

Some particular cases of F��� relationships have been
collected in Refs. �20,21,23�. We shall specify different
forms of function ���� and determine the corresponding
F��� and S��̄� from the preceding relations. We refer to Ref.
�20� for more details. In the two-levels case where �
=�0 ,�1, we get

�̄ = F��� = �0 +
�1 − �0

1 + e��1−�0�� . �65�

In the present case, we need to invert this relation to express
� as a function of �̄, hence �. As discussed above, this situ-
ation is reversed with respect to pure 2D plane flows. We
thus obtain

− 	*� = � =
1

���1 − �0�
ln� ��1 + �� + �

− �� − � − �0�
� +

1

2

�2

�2

�

y

+
��

2�2y
−

�

�
. �66�

In that case, the generalized entropy in �̄ space has the form

S��̄� = −� �p ln p + �1 − p�ln�1 − p��dr , �67�

with �̄= p�1+ �1− p��0. This is similar to the Fermi-Dirac
entropy. In this two-levels case, the generalized entropy S��̄�
defined by Eqs. �22�–�61� coincides with the mixing entropy
S��� defined by Eq. �45�. This is the only situation where we
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have this equivalence. Taking �0=0 and considering the di-
lute limit �̄ �1, we get

�̄ = �1e−�1�, �68�

leading to

− 	*� = � = −
1

�1�
ln�− �� − �

��1
� +

1

2

�2

�2

�

y
+

��

2�2y
−

�

�
.

�69�

In that case, the generalized entropy in �̄ space is similar to
the Boltzmann entropy

S��̄� = −� �̄

�1
ln

�̄

�1
dr . �70�

If ���� is a Gaussian, then

�̄ = − �2� , �71�

where the centered variance �2 is a constant. Inverting this
relation, we get

− 	*� = � =
�

�2�2
� +

�

�2�2
+

1

2

�2

�2

�

y
+

��

2�2y
−

�

�
.

�72�

This is the type of mean-field equations that we have consid-
ered in Sec. II G. In that case, the generalized entropy in �̄
space is

S��̄� = −
1

2�2
� �̄2dr , �73�

which is similar to minus the enstrophy in pure 2D hydrody-
namics.

If ���� is a decentered Gamma distribution �28,23�, then

�̄ = −
�2�

1 + ��2�
, �74�

where the centered variance �2 is a constant and 2��2
1/2 is

equal to the skewness of ����. Inverting this relation, we get

− 	*� = � =
�� + �

�2��1 − ��� − ���
+

1

2

�2

�2

�

y
+

��

2�2y
−

�

�
.

�75�

In that case, the generalized entropy in �̄ space is

S��̄� = −
1

��2
� ��̄ −

1

�
ln�1 + ��̄��dr . �76�

D. Relaxation towards the statistical equilibrium state

We would like now to construct a system of relaxation
equations which conserve all the invariants of the inviscid
dynamics �robust and fragile� and relax towards the statisti-
cal equilibrium state. These equations can be used as a nu-
merical algorithm to construct the statistical equilibrium
state. They also provide a subgrid scale parametrization of

axisymmetric turbulence. In that context, they can describe
the dynamical evolution of the flow on the coarse-grained
scale. Note that in the coarse-grained formulation, the invis-
cid approximation is easier to justify, since viscosity only
acts at very small scales. Following the approach of Robert
and Sommeria �24�, these relaxation equations can be ob-
tained by using a maximum entropy production principle
�MEPP�.

The equations of evolution for the coarse-grained fields
are given by

��̄

�t
+ ū · ��̄ = − � · J�,

��

�t
+ ū · �� =

�

�x
� �̄2

4y2� − � · J�, �77�

where J� and J� are currents which contain all the informa-
tion coming from interaction with subgrid scales. Note that
we have kept the advective terms because these equations are
expected to describe the relaxation of the flow �on the
coarse-grained scale� towards statistical equilibrium; they are
not only numerical algorithms. If we want to keep track of
the conservation of all the Casimirs �or equivalently of the
total area of each level of angular momentum�, we need to
introduce equations of conservation for the density probabil-
ity ��r ,� , t� of angular momentum. We write them as

��

�t
+ ū · �� = − � · J , �78�

where J�r ,� , t� is the current of the level � of angular mo-
mentum. Multiplying Eq. �78� by � and integrating over all
the levels, we recover the first expression in Eq. �77� with
J�=
J�d�. Furthermore, the conservation of the local nor-
malization 
�d�=1 imposes

� Jd� = 0. �79�

The time variations of S��� are given by

Ṡ = −� J · � ln �drd� , �80�

while the time variations of E and H have been given previ-
ously in Eqs. �27� and �28�. Following the MEPP, we maxi-

mize Ṡ with Ė= Ḣ=0, the normalization constraint �79� and
the additional constraints

� J2

2�
d� � C�r,t�,

J�
2

2
� C��r,t� . �81�

Writing the variational principle in the form


Ṡ − �
Ė − �
Ḣ −� �
�� Jd��dr −� �
� J2

2�
�drd�

−� ��
� J�
2

2�
�dr = 0, �82�

we obtain the optimal currents
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J = − D��� +
1

2
���� − �̄� � � �̄

y
� + ���� − �̄� � �� ,

�83�

J� = − D��� � � + � � �� , �84�

where we have used Eq. �79� to obtain the final expression of
the current �83�. The current of angular momentum is there-
fore given by

J� = − D���̄ +
1

2
��2 � � �̄

y
� + ��2 � �� , �85�

where �2 is defined in Eq. �58�. We note that ��t� and ��t�
are time dependent Lagrange multipliers that evolve in order
to conserve energy and helicity. Their explicit expression is
obtained by inserting Eqs. �84� and �85� in the constraints
�27� and �28�.

We now show that the relaxation equations �77� and �78�
with the currents �84� and �83� increase the mixing entropy
�45� until the Gibbs state is reached �H theorem�. We can
write the rate of entropy production �80� in the form

Ṡ = −� J

�
· ��� +

1

2
���� − �̄� � � �̄

y
�

+ ���� − �̄� � ��drd� +
1

2
�� �� − �̄�J · �� �̄

y
�drd�

+ �� �� − �̄�J · ��drd� . �86�

Using Eqs. �84� and �83� this can be rewritten

Ṡ =� J2

D�
dr +

1

2
�� J� · �� �̄

y
�dr + �� J� · ��dr .

�87�

Using Eqs. �27� and �28�, we get

Ṡ =� J2

D�
dr −� J� · �� � � + � � �̄�dr , �88�

hence

Ṡ =� J2

D�
dr +� J�

2

D�
dr . �89�

We conclude that Ṡ�0 provided that D ,D��0. At equilib-

rium Ṡ=0 yielding J=J�=0. Equations �84� and �83� imply

� ln � +
1

2
��� − �̄� � � �̄

y
� + ��� − �̄� � � = 0 , �90�

� � � + � � �̄ = 0 . �91�

The second equation is equivalent to

�̄ = −
�

�
� −

�

�
. �92�

On the other hand, for any reference level �0, Eq. �90� yields

� ln �0 +
1

2
���0 − �̄� � � �̄

y
� + ���0 − �̄� � � = 0 . �93�

Subtracting Eqs. �90�–�93� and integrating, we obtain

ln� �

�0
� +

1

2
��� − �0�

�

y
+ ��� − �0�� = A��� , �94�

which can be written

� =
1

Z�r�
����e−����̄/2y�+���e−���. �95�

Thus, the stationary solution of the relaxation equations is
the Gibbs state �51�.

The relaxation equations are relatively complicated to
solve, because we need to solve N coupled PDE, one for
each level. Alternatively, we can write down a hierarchy of
equations for the moments of angular momentum �n. The
first moment equations of the hierarchy can be written

��̄

�t
+ u · ��̄ = � · 
D���̄ +

1

2
��2 � � �̄

y
� + ��2 � ��� ,

�96�

��

�t
+ u · �� =

�

�z
� �̄2

4y2� + �„D��� � � + � � �̄�… . �97�

We are now led to a complicated closure problem because
each equation of the hierarchy involves the next order mo-
ments. For example, the equation for �̄ involves �2 etc. In
the two levels approximation, one has �2= ��̄−�0���1− �̄�.
On the other hand, a Gaussian distribution of fluctuations at
equilibrium can be obtained by imposing that �2 is constant.
In these two particular cases, the equations �96� are closed.
More generally, we must write down the higher moments of
the hierarchy and close them with a local maximum entropy
principle as proposed by Robert and Rosier �37�. If we
implement this procedure up to second moment, it leads to a
Gaussian distribution. Its implementation to higher moments
is difficult. Furthermore, its physical justification is unclear.
In practice, we must come back to the N coupled PDE for the
levels.

E. Prior distribution and generalized entropy

In the statistical approach presented previously, we have
assumed that the system is rigorously described by the axi-
symmetric Euler equations so that the conservation of all the
Casimirs In must be taken into account. This corresponds to
a freely evolving situation. Alternatively, in the case of flows
that are forced at small scales, Ellis et al. �28� have proposed
to replace the conservation of all the Casimirs by the speci-
fication of a prior distribution ���� encoding the small-scale
forcing. This approach has been further developed in Cha-
vanis �21�. In this approach, the constraints associated with
the �fragile� moments In�1 are treated canonically instead of
microcanonically. By contrast, the robust constraints �energy,
circulation, helicity, angular momentum� are still treated mi-
crocanonically. If we view the levels � of angular momen-
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tum as different species of particles, this approach amounts
to fixing the chemical potentials instead of the total number
of particles in each species. The idea is that the ambient
medium behaves as a reservoir of angular momentum: the
small-scale forcing and dissipation affect the conservation of
the moments of angular momentum In�1 while fixing instead
the canonical variables �n.

Therefore, in the present situation, the relevant entropy S�

is obtained from the mixing entropy �45� by making a Leg-
endre transform on the fragile moments In�1 �21�. If we as-
sume that the �n in the variational principle �49� are fixed by
the “reservoir” �ambient medium�, we can define a relative
entropy by

S� = S − �
n�1

�nIn = S − �
n�1

�n� ��ndydzd� . �98�

This is similar to the passage from the entropy S �microca-
nonical description� to the grand potential !=S−�N �grand
microcanonical description� in usual thermodynamics when
the chemical potential is fixed instead of the particle number.
Using Eq. �45�, we get

S� = −� ��ln � + �
n�1

�n�n�dydzd� . �99�

Introducing the function �52�, we obtain

S� = −� � ln� �

�����dydzd� . �100�

The function ���� is interpreted as a prior distribution of
angular momentum. It is a global distribution of angular mo-
mentum fixed by the small-scale forcing. It must be regarded
as given. In this approach, the statistical equilibrium state is
obtained by maximizing the relative entropy �100� while
conserving only the robust constraints. Thus, we write the
variational problem as


S� − �
E − �
H − �
� − �
I −� ��y,z�
�� �d��dydz

= 0. �101�

We can now repeat the calculations of Sec. III B with almost
no modification. The only difference is that we regard the
�n’s as given. Therefore, the Gibbs state is determined by
Eq. �51� where ���� is fixed a priori by the small-scale forc-
ing. Recall that in the previous approach �freely evolving
flows�, it had to be determined a posteriori from the initial
conditions �assumed known� by a complicated procedure.
Here, the specification of ���� automatically determines the
function F by Eq. �57� and then C by Eq. �61�. Thus, the
generalized entropy in �̄ space S��̄�=−
C��̄�dr is now de-
termined by the small-scale forcing through the prior ����
while in the preceding approach it was determined by the
initial conditions through the Casimirs In�1. Explicitly, the
generalized entropy is expressed as a function of � by the
formula �23�

C��̄� = − ��̄

��ln �̂���−1�− x�dx . �102�

The equilibrium coarse-grained angular momentum �̄ maxi-
mizes the generalized entropy �22�–�102� at fixed robust con-
straints E, �, H, and I. In the present context, the relaxation
equations introduced in Sec. II F can describe the relaxation
of the coarse-grained flow towards statistical equilibrium
once the small-scale forcing has established a permanent re-
gime characterized by a prior distribution ���� determining a
generalized entropy S��̄�. Since we are now interested by the
route to equilibrium we need to restore the advective terms,
so we write

��̄

�t
+ u · ��̄ = � · 
D���̄ +

�

C���̄�
� � �̄

2y
� +

�

C���̄�
� ��� ,

��

�t
+ u · �� =

�

�z
� �̄2

4y2� + � · �D��� � � + � � �̄�� .

�103�

The physical interpretation of these equations is quite differ-
ent from Eq. �33�. In Sec. II F, the relaxation equations �33�
provide a numerical algorithm to determine any nonlinearly
dynamically stable stationary solution of the axisymmetric
equations, specified by the convex function C. In this con-
text, only the stationary solution for t→ +� matters and the
evolution towards that state has no physical meaning �it is
just the engine of the algorithm�. In the present section, the
relaxation equations �103� provide a description of the evo-
lution of the coarse-grained field, for all time t, in a medium
where a small-scale forcing imposes a prior distribution ����
�or a generalized entropy C��̄� in the reduced �̄ space�.
These equations conserve only the robust constraints and sat-
isfy a generalized maximum entropy production principle for
the functional S��̄�. Finally, the relaxation equations of Sec.
III D provide a description of the evolution of the coarse-
grained field, for all time t, of a freely evolving system.
These equations conserve all the constraints �including the
Casimirs� and satisfy a maximum entropy production prin-
ciple for the functional S���. Note that the relaxation equa-
tions �103� can also be obtained from the moments equations
�96� and �97� of the ordinary statistical theory by using the
relation �62� to express �2 as a function of �̄. In a sense, this
relation can be seen as a closure relation imposed by a small-
scale forcing. Thus, the relaxation equations �103� are not
simply numerical algorithms; they can also provide a param-
etrization of axisymmetric flows with a small-scale forcing.
Their interest as numerical algorithms �in the sense of Sec.
II F� remains, however, important in case of incomplete re-
laxation to construct stable stationary solutions of the Euler
equation which are not consistent with the statistical theory
�in cases where the evolution is nonergodic� in order to re-
produce the observations, as discussed in Refs. �20–23�.

IV. SUMMARY

In this paper, we have developed new variational prin-
ciples to study the structure and the stability of equilibrium
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axisymmetric flows. We have completely characterized the
steady states of the inviscid dynamics and found that there is
an infinite number of solutions. We have shown that each of
these steady states extremizes a certain functional and that
maxima or minima of this functional correspond to nonlin-
early dynamically stable states. We have given analytical so-
lutions in some simple cases to illustrate our formalism. One
of these steady states �nonuniversal� will be reached on the
coarse-grained scale as a result of violent relaxation �chaotic
mixing�. Our general approach must be contrasted from that
of other authors who obtained particular solutions of the
Navier-Stokes equation by means of phenomenological prin-
ciples �minimum of enstrophy for example in 2D turbulence,
Beltramization for MHD and axisymmetric flows, etc.�. Such
solutions are recovered as particular cases of our formalism
but many other solutions can emerge in practice depending
on the initial conditions, on the route to equilibrium �ergod-
icity� and on the type of forcing. This is why we try to
remain very general. Our point is that there is no clear uni-
versality in 2D or axisymmetric turbulence �20–23�. In a
second part, we have developed a thermodynamical ap-
proach to determine the statistical equilibrium states at some
fixed coarse-grained scale. We found that the resulting distri-
bution can be divided in two parts: one universal part, com-
ing from the robust constraints, and one nonuniversal, which
depends on the initial conditions �Casimirs� for freely evolv-
ing systems or on a prior distribution encoding nonideal ef-
fects such as forcing and dissipation. Finally, we have de-
rived relaxation equations which can be used either as
numerical algorithm to compute stable stationary solutions of
the axisymmetric Euler equations, or to describe the dynam-
ics of the system �freely evolving or forced� at the coarse-
grained level.

The main question regarding the application of our results
to realistic systems �such as the ones mentioned in the Intro-
duction� is the relevance of the use of the ideal �Euler� equa-
tion instead of the true dissipative system. In fact, the pres-
ence of a small viscosity does not preclude the applicability
of our results. First of all, since viscosity acts at small scales,
its main effect is to erase the fluctuations around the coarse-
grained field. Thus, it gives a physical support for selecting
the coarse-grained field which is at large scales and which is
relatively robust against viscosity. On the other hand, we
have shown that viscosity and coarse graining act in a similar
manner so that they are not in opposition. In a very turbulent
flow, the diffusion acts only at small scales by dissipating
energy. By disregarding the details of the fine-grained dy-
namics, we have a similar process where energy is lost in the
small scales but accumulates in the large scales. On the other
hand, we have shown that a �generalized� selective decay
principle can be motivated either by viscous effects or by
coarse graining. Indeed, a small viscosity or a coarse grain-
ing tend to increase the value of the H functions �fragile
constraints� with only weak modification on the energy, an-
gular momentum, circulation, and helicity �robust con-
straints�. Therefore, viscous effects do not break the nonlin-
ear dynamical stability results. On the contrary, they can
precisely explain �together with coarse graining� how the
system can reach a maximum of an H function at fixed ro-
bust constraints. Without dissipation �viscosity or coarse

graining� this is not possible since the Casimir functionals
S��� are rigorously conserved by the Euler equation. We
believe, however, that the main increase of the fragile con-
straints �such as enstrophy� is due to coarse graining �18�
rather than molecular viscosity �in classical works on 2D
turbulence, it is argued instead that enstrophy is dissipated
essentially by viscosity�. The main difference between vis-
cous and inviscid flows is that inviscid flows tend to a strict
stationary solution of the Euler equation �on the coarse-
grained scale� while, in the presence of a small viscosity, this
large-scale structure slowly diffuses and ultimately disapears.
However, if �→0, this happens on a long time scale that is
not of most physical interest. Note finally that forcing can act
against viscosity and maintain a steady state as for an invis-
cid evolution.

The other effect of viscosity, now regarding the statistical
mechanics approach, is to break the conservation of the Ca-
simirs. This is a problem for the original approach �Sec.
III B� where it is assumed that all the Casimirs are con-
served. However, in the point of view developed in Sec.
III E, we have replaced the specification of the Casimirs by a
prior distribution of angular momentum. It corresponds to
the nonuniversal part of the distribution of fluctuations given
by the Gibbs state �51�. We have argued that this prior is
precisely determined by nonideal effects such as viscosity
and forcing �in addition to the initial conditions and the
boundary conditions�, i.e., by all the complicated features of
turbulence. Therefore, in this point of view, the existence of
a viscosity and a forcing can be taken into account phenom-
enologically in the theory. On the other hand, it should be
noted that the effect of coarse-graining is similar to a turbu-
lent viscosity. This is best seen in the relaxation equations
�103� which involve a diffusion term with a “turbulent vis-
cosity” D. However, our approach shows that the adjunction
of a turbulent viscosity to the Euler equations in order to
model turbulence is not sufficient as it breaks the conserva-
tion of energy. Therefore, additional drift terms arise in the
relaxation equations to act against diffusion and lead to a
steady state �21�. There are other pieces of evidence for the
claim that the introduction of a coarse-graining procedure is
similar to a diffusive process. For example, recent numerical
simulations have shown that the Euler equation with a high
wave-number spectral truncation shows similar features as
the Navier-Stokes �dissipative� equation �38�. This issue con-
cerning the influence of viscosity will be addressed more
thoroughly in a second paper, where we confront our predic-
tion to experimental data, and use them to derive and char-
acterize the nonuniversal features of the equilibrium distri-
butions.

Finally, we will address the changes to be made to ac-
count for a global rotation of the system. Taking the rotation
vector to be aligned in the z direction, the Coriolis force will
only add a term 2!u on the left-hand side of the first equa-
tion �2�. Then, the conserved quantity will be ��=rv+!r2

instead of �=rv. This is similar to the use of a potential
vorticity when doing the statistical mechanics of two-
dimensional rotating fluid instead of the usual vorticity �36�.
Similarly, the right-hand side of the second equation will
now be �z��v2+2!vr� /r�=�z��v2+2!vr+!2r2� /r�
=�z���2 /r3�. Consequently, all the results in this paper will
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be valid provided that �� is used instead of �.
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APPENDIX A: DERIVATION OF CONSERVATION LAWS

In this Appendix, we prove the conservation laws used in
the main text. A cornerstone of the proof is the general iden-
tity

� ��
,��dydz = −� 
��,��dydz , �A1�

which holds if one of the two fields � or 
 vanishes on the
boundary of the domain.

Energy conservation: using the equations of motion and
assuming that �=0 or �=�=0 on the boundary of the do-
main, we have

Ė =� �
��

�t
dydz +� �

2y

��

�t
dydz ,

=� ���− ��,�� − 
 �

2y
,��� −

�

2y
��,���dydz

=� �− ���,�� +
�

2y
��,�� −

�

2y
��,���dydz = 0, �A2�

where we have used the identity �A1� twice to obtain the
third line.

Casimirs conservation: using the equations of motion and
�=0 or �=0 on the boundary, we will show that all the
moments of � are conserved:

İn = n� �n−1��

�t
dydz ,

=− n� �n−1��,��dydz

= n� ���n−1,��dydz = 0, �A3�

where we have used the identity �A1� in the third line.
Helicity conservation: using the equations of motion, we

have

Ḣ =� 
F���
��

�t
+ �F����

��

�t
�dydz ,

=−� F������,�� + 
 �

2y
,���

−� �F������,��dydz . �A4�

Then,

� F���
 �

2y
,��dydz = −� �

2y
�F���,��dydz = 0,

�A5�

if � or F��� vanishes on the boundary of the domain. There-
fore,

Ḣ = −� F�����,��dydz −� �F������,��dydz

= −� F�����,��dydz +� ��F���,��dydz

= −� ��F���,��dydz +� ��F���,��dydz = 0, �A6�

where we have used identity �8� in the second line and iden-
tity �1� in the third line and assumed that F���=0 or �=0 on
the boundary of the domain.

APPENDIX B: STABILITY OF SOLUTIONS

In Sec. II D, we found that the functions �0�y ,z� and
�0�y ,z� which extremize the functional �22� are solutions of
the following set of equations:

��0 = − ��0 − � and − C���0� = �
�0

2y
+ ��0 + � . �B1�

However, only maxima of S are nonlinearly dynamically
stable. We need therefore to investigate the sign of the sec-
ond order variations of J=S−�E−�H−��−�I. Writing �
=�0+
�, �=�0+
� and �=�0+
�, one obtains for all 
�
and 
�:


2J��0,�0� = −� dydz��C���0� +
�

2y
��
��2 + 2�
�
�

+ �
�
�� , �B2�

with 
�=−	*
�. Using the operators curl and curl defined in
Ref. �27�, one can easily show that the last term can be
rewritten:

�� 
�
�dydz = �� �curl�
�

r
��2

dydz . �B3�

Putting 
�=0 in Eq. �B2�, the condition 
2J��0 ,�0��0 thus
implies that � must be positive. This is at variance with pure
2D hydrodynamics, where stable structures can exist at nega-
tive temperature and are the most relevant. Also, assuming

�=0, one finds that a maximum of J should satisfy the
following condition:

� �C���0� +
�

2y
��
��2dydz � 0, �B4�

which is trivially fulfilled because C is a convex function.
One cannot find a general condition on the value of � in
order for 
2J��0 ,�0� to be negative but a sufficient condition
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can be found by using the fact that in Eq. �B2�, the last term
in the integral is everywhere positive. Consequently, a suffi-
cient condition for 
2J�0 is

� dydz��C���0� +
�

2y
��
��2 + 2�
�
�� � 0

Û� dydz��C���0� +
�

2y
��
� +

�

C���0� +
�

2y


��
2

−
�2

�C���0� +
�

2y
�2 �
��2� � 0, �B5�

for all 
� and 
�. This condition can obviously be provided
if �=0. A sufficient condition for �0 and �0, solution of Eq.
�B1�, to be maximum of S is thus �=0 and ��0. However,
this is only a very particular case.

APPENDIX C: STATIONARITY OF Š�‹

The most probable value of the distribution �51� can be
written

��� = G��� = G�F−1��̄�� = G�F−1�−
�� + �

�
�� , �C1�

showing that ���= f��� is a function of � alone. We now
write the condition under which ��� is a stationary solution
of the axisymmetric Euler equations. Comparison between
Eqs. �14� and �60� shows that the following relation must
hold:

−
�

�
�̄ =

1

2

d

d�
f2. �C2�

Using Eq. �59�, this can be rewritten

f��� =��2�2

�2 + 2
��

�2 � + c , �C3�

where c is an integration constant. If we require that �̄
= ��� on the boundary of the domain ��=0�, then, using Eq.
�59�, we get f2�0�=c=�2 /�2. Substituting in Eq. �C3�, we
find that G�F−1 is the identity so that ���= �̄ �everywhere�.
This implies that ��� is a stationary solution of the axisym-
metric equations only when it coincides with �̄.

APPENDIX D: FLUCTUATIONS OF �

1. Generalities

In this appendix, we try to develop the statistical mechan-
ics approach in the general case, without ignoring the fluc-
tuations of �. Since � is not conserved by the axisymmetric
equations �D� /Dt�0�, this may invalidate the use of a sta-
tistical theory to predict its fluctuations, so that our approach
is essentially phenomenological and explanatory. We intro-
duce ��r ,� ,��, the density probability of finding the values
�=� and �=� in r at equilibrium. Then, the coarse-grained

fields are �̄=
��d�d�, �̄=
��d�d� and the local normaliza-
tion is 
�d�d�=1. We introduce the mixing entropy

S��� = −� � ln �dydzd�d� . �D1�

As usual, the fluctuations of � will be neglected because it is
an integrated quantity of the primitive field �. The integral
constraints can be reexpressed as

Ē =
1

2
� ���dydzd�d� +

1

4
� �

�2

y
dydzd�d� , �D2�

Hn =� ���ndydzd�d� , �D3�

In =� ��ndydzd�d�, �̄ =� ��dydzd�d� . �D4�

The most probable distribution at metaequilibrium is there-
fore obtained by maximizing the entropy at fixed E, Hn, and
In. We introduce Lagrange multipliers and write the varia-
tional principle in the form


S − �
Ē − �
n

�n
Hn − �
n

�n
In

−� ��y,z�
�� �d�d��dydz = 0. �D5�

The variations on � yield the Gibbs state

� =
1

Z�y,z�
e−����+��2/4y��−�G���−�F����, �D6�

where �F���=�n�n�n and �G���=�n�n�n. The “partition
function” is determined by the local normalization condition
yielding

Z =� e−����+��2/4y��−�G���−�F����d�d� . �D7�

The coarse-grained fields �̄ and �̄ are the averaged values of
the distribution �D6�. This approach predicts that the distri-
bution of fluctuations of pseudo-vorticity is exponential
�e"�y,z,��� so that, depending on the sign of ", it diverges
either for �→ +� or �→−�. The problem of the smoothness
of the vorticity is still an unresolved issue for the Navier-
Stokes equation related to the existence and uniqueness of its
solutions. In two dimensions, it can be shown that it is
bounded �39� whereas in three dimensions, very little is
known. In our case, which is intermediate between these two
cases, we can infer that the vorticity will be bounded as we
have seen that in the axisymmetric case, the vorticity has to
vanish in the long time limit �see Sec. II E�. The range of
integration for the variable � is thus restricted to finite val-
ues: �����.
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We now look for extremum values of the distribution
�D6�. To study this problem, we write

��y,z,�,�� =
1

Z
exp�− F��,��� ,

with F = ���� + �F���� +
��2

4y
+ �G��� . �D8�

We start to search for extrema of the distribution in the inte-
rior of the domain �−�m ,�m� and call them ��� , ���. One can
check that they obey the equations

� �F
��
�

���,���
=

����
2y

+ �G������ + ����F������ = 0,

� �F
��
�

���,���
= �� + �F����� = 0. �D9�

These extremum fields ��� and ��� are stationary states of the
Euler axisymmetric equation �with families indexed through

the conservation laws� while the averaged states �̄ and �̄ are
not in general. The stability of these extremum states can be
found in principle by considering the second variations of F.
Here, we prefer to use the following trick. We introduce the
functions

Q��*,�*� = �� + �F��*� ,

R��*,�*� =
��*

2y
+ �G���*� + ��*F���*� . �D10�

Then, for any �* and �*, one has

F��,�� − F��*,�*� = − Q��*,�*��� − �*� − R��*,�*�

��� − �*� −
�

4y
�� − �*�2 − ��� − �*�

��� − �*�F���*� − ��G��� − G��*�

− �� − �*�G���*�� − ���F��� − F��*�

− �� − �*�F���*�� . �D11�

Choosing �*= ��� and �*= ���, we have Q=R=0, so that the
probability function simply becomes

� =
1

Z*�y,z�
exp�−

�

2y
�� − ����2 − ��� − ����

��� − ����F������ − ��G��� − G�����

− �� − ����G������� − ���F��� − F�����

− �� − ����F�������� ,

Z* = ZeF����,����. �D12�

Due to the e"� dependence of the density probability, one can
check that the extremal states of the Gibbs probability distri-
bution are saddle points �stable in one direction, unstable in

the other�, except when F is constant and ��+�F=0 �lead-

ing to �̄=0�, in which case they are stable states for positive
temperature ��0. The fields ��� and ��� thus are not real
extrema of the distribution. Moreover, one sees that when F
is constant with ��+�F=0 and G is linear, the probability
distribution of � is a Gaussian in the variable ��− ����2 and
the probability distribution of � is uniform. Therefore, the
most probable state ��� coincides with the mean state �̄.
However, this is not the generic case.

We now look at possible extrema on the frontier of the
domain of integration, for �= ±�. It is obvious that if it exists
a physical bound on the vorticity, it must depend on the
shape of velocity field: �=���̄ ,��. Assuming this function to
be known, we can write the conditions that must satisfy an
extremum ��0 ,�0� of � located on the frontier of the integra-
tion domain

� �F
��
�

�0,�0

=
��0

2y
+ �G���0� + ��0F���0� = 0,

�D13�

�0 = ± ���̄,�� .

We note that these fields are not stationary states of the Euler
axisymmetric equation, contrary to ��� and ���. To decide
which of the two couples ���� , ���� or ��0 ,�0� is the most
probable state of the distribution �, one has to compare the
value of the function F at these two points:

F��0,�0� = �0��� + ��F��0� − �0F���0���

+ ��G��0� − �0G���0�� �D14�

and

F����,���� = ��G����� − ���G�������

− �F������������ . �D15�

From these expressions, it is not possible to decide which
one of these two values is the smallest �corresponding to a
maximum value for �� in the general case. However, in the
special case where G�� and F��, we have

F��0,�0� = �0�� �D16�

and

F����,���� = − ������� = ����� , �D17�

where we have used the second term in Eq. �9� to obtain the
last equality. Since �������, one obtains the most probable
state on the boundary of the domain of integration. More
generally, since ���� , ���� corresponds to a saddle point of F,
the relevant solution to consider should be the solution
��0 ,�0� where � reaches its maximum bound. Therefore, this
approach suggests that the equilibrium states of axisymmet-
ric flows are those that maximize � �the toroidal component
of the vorticity�. Since the dissipation of kinetic energy is
equal to the space integral of the squared vorticity �see Sec.
II E�, our conclusion resembles the assumption made by
Malkus �40�, followed by Howard �41�, and Busse �42�, who
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calculated bounds on the kinetic energy dissipation for ther-
mal convection problems by maximizing the dissipation on a
manifold that includes the solutions of the problem. This
principle of maximal dissipation has been extended to a
purely chaotic system by Ref. �43� and in this case too, the
observed equilibrium solutions are very close to that calcu-
lated by a maximization of the dissipation. It is, however,
interesting to notice that in these approaches, the maximum
dissipation is assumed and the shape of the equilibrium field
is derived while in our approach we show that the equilib-
rium state �which maximizes the entropy� is the one with a
maximal vorticity field. The drawback of our approach, how-
ever, is that we do not have an explicit form for the equilib-
rium solution, unless we know how to derive the bound on
the vorticity.

2. Examples

A few examples can be given to illustrate the points de-
veloped above. For simplicity, let us consider first the case
with F=1, where � and � become independent. In such case,
the probability distribution function is

� =
1

Z
e−����+��−���2/4y�−�G���, �D18�

and the partition function factorizes into Z=Z�Z� with

Z� = �
−�

+�

e−����+��d� =
2

�� + �
sinh����� + ��� .

�D19�

Following the discussion of the previous section, we have
introduced a symmetrical cut-off �. This situation is similar
to the Turkington model in 2D turbulence, see Ref. �20�. By
integration, one finds

�̄ =
1

Z�
�

−�

+�

�e−����+��d� = −
� ln Z�

��� + ���
= �L�− ���� + ��� ,

�D20�

where

L�x� = tanh−1�x� −
1

x
, �D21�

is the Langevin function. For the other part of Z we get

Z� = �
−�

+�

e�−��2/4y�−�G���d� . �D22�

Case G���=�, F=1: in this case, the extremal state is �
=−� /�, ���=−2�y /� or �0=−2�y /�, �0= ±�. To derive the
mean state, we first compute

Z� = 2��y

�
�1/2

e��2/��y . �D23�

The mean state may then be found from

�̄ =
1

Z�
�

−�

+�

�e�−��2/4y�−��d� = −
� ln Z�

��
= −

2�

�
y .

�D24�

The mean state �̄ therefore coincides with the extremal state

��� if �=−� /� or �0. The mean state �̄ is equal to zero if
�=−� /� and is lower than ��0�=� �in absolute value� other-
wise.

Case G���=�+k�2, F=1: in this case, the extremal state
is �=−� /�, ���=−2�y / ��+4k�y� or �0=−2�y / ��+4k�y�,
�0= ±�. For the partition function, we have

Z� = 2� �y

� + 4�ky
�1/2

e�2y/��+4�ky�, �D25�

and

�̄ = −
� ln Z�

��
=

2�y�� − k� + 4�ky2�� − 2k�
�� + 4�ky�2 . �D26�

Therefore, the mean state does not coincide with the ex-
tremal state.

Case F���=G���=�: in this case, the extremal state is
�=−�� /�����, ���=−� /�− �� /2y����� or �0=−� /�
− �� /2y���0, �0= ±�. Integrating the partition function first
with respect to �, we get

Z =�4�y

�
�

−�

+�

d� exp�− ��� +
�� + ���2y

�
� .

�D27�

Using this, we find the mean state as

�̄ =
1

Z
�4�y

�
�

−�

+�

d�� exp�− ��� +
�� + ���2y

�
�

=
1

Z
�4�y

�

�

2�2y
�−�

+�

d��− �� +
2�y

�
�� + ����

�exp�− ��� +
�� + ���2y

�
�� +

�2�

2�2y
−

�

�

=
1

Z
�4�y

�

�

�2y
exp� ��2 + �2�2�y

�
�sinh���� −

2���y

�
�

+
�2�

2�2y
−

�

�
�D28�

and

�̄ = −
� ln Z

��
= −

2y

�
�� + ��̄� . �D29�

When the cutoff � is taken into account, the mean state does
not coincide with the extremal state.
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