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Duality between quantum and classical dynamics for integrable billiards
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We establish a duality between the quantum wave vector spectrum and the eigenmodes of the classical
Liouvillian dynamics for integrable billiards. Signatures of the classical eigenmodes appear as peaks in the
correlation function of the quantum wave vector spectrum. A semiclassical derivation and numerical calcula-
tions are presented in support of the results. These classical eigenmodes can be observed in physical experi-
ments through the autocorrelation of the transmission coefficient of waves in quantum billiards. Exact classical

trace formulas of the resolvent are derived for the rectangle, equilateral triangle, and circle billiards. We also
establish a correspondence between the classical periodic orbit length spectrum and the quantum spectrum for

integrable polygonal billiards.
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I. INTRODUCTION

Two sets of spectra can be associated with any dynamical
system. The quantum spectrum, represented by the eigenval-
ues of the Schrodinger equation, is a set of real numbers for
a closed system, while for an open system, the eigenvalues
become complex and are called resonances. The classical
dynamics can be described in terms of the eigenspectrum and
eigenfunctions of the Liouville operator. For hyperbolic sys-
tems, the classical spectrum is comprised of the so-called
Ruelle-Pollicott resonances [1,2] which determine the time
evolution and relaxation of classical correlations.

Since the birth of quantum mechanics the correspondence
between the classical and quantum properties has been ex-
amined from different perspectives. While the classical dy-
namics in the phase space is governed by the Liouville equa-
tion, the corresponding quantum dynamics in phase space is
governed by the Moyal equation of the Wigner function. In
the classical limit, the higher-order terms of # in the Moyal
equation vanish, and one retrieves the classical Liouvillian
dynamics. This correspondence in the phase space properties
has been studied by Brumer and collaborators [3]. In this
paper, we obtain three principal results that establish a dual-
ity between quantum and classical dynamics in integrable
billiards.

For billiard systems, it is natural to work in wave vector
space [4,5]. We find that the two-level correlation of billiard
systems in wave vector k space is invariant with respect to
the correlation interval. Peaks are observed in the quantum
spectral correlations and are shown to be centered at the
classical eigenmodes of the Liouvillian dynamics. Thus we
establish a duality between the quantum wave vector spec-
trum {k,} and the classical eigenmodes {7,} for integrable
closed billiard systems, which can be expressed as

ClAGkD]=g({vah).- (1)

Here f({k,}) and g({y,}) are certain spectral functions with
C[f] an appropriately defined quantum correlation. The
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quantum wave vector spectral correlation directly leads to
the classical eigenmodes. The results are numerically dem-
onstrated for example systems including the two-
dimensional rectangle, equilateral triangle, and circle bil-
liards. A semiclassical derivation is provided supporting the
results. Generalization to higher-dimensional integrable sys-
tems is straightforward.

It is well known that the quantum spectrum can be calcu-
lated from classical periodic orbits (POs) through the
Gutzwiller trace formula. Here we obtain an exact inverse
result, viz., that the classical PO length spectrum can also be
expressed in terms of the quantum wave vector spectrum, for
integrable polygonal billiards. Finally, we also obtain exact
classical trace formulas for integrable billiards.

In Sec. II, the quantum correlation is defined and the bil-
liard systems under consideration are introduced. The corre-
sponding classical dynamics are discussed, the classical
eigenmodes and exact classical trace formulas are obtained
in Sec. III. A semiclassical derivation of the quantum corre-
lation is provided in Sec. IV. Detailed numerical calculations
supporting the main results are presented in Sec. V. The ex-
act relation between the classical POs spectrum and the
quantum spectrum is established for integrable polygonal bil-
liards in Sec. VI. Finally, Sec. VII presents a summary and
some remarks on the results.

II. QUANTUM EIGENVALUES AND CORRELATIONS

In this paper, we consider the wave vector density of
states (DOS) as our quantum spectral function which is a
sum of § functions p(k)==,8(k—k,). In order to study the
quantum spectral correlation, we use a Lorentzian-smoothed
DOS

€

pll)=—3

T, (k—k,)>+ € @

Here € is a small width. In the limit e— 0, one gets the stick
spectrum. The continuous part of the DOS for two-
dimensional closed billiard systems is obtained from the
Weyl law as {p(k)=(A/2m)k+L/4m with A and L the area
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and perimeter, respectively. The plus sign is for the Neumann
boundary condition (NBC) while the minus sign for the
Dirichlet boundary condition (DBC). The fluctuation part of
the DOS is dp(k)=pk)—{p(k)). Define the following cor-

relation:

C, (5) = (Sp k) Spck + 5))i.. 3)

Here 8p.(k) is within a window [K,—A, Ky+A] with certain
K, and A such that A> 6, the mean level spacing. The range
of average over k is from —A—min(0,s) to A—max(0,s). The
range of s can be safely put as —A <s<<A. The average over
k is defined as (f(k))=(b—a)”'[ ';f(k)dk. Cross correlation
can be defined similarly for any two intervals [K;—A, K,
+A] and [K,—A, K,+A] with arbitrary K; and K, [6].

We remark that the correlation C,, (s) in Eq. (3) is essen-
tially the two-level correlation R,(s). The difference is that
here, there is no unfolding and no rescaling by the mean
level spacing of the energy levels. For billiard systems, the
correlation Cpe(s) in Eq. (3) is invariant with the choice of K|,
and A as long as one has enough quantum eigenvalues in the
interval. For the Riemann zeros [6—10], since the mean den-
sity is (p(k))=(1/2)In(k/2) which is very flat and practi-
cally a constant for large &, there is no real difference be-
tween unfolding and not unfolding. But for billiard systems,
not unfolding is essential to uncover the structures in the
quantum spectral correlations.

In this paper, we focus on three integrable systems, the
rectangle, equilateral triangle, and circle billiards.

Rectangle billiard. For a rectangle billiard with sides a
and b, the eigen wave vector is

Ky = m\(mla)? + (n/b)?. (4)

Here for the DBC m,n=1 and m,n=0 for the NBC.

Equilateral triangle billiard. The equilateral triangle bil-
liard is integrable only if all the sides have the same bound-
ary condition. The eigenvalues are given by

kmn= (477/361)\rm2+ nZ_mn (5)

with a the side length. For the equilateral triangle with the
DBC, m=2n=2 while with the NBC, m=2n=0.

Circle billiard. The circle billiard is also integrable. The
spectrum {k,,,} is given by

J,(k,ma) =0, DBC,

J (kyma) =0,

m

NBC. (6)

Here a is the radius of the circle and J,,(x) is the Bessel
function of the first kind.

III. CLASSICAL EIGENMODES AND TRACE FORMULA
IN LIOUVILLIAN DYNAMICS

We first discuss the classical eigenmodes of the Liouvil-
lian dynamics. For Hamiltonian systems, the phase space
density distribution @(g;,p;,t) is governed by the Liouville
equation
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J o
EQ(%AP;'J) =Le(q;.pint) (7)

where I:E{H , } is the Liouville operator. Since we are inter-

ested in the spectrum of L instead of the detailed solutions of
the equations of motion, it is better to switch to the action-
angle variables which are related to ¢; and p; through a ca-
nonical transformation [11]. In the action-angle variables, the
Hamiltonian of an integrable system is a function of actions
I,=(2m)~ ' $p;dg; only, H=H(I,). For fixed I,, the phase space
is an N-dimensional torus with area (2m)" for an
N-dimensional integrable system. The equations of motion
for the angle variables ¥, are dd;/dt=w; with w;=dH/dl,,
which give solutions as linear functions of time. These fre-
quencies have dependence on action variables /; and are in
general continuous. They are often associated with certain
trajectories. Since the Hamiltonian is cyclic in ;, the Liou-

ville operator L assumes a much simpler form in terms of
action-angle variables,

oH 09
j ;09

d

—2 wj%‘ (8)

J J

L=-

The eigenvalues of operators i# all take integer values for
. J . . . .
motions on the torus. Thus w; are the primitive eigenfrequen-

cies of the Liouville operator L on the N-dimensional torus.

Except for one-dimensional systems, these frequencies w;
are not the eigenmodes of the Liouville operator on the en-
ergy surface which has 2N—1 dimensions. The classical evo-

lution operator e’ has different spectrum and thus different
trace on a different N-dimensional torus. In order to obtain
the classical eigenmodes of the system, an ensemble average
must be performed over the whole energy surface. Thus the
trace of the classical evolution operator on the energy surface

is the summation or integration over its subspaces
(N-dimensional tori)
i1 .
trel'=—2 | duexp(in- wi). 9)
Mon

Here du is the Liouville measure on the energy surface in
phase space [12]. For two-dimensional integrable systems,
one has

du =47 &E - H(I,,1,))dldl,. (10)

Here the factor 47 is from the integration over the two
angle variables since any integrand we will consider for an
integrable system is independent of the angle variables. The
total measure is u=47"[ [dl,dI,60(E—H)=dV/dE with V the
phase space volume. The Laplace transform will give the
trace of the resolvent

o

g =u(z-L)"'= f tr ele~dl. (11)

0

Here for billiards, the particle speed v is constant, thus time
t can be identified with length [. The classical eigenmodes
will show up as singular points in the trace of the resolvent.
For hyperbolic systems, the trace of the resolvent has simple
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poles [13] which are called the Ruelle-Pollicott resonances,
g(z)=2,d,/(z—,) with d, the degeneracy. For generic sys-
tems, the classical trace g(z) will have various kinds of sin-
gularities which can be associated with the classical eigen-
modes.

Rectangle billiard. For a particle with mass m moving
inside a rectangle billiard, the two actions are I,
=pa cos a/ 1 and I,=pb sin a/ 7 with p=1\2mE and «a the
angle of the velocity with respect to the x axis. One thus gets
w,=(mv/a)cos @ and w,=(mv/b)sin @ with v the particle
speed in the billiard. Since the Jacobian determinant
|o(1,.1,)/d(p,a)| is pab/w*, one has du=4abS(E
—p?/2m)p dp da. For the rectangle billiard, the two actions
should be all positive, so a € [0,77/2] and the total measure
is u=2mmab. One obtains

- 2 -
trefl== >

7Tm,n=—°° 0

/2 -
el(mwx+”"’.v)’da = E J()(kmnl) .

(12)

Here k,,, is given by Eq. (4). This result was also obtained by
Biswas [14]. The Laplace transform of the Bessel function
Jo(x) gives

8reel?) = 2 = (13)
« m,n=—% \’Z + kz
The classical eigenmodes are given by v,,,=ik,,,.- These clas-
sical eigenmodes are discrete. The above trace formula of
grec(2) diverges as 2abky/  with ky the cutoff of k,,,.
Equilateral triangle billiard. For a particle in an equilat-
eral triangle billiard, the classical dynamics is integrable. The
phase space surface is a regular hexagon with parallel sides
identified, and thus has the topology of a torus [15]. The
classical eigenmodes are given by v,,,=ik,, with k,,, given
by Eq. (5) and m,n=0,%1,+2,---. The trace of the resolvent
is
i 14
w9} 2 T "
This trace of the resolvent can be derived from the following

expression

/3 d
E t(477/3a)[m cos a+n cos(m/3—a)[IZ2 @
au

tr et =
m,n=—2 J 0

== E Tolkl). (15)

m n=—0

Though this is similar to that for the rectangle billiard, we
are unable to give a derivation or a physical interpretation for
this expression.

Circle billiard. For a partlcle in a circle billiard of radius
a, the Hamiltonian is H=p?/2m+p3/2mr?. The actions for
the angular and radial freedoms are I,=p, and I,= 7' (p*a®
— 122711 arccos(I,/ pa) with p=+2mE [16]. We param-
etrize the two actions as Iy=pacosa and I.=pa(sin @
—acos a)/ 7 with 0<a < since I, is positive and I, can
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take positive or negative value [12]. The frequencies are o,
=mv/a sin @ and wy=av/a sin a. They are both positive as
required. Since  the  Jacobian  determinant  is
|z?(19,1,)/¢9(p,a)|=71T17czzsin2 a, SO du=4ma’S(E
-p?/2m)p sin®* adpda and u=2m*ma®. Thus one has

2o (7 o
tr eLt = 2 el(maﬂm')l/a sin « San ada (16)
m,n=—0

and

oo

> E(zim.n) (17)

m,n=—0

gcir(Z) =

with

2 (7 az sin* ada
E(z; mn)——f 5. (18)
o a*z%sin® a+ (ma+nm)

Here z=y—-is with y>0.
Simple expressions can be obtained for

E(z;m,n) with

m=0. One has =(z;0,0)=1/az. For n#0, one has
E(z;0,n)=E(z/n;0,1)/n with

— 2+ Na’ + az

E(z;0,1) = . (19)

(7T+\’ 224 )N + 7

Here we have used the following integral:

f" cos 2na da T < z )2"
22 ] ] :
o 1+z°sin®a J1+2\1+1+7
From the above expressions of Z(z;0,n), one gets the clas-
sical eigenmodes

Yon=inmla, n=0. (20)

For m+# 0, no simple expression is found for Z(z;m,n),
though the classical eigenmodes can still be obtained from its
integral representation. For m,n # 0, the denominator in the
integral representation of = (z;m,n) may have two roots for
certain z being purely imaginary and « e (0, 7). If these two
roots are equal, Z(z;m,n) will diverge. That is, z=%if(a)
with f(a)=(ma+n)/asin @ and its first derivative f’(«)
=[m-(ma+nm)cot a]/a sin a vanishes at «,. The classical
eigenmodes are thus given by

Vo = im\ 1 + u’/a (21)
with u the solution of the transcendental equation
u=n/m+ arctan u. (22)

For m# 0 and n=0, one has E(z;m,0)=E(z/m;1,0)/m.
E(y—is;1,0) is free of divergence even when y—0 and
Re E(~is;1,0)=0 for s<1. We use Re for the real part and
Im for the imaginary part throughout the paper. For s>1,
Re Z(-is;1,0)>0 and has a maximum at s=1.1525. The
function E(y—is;1,0) with a small 7y is evaluated numeri-
cally and plotted in Fig. 1. The resonance-looking hump in
Re E(~is;1,0) gives rise to continuous classical eigenmodes
and may be the reason for the apparent nonzero Lyapunov
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FIG. 1. (Color online) Function Z(y—is;1,0) with y=0.001
and a=1. The solid line is the real part Re Z(y—is;1,0) and the
dashed line is the imaginary part Im E(y—-is;1,0).

exponent [17] in the circle billiard and exponential short-
time decay in circle billiard with small holes [18]. We em-
phasize that these classical eigenmodes bear no resemblance
to the quantum eigenmodes. The first few discrete classical
eigenmodes are listed in Table I.

For generic systems, the frequencies w; cannot be unen-
tangled from each other since the phase space is not a torus.
Equation (9) is not useful to obtain the classical eigenmodes.
However the trace of the resolvent can be expressed in terms
of POs which are the periodic solutions of the classical equa-
tions of motion. For hyperbolic systems, Cvitanovi¢ and
Eckhardt [19] obtained the classical trace formula for the
resolvent which is similar to the Gutzwiller semiclassical
trace formula [20]. The classical trace formula for polygonal
billiards was derived recently by Biswas [14].

However, exact classical trace formulas can be derived
directly from Eq. (9) for integrable billiards. The final ex-
pressions are presented in the following while detailed deri-
vations are included in the Appendix.

TABLE I. A few low-lying quantum and classical eigenmodes
of the circle billiard.

kyun for NBC k,,, for DBC

Im Ymn

0 0
1.841183781 3.141592654

2.404825558
3.831705970

3.054236928 4.603338849 5.135622302
3.831705970 5.943387741 5.520078110
4.201188941 6.283185307 6.380161896
5.317553126 7.221364982 7.015586670
5.331442774 7.789705768 7.588342435
6.415616376 8.460248568 8.417244140
6.706133194 9.206677698 8.653727913
7.015586670 9.424777961 8.771483816
7.501266145 9.671732536 9.761023130
8.015236598 10.566779006 9.936109524
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For the rectangle billiard, the fluctuation part of the clas-
sical trace formula can be directly derived from Eq. (12) as
shown in the Appendix as

2ab - _ZLmO e_ZLOm
Brecl2) = [42 3 +2E<L 3 )}
mn 'm0 Om

m,n=1 m=1
(23)
Here the length of the POs is given by
L, =2\ (ma)? + (nb)>. (24)

For the equilateral triangle billiard, along the same lines
of derivation for the rectangle billiard, one gets

3 “Emn * _ZLmO
”’(626 +63 ) (25)
mn m=1 LmO

mnlL

5g lri(Z)

with
L, = aN3(m* +n® + mn). (26)

For the circle billiard, the classical trace formula can be
derived directly from Eq. (16) as shown in the Appendix as

S sin*(nar/m
5gcir(z) = 8&22 2 fmn¥e_ZLmn (27)

n=1 m=2n Lmn
with
2 for m > 2n,
"7l for m=2n,

L,,, = 2ma sin(nm/m). (28)

In summary the above represent exact trace formulas for
the classical dynamics of integrable billiards.

IV. SEMICLASSICAL DERIVATION OF QUANTUM
CORRELATIONS

A semiclassical consideration can lead to the understand-
ing and revelation of structures in the quantum correlation.
For large k, the semiclassical DOS for integrable polygonal
billiards is [21]

| k
Sp (k) = S Re 2 ajet=eky- ”7/4/\, (29)

The autocorrelation C,, (s) can be written as the sum of di-
agonal and off- dlagonal terms, C, (s)= Cdldg(s)+C0ff(s) For
integrable systems, the actions are uncorrelated since there is
a direct relation between actions and the quantum spectrum.
This leads to the cancellation of the off-diagonal terms,

2

a A

Cp (5) = F Re >, de_(zf_”)Lﬂ. (30)
p =p

Note that the above summation is over POs with different L,,.

Different POs with the same L, are grouped together. For the

rectangle billiard with irrational aspect ratio, a,=4ab for all
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015} ? P o EERE

FIG. 2. Autocorrelation C pE(s)
of the rectangle billiard with sides
a=m and b=\ Here €=0.005.
10% quantum eigenmodes with 0
A <Kp, <1500 are included in

Opk). The auto-correlations
Cpf(s) for dp (k) in four equal in-

tervals [0,375], [375,750],
[750,1125], [1125,1500] are cal-
culated. They are normalized such
that CpE(O)zl and all collapse to
the same curve. Vertical dashed
lines indicate the location of the
classical eigenmodes.

NPT
16.5

PO families L,,, with nonzero m and n except for L, and
L()n. Thus

C, (s) = M Re 8g,.(2€—is). (31)
€ 8

With normalization at s=0, Cpf(s) and Re 5g(2e—is) are
almost identical with each other though the relative heights
of their peaks may be slightly different for rectangle billiards
with rational aspect ratio or the equilateral triangle billiard.
This is due to the fact that a, is no longer the same for all
POs with different length for these billiards. This gives rise
to extra fine structure in C pE(s). We point out that the appear-
ance of fine structures in C PE(S) is not an indication of dis-
crete nature of the quantum spectrum as claimed in [22,23],
rather that a,, is not uniform.

For the circle billiard, there is no exact trace formula for
p(k) due to the lack of analytic expression for the zeros of
the Bessel functions. For the billiard with the DBC, the fluc-
tuation part of the semiclassical DOS is [21,24]

| k S sin*(nm/m) .
5pe(k) = 4&2 ;T Re 2 E fmnTelcpmn

n=1 m=2n ‘mn

(32)

with ®,,, =(k+ie)L,,,+v,, and v,,=(6m-1)=w/4. L,,, and f,,,
are given in Eq. (28). This trace formula will give the WKB
quantization [16,21]

ko, = (n +3/4) 7 (33)

which approximates the zeros of Jy(z) and

Ky =m\1 + u? (34)

with

u=(n+3/4)mw/m + arctan u

for the approximate zeros of J,,(z) with m>0. For the bil-
liard with the NBC, the factor 3/4 should be replaced by
1/4. With either boundary condition, the diagonal part of the
autocorrelation is

16a"K 5w sint(naim .
Cgiag(s) = . 0 Re E E ge_(ze_w)szn.

n=1 m=2n Lmn
(35)
For the circle billiard, one has
2
a KO .
CPE(S) = — Re 8g.,(2e—is). (36)

Thus for integrable billiard systems, the quantum correlation
is determined by the classical eigenmodes.

V. NUMERICAL CALCULATION OF QUANTUM
CORRELATIONS

Numerical calculations of Cpe(s) were carried out to con-
firm the results obtained in the previous section. Results for
the rectangle billiard with the DBC are shown in Fig. 2. For
the equilateral triangle billiard of side length a=1 with the
DBC, the spectral correlation is shown in Fig. 3. Since the
spectrum of the rectangle and equilateral triangle billiards
with the NBC is almost the same as the counterparts with the
DBC, their spectral correlations are essentially the same. The
spectral correlations for the circle billiard of unit radius are
shown in Fig. 4. About 10° quantum eigenvalues are used in
the above calculations.

As seen from the above figures, the autocorrelations
Cps(s) are almost the same for different spectra segments,
confirming the correlation invariance. It is quite obvious that
the peaks of the quantum wave vector correlation are located
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O a4 R FIG. 3. Autocorrelation C,, (s)
of the equilateral triangle billiard
0 g with side length a=1. About 10°
oy ¥ W S quantum eigenmodes with 0
15 20 25 30 <k,,, <5390 are included in
S Splk) with €=0.059. The auto-
T T 7 T T T ‘ T v correlations Cps(s) for Sp (k) in
0.3 s five equally divided intervals are
’ calculated, normalized at the ori-
0.2r ¢ gin, and plotted together. Vertical
i dashed lines indicate the location
SCL o1r of the classical eigenmodes.
0 ]
N R A A A A I A SR AT P
64 66 68 70 72 74 76 78 80
S

at s=Im v,,, with v,,, the classical eigenmodes.

In Fig. 2, the rectangle billiard has an irrational aspect
ratio. In this case, almost all the PO families have the same
summation weight a,. With fixed quantum spectral width e,
for a finite segment of quantum spectrum, the difference be-
tween the correlation Cpe(s) and the classical trace
Re 8g(2€e—is) can be viewed as just noise if both are normal-
ized at s=0. This noise will be reduced and eventually dis-
appears if either the number of the quantum eigenvalue in
the quantum spectral segment or the width € increase.

However for the equilateral triangle billiard as shown in
Fig. 3, the difference between Cpf(s) and Re 8g(2e—is) will

persist even if the center K, of the quantum spectral segment
is pushed to infinity. Actually, there are five curves with dif-
ferent K, plotted in Fig. 3. They are hardly distinguishable
from each other. The classical trace Re dg(2e€—is) has no
structure between classical eigenmodes. The presence of
small peaks between classical eigenmodes in C PE(S) is what
we called fine structure in the previous section and is due to
the nonuniformity of a,.

An interesting point about the circle billiard is that there
are some resonancelike humps in the correlation as shown in
Fig. 4 between the origin and the first nonzero discrete clas-
sical eigenmodes y,;=i7. The hump between [1,2] is very

T R T R R o7

FIG. 4. Auto-correlation
Cpf(s) of the circle billiard with
radius a=1. About 2.3 X 10° quan-
tum eigenmodes with 0<k,,,
<3000 are included in &p(k)

with  €=0.005. The auto-
correlations Cpé(s) for Sp (k) in
four equally divided intervals are

0.15 - :
;] ' i ! ‘ ' ' ' calculated and normalized at the
; origin. Vertical dashed lines indi-
0.1 . cate the location of the classical
A i eigenmodes. The two humps in
@a 0.05F i i the interval [1,3] correspond to
) Y o ‘ : ReZ(2e—is:1,0) and ReE(2¢
o A s \ : | Ay —is3;2,0), respectively.
: R EY N ¥
N N : SV { th b -

N oy \

~0.051 ) ) N J ) ; o : L 5 oA

20 20.5 21 215 22 225 23 235 24 24.5 25
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prominent. These humps are due to E(z;m,0) with m>0
and may be the precursor of the Ruelle-Pollicott resonances
in chaotic systems such as the Bunimovich stadium.

Two comments are in order. The first is that though it is
tempting to make a one-one correspondence between the
quantum and the classical eigenmodes for integrable sys-
tems, actually this is not true. For any segment of the quan-
tum spectra, the autocorrelation will lead to the same low-
lying classical eigenmodes as exemplified by the invariance
of the quantum spectral correlations. The second is that in
general, there is no correspondence between the trace of the
classical project operator and the quantum Neumann spec-
trum. One can clearly see this for the circle billiard. For the
rectangle and equilateral triangle billiards, the fact that the
quantum NBC spectrum is also the classical eigenmodes is a
coincident instead of a rule for polygonal billiard. In fact,
one can view the circle billiard as the limit of equilateral
polygon with increasing number of sides.

VI. CORRESPONDENCE BETWEEN CLASSICAL
PERIODIC ORBIT LENGTH SPECTRUM AND QUANTUM
WAVE VECTOR SPECTRUM

In the previous sections, we established a duality between
quantum and classical eigen spectra through quantum corre-
lations. This duality was also established for hyperbolic sys-
tems [25]. We believe this can also be applied to generic
systems.

On the other hand, the celebrated Gutzwiller trace for-
mula indicates a direct duality between the quantum and
classical dynamics such that the quantum DOS is expressed
in terms of classical POs. As a complement to the Gutzwiller
trace formula, the classical PO length spectrum can also be
expressed in terms of quantum wave vector spectrum. This
classical POs spectrum is crucial for the calculation of clas-
sical eigenspectrum using the Cvitanovi¢-Eckhardt classical
trace formula [19].

For integrable billiards, the classical trace formulas we
derived in Sec. III all assume the form

2
83(2) == oLy (37)
p L,

with a,, the area visited by the PO family with length L. This
formula is also valid for a generic polygonal billiard [14]. In
order to obtain the classical eigenmodes through the above
trace formula, the number of PO families defined as N(I)
=2,a,0(I-L,) should be known. Here O(x) is the step func-
tion. N(I) has the unit of billiard area. It was proved that the
POs are dense for rational polygonal billiards [26,27], N(I)
o« [2. Recently Biswas obtained an expression of N(I) in terms
of the quantum spectrum with the NBC [28]. Actually, N(/)
can also be expressed in terms of the quantum spectrum with
the DBC on the same basis. Here we give a different deriva-
tion of this connection and reveal the domain of its validity.
Often the importance of isolated POs is neglected in this
connection [14]. We find that they are key to determine the
proliferation of the PO families.
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Since we focus on integrable billiards, diffractive POs and
nonperiodic orbits [29-31] are absent, and the wave vector
DOS of integrable polygonal billiards is

k 1
plk) = {p(k)) + co8(k) + ;g a,Jo(kL,) — ;% b, cos k(.

(38)

Here ¢ is the corner term and b, is the weight for the iso-
lated PO with length €, [21]. For two-dimensional billiards
with the DBC, the average DOS is {p(k))=Ak/2m7—L/4.
Since p(k)=2, 8(k—k,), multiplying both sides of Eq. (38) by
2arlJ,(kl)/k and integrating over k from zero to infinity, one
gets

o1
2B I-A+2ml> k—Jl(k,,l)

n=1 "n

N() = jf(a _2e)l ¥

by
w12 211, Qnll€,). (39)
n

n=1 P

The summation over p’ is for the primitive isolated PO and

P

b,
a:Eei, B=2 b, (40)
p P p'

In the above derivation, use has been made of the following
identities [32]:

f ’ dk Jo(kL,)J, (kl) = %@(1 -L,),
0

“ dk 1 I
fo " cos(k€,)J,(kl) = N Re V% - éﬁ,

[x] @

s I xl
Re X Vil —nP=—x?——x+=> —J,(2nmx).
4 2 2°n

n=1 n=1

The terms mal?/4 and BI/2 in N(I) are from the first two
terms in the third identity. Thus one has the average

L-B

(N(D)) = jf(a— 202+ ~—L1-A. (41)
Hence the proliferation of PO families is determined by the
isolated PO and the corner term in the quantum trace formula
(38). This reveals an intimate connection between them.

The exact expression of N(/) can be obtained for the rect-
angle and equilateral triangle billiards. For the rectangle bil-
liard with the DBC, the exact trace formula [21] will give
co=1/2, a=2, B=L=2(a+b). One has exactly

oo
N(l) =1—le—ab+27Tl E k_Jl(kmnl)
m,n=1 “mn

[

+1 %[aJl(nﬂ'l/a) +bJ,(nmllb)].  (42)
n=1

Thus (N(l))=wl?/4—ab. We stress that there is no linear term
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and the constant term is negative in (N(/)), contrary to the
expression obtained by Jain [33]. As a comparison, the num-
ber of quantum states is

ab a+ b 1
k)=—k - —+— J kL
M) 4ar 271' 4 772 i )
- —2 (sm 2nka + sin 2nkb) (43)
2w, n

which is obtained from Eq. (38) through an integration. Here
the summation over p is given by Eq. (23). One has
(Mk))y=abk*/4m—(a+b)k/2m+1/4 as expected.

For the equilateral triangle billiard with the DBC [21],
one has cy=2/3, a=2, f=L=3a. Thus

\

: —J, (k1) + = 12 J1(4n71'l/3a)

w
N(l)y=—12 -~
=7

n=1

(44)

with (N(1)y=mI?/6—3a?/4. The number of quantum states
is

3 3 1
AR N L +—E—EJ(kL)
p LP

M) = 47 3 27

- 12 ! sin(3nkal2). (45)

Typ=1 1N

Here the summation over p is given by Eq. (25). One has
(NK)Y=7\3a*k>/167—3aki4m+1/3.
Similarly, one gets

S = a,dl-L,) = g(a —2co)l — Akyd  (kyl) + ;B
P
N
+ 27, Jo(k,l) + > 2 €—J0(2n7rl/€ ), (46)
n=1 n= 1 )4
L —
P=3 2si- L)= T a=2e¢q) = Akpd (k)11 + A
P Lp 2 l
N
+2m Jolk,l) + 7 >, €—J0(2n7-rl/€ ). (47)
n=1 n=1 p P

Here ky is a large cutoff in the quantum spectrum. Exact
expressions of S(I) and P(I) can be obtained for the rectangle
and equilateral triangle billiards.

For a billiard with a uniform boundary condition, a, in the
quantum trace formula (38) are all positive, and the quantity
P(l) is just the classical quantity (7/2)tr exp(—it). The
Laplace transform of P([) will give the fluctuation part of the
classical trace g(z),
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N

2A  H—— 4
5g(z)=(a—2c0)/z——(\"zz+k,2v—z)+2 —
™ n=1 VZ~ + kn

2b,il€
) ) e il (48)
n=l V22 + (2nm/t, N2
Here we ignored the term (L—/8)/2[ in P(l) since it vanishes
for integrable polygonal billiards and made use of the
Laplace transforms of Bessel functions

” 1 ——
J 17 (kyl)e™@dl = — (N2 + k3 = 2).,
0 kN

f Jo(k,De~dl =
0

Thus the classical eigenmodes are v,=ik, and 7,
=i2nm/ €, with €, the primitive isolated PO without repeti-
tion.

For the circle billiard, no exact expression of N(I) can be
obtained since we do not have an exact quantum trace for-
mula. Nevertheless, an approximation of N(I) could be de-
rived similarly through the semiclassical trace formula.

The results for N(I), S(/) and P(I) establish a correspon-
dence between the classical PO length spectrum and the
quantum spectrum for integrable polygonal billiards. From
these exact expressions, one can see that the fluctuation part
of the density of the PO families is mainly determined by the
quantum spectrum. This connection was also observed by
Biswas in integrable systems with soft potentials [34]. But
the proliferation of the PO families is governed by the iso-
lated POs and the corner term in the quantum DOS.

We remark that the above equations may be applicable to
nonintegrable billiards only if the contribution to the quan-
tum trace formula from diffractive POs and non-periodic or-
bits can be safely ignored. This is not the case for generic
polygonal billiards. For example for the 7/3 rhombus bil-
liard, diffractive POs are nearly as dense as the PO families.
The classical spectrum is thus different from the quantum
spectrum though they may partially overlap with each other.

VII. CONCLUSIONS AND REMARKS

In this paper, we directly obtained the classical eigen-
modes of the Liouvillian dynamics and exact classical trace
formula of the resolvent for integrable closed systems in-
cluding the rectangle, equilateral triangle and the circle bil-
liards, and showed that the peaks in the quantum wave vector
spectral correlation coincide with the classical eigenmodes.
We also established a direct correspondence between the
classical PO length spectrum and the quantum wave vector
spectrum for integrable polygonal billiards.

We have shown earlier in open chaotic systems, specifi-
cally the n-disk billiards, that the autocorrelation of the reso-
nant quantum spectrum carries the fingerprints of the classi-
cal resonances, also known as the Ruelle-Pollicott
resonances. For the Riemann zeros which are the quantum
eigenmodes on negative constant curvature, the spectral cor-
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relation also leads to the “classical” eigenmodes [6,10]. We
speculate that this also holds for chaotic and generic billiard
systems.

While for a quantum system, there are many ways to
solve the Schrodinger equation, the classical spectrum is
very difficult to get at. Direct numerical simulation of tracing
classical trajectories is of limited use due to the presence of
the Lyapunov exponent and computer round off error. The
trace formula in terms of classical POs provide another cor-
respondence between the quantum and classical dynamics.
The usefulness of these trace formula to obtain classical [19]
and quantum spectra [20] is marred by the divergence due to
the exponential proliferation of POs in chaotic systems.
Though the classical eigenmodes are difficult to calculate for
generic systems, our approach provides a simple way to ob-
tain them.

Our results can be readily tested in wave-mechanical ex-
periments, such as the microwave analogs of quantum bil-
liards [35]. There the measured transmission is T(k)
=3,c,/[(k—k,)*+ €]. Earlier work has shown in n-disk open
systems that the peaks of the correlation Cy(s)=(T(k)T(k
+5)), are indeed located at s=Im 7, [25]. In another words,
the classical eigenmodes were obtained from the experimen-
tally measured quantum spectrum for this open system. Simi-
lar experiments on closed billiards should yield results that
can be compared with those discussed in the present paper.
We have examined simulations of the experimental data by
taking ¢, as random numbers in [0,2¢€/ 7] and set €,=¢, the
same width for all eigenvalues as we used in 8p(k). We find
that spectral correlations are almost identical if ¢, is constant
[as in Sp(k)] or uniformly distributed in [0,2€/ ).

Classical eigenmodes play an important role in quantum
dynamics. For example they govern the time evolution of a
wave packet and are related to the problem of decoherence
[36]. Consider the quantity

2
A(t) — 2 ane—zknt/Zm
n

with m the particle mass, and a,, significant only for K,—A
<k,<Ky+A with Ky>A. This quantity is related to the
wave packet revival [37]. For two-dimensional billiards, the
Heinsenberg time is zy=mA/h. For the wave packet moving
with a speed v=~hK,/m, we define the Heinsenberg length
Iy=vty=(A/2m)K,. So one has [;— if A—oo (open sys-
tems) or K,— (short wavelength). One has hk*t/2m=k,!
—Kol/2+(Al4m)(k,—Ky)*(1/1y). Here I=vt. For [<ly, the
last term can be ignored; thus |A(#)|*=|Z,a,e ®|%. In the
case a,=1, one has

|A(1)]> = Re f Cps(s)e"”ds =Retr eM.

So before the Heisenberg time, |A(#)|? is governed directly by

the classical eigenmodes {v,} of the Liouville operator L.
Boundary conditions play in important role in the dynam-
ics. This was addressed recently by Biswas [38]. Nonidenti-
cal boundary conditions on adjacent edges of the polygonal
billiards can lead not only to quantum splitting but also to
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quantum annihilation of PO families in the quantum trace
formula. Such is the case of a rectangle billiard with rational
aspect ratio and only one side with the NBC. The most dra-
matic case is a square billiard with the DBC on all sides
except one. In this case, the quantum annihilation leads to a
massive disappearance of PO families in the quantum trace
formula. Similar to the case of quantum splitting, the spectral
rigidity will also deviate from the Poissonian value due to
quantum annihilation.

Previous studies of the quantum properties of billiard sys-
tems were focused on the universality of level statistics, such
as nearest level spacing, spectral rigidity, etc., and the
quantum-classical correspondence was typically addressed in
terms of POs [20,39]. Here we take a different approach by
examining correspondence between the classical and quan-
tum spectra. In general, the classical eigenmodes are differ-
ent from the quantum eigenmodes. Except for some special
systems [28,40,41], there is no direct correspondence be-
tween the two spectra. For systems in which all the POs have
the same Lyapunov exponent, there is a self-duality between
quantum eigenvalues and the classical eigenmodes, such as
the Riemann zeros. This self-duality leads to the resurgence
[6-10] and prophecy [6] of quantum eigenmodes in the spec-
tral correlation. For systems such as the rectangle and equi-
lateral triangle billiards we considered in this paper, there is
an approximate self-duality between these two spectra, the
quantum eigenmodes are also the classical eigenmodes.
Prophecy [6] is also observed in these systems.

A general theory connecting the quantum fluctuation and
the classical spectrum of the Perron-Frobenius operator has
been developed [42-44] for diffusive systems. Due to the
difficulty of getting the classical eigenmodes for generic sys-
tems, the focus was shifted onto the connection with random
matrix theory. Since the spectral form factor is not self-
averaging for clear systems, smoothing or ensemble average
is required for the form factor of a single system to approach
the prediction of random matrix theory [45]. Our previous
study confirmed that for hyperbolic open systems, the quan-
tum correlations are determined by the classical eigenmodes
[25]. In this paper, we have confirmed this for integrable
closed billiards. Thus one is able to extend the so-called
Agam-Altshuler-Andreev Bogomolny-Keating theory
[42,43] to a finite spectrum of a single closed system.
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APPENDIX: DERIVATIONS OF CLASSICAL TRACE
FORMULAS

In this appendix, we derive the trace formulas Egs. (23)
and (27) from Eq. (12) and (16), respectively.
For the rectangle billiard, one has explicitly

N 2 w2 *
tr eLt — _f E ezm(w/a)l cos a+in(m/b)l sin U,
TJ0 m,n=—o

Using the identity
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o

_2 e2mimy = E Sx—m) (A1)
one gets for />0
tr el = % i Fe (1) (A2)
with
Foo(D)= f (I cos a—2ma) (I sin @ —2nb)da.
(A3)

The above defined function F) (/) is nonzero only if both m
and n are non-negative. So we only need to consider m, n
=(). Using the property of the & function in the polar coor-
dinate system [46]

1
8 (r —rp) = 8(x — x0) 8y — yo) = r_5(r —10) 86— 6p)
0
(A4)
we get for m, n>0,

o !
F;c:n(l) = L—5(l - Lmn)f 5(& - amn)da = L_5(l - Lm”)

mn 0 mn

(A5)

with L,,,=2Vm*a*+n*b* and a,,,=tan"'(nb/ma). For Fy (1)
with m>0, since a,(=0 and [{S(x)dx=1/2, one gets
Fo(D)=8(1-L,,0)/2L,0.  Similarly —one has  Fg(l)
=8(I-Ly,) /2L, and F5o(1)=&(1)/21. So one gets

i_2a (5(1 L,.0) 5(1—Lom))
e [ 6(1) 2mzl LmO L()m

ey s Lmn>]

m,n=1 Lmn

(A6)

The Laplace transform of the above expression without the
first term &(1)/1 will give Eq. (23).

For the circle billiard, the trace of the Liouvillian dynam-
ics is
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r el = 842 > For ()

(A7)
with
cir T .2 l al
Fl (D)= | dasin®ad| —— -2ma — —2nma .
0 sin a sin a
(A8)

Note that Fffn(l) is nonzero only for m,n=0. For m>0,
using

l ) i
. - 2ma = ’,——[5(05_ am)
5( s & 2mav4m’a® - I
+8a-7+a,)] (A9)
with «,,,=arcsin(l/2ma) for m>1/2a, we get
3
Fyr (D) = : 8 el sin a,, — 2n7ra)
(2ma)*Vdm?a® = I

13

8 a,, — nlm) (A10)

- (2ma)*Nam?a® - I?

which is valid only for m>2n. Since a,,=nm/m will give
I=L,,,=2ma sin(n/m), thus

Na,, — nmim) = 4m2a2—L,2nn5(l—Lmn), (A11)
we obtain

sin*(nm/m)

For (D) = 8 = Lyy). (A12)

mn

One can verify that this expression is valid for all m=n
>0. For m=0 and n=0, one has FB{;(I):O while Ff,i’ro(l)
=138(1)/ m(2ma)* for m>0. If only the contributions from
m,n>0 are included, one gets

R o0 o0 . 4 /
el =8a?S S sin*(nmfm) o) L)

n=1 m=n mn
2 mn
= —E E Sl = L) (A13)
T =1 m= 2n mn
with
a,,, = 4ma’f,,, sin*(na/m) (A14)

and f,,, given in Eq. (28). A Laplace transform will give
Eq. (27).

[1] D. Ruelle, Phys. Rev. Lett. 56, 405 (1986); J. Stat. Phys. 44,
281 (1986).

[2] M. Pollicott, Ann. Math. 131, 331 (1990).

[3]J. Wilkie and P. Brumer, Phys. Rev. A 55, 27 (1997); 55, 43
(1997).

[4] D. L. Miller, Phys. Rev. E 57, 4063 (1998).

[5] D. Cohen, J. Phys. A 31, 277 (1998).

[6] W. T. Lu and S. Sridhar, e-print nlin.CD/0405058.

[7] M. V. Berry and J. P. Keating, SIAM Rev. 41, 236 (1999).

[8] O. Bohigas, P. Leboeuf, and M. J. Sanchez, Found. Phys. 31,
489 (2001); R. D. Connors and J. P. Keating, ibid. 31, 669
(2001).

[9] P. Leboeuf, A. G. Monastra, and O. Bohigas, Regular Chaotic
Dyn. 6, 205 (2001).

046201-10



DUALITY BETWEEN QUANTUM AND CLASSICAL...

[10] P. Leboeuf, Phys. Rev. E 69, 026204 (2004).

[11] H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley,
Reading, MA, 1980), Chap. 10.

[12] A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and
Quantization (Cambridge University Press, Cambridge, U.K.,
1988).

[13] In case of intermittency, the trace of the resolvent may have a
branch cut. See P. Cvitanovi¢, R. Artuso, R. Mainieri, G. Tan-
ner, and G. Vattay, Classical and Quantum Chaos (Niels Bohr
Institute Press, Copenhagen, 2001), Chap. 21.

[14] D. Biswas, Phys. Rev. E 63, 016213 (2000); e-print chao-dyn/
9804013; Pramana, J. Phys. 48, 487 (1997).

[15] P. J. Richens and M. V. Berry, Physica D 2, 495 (1981).

[16] K. Richter, D. Ullmo, and R. A. Jalabert, Phys. Rep. 276, 1
(1996).

[17]J. L. Vega, T. Uzer, and J. Ford, Phys. Rev. E 48, 3414 (1993).

[18] W. Bauer and G. F. Bertsch, Phys. Rev. Lett. 65, 2213 (1990).

[19] P. Cvitanovic and B. Eckhardt, J. Phys. A 24, 1.237 (1991).

[20] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer-Verlag, Berlin, 1990).

[21] M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-
Wesley Publishing Company, Reading, MA, 1997), Chap. 7.

[22] E. Bogomolny, Nonlinearity 13, 947 (2000).

[23] U. Smilansky and B. Verdene, J. Phys. A 36, 3525 (2003).

[24] S. M. Reimann, M. Brack, A. G. Magner, J. Blaschke, and M.
V. N. Murthy, Phys. Rev. A 53, 39 (1996).

[25] K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. 85, 2737
(2000); W. T. Lu, K. Pance, P. Pradhan, and S. Sridhar, Phys.
Scr., T 90, 238 (2001).

[26] E. Gutkin, Physica D 19, 311 (1986).

PHYSICAL REVIEW E 73, 046201 (2006)

[27] M. Boshernitzan, G. Galperin, T. Kriiger, and S. Troubertzkoy,
Trans. Am. Math. Soc. 350, 3523 (1998).

[28] D. Biswas, Phys. Rev. Lett. 93, 204102 (2004).

[29] R. Aurich, T. Hesse, and F. Steiner, Phys. Rev. Lett. 74, 4408
(1995).

[30] W.-M. Zheng, Phys. Rev. E 60, 2845 (1999).

[31] D. Biswas, Phys. Rev. E 61, 5129 (2000).

[32] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, 5th ed. (Academic Press, New York, 1994),
(6.512.3) (6.693.2), (8.521.1).

[33] S. R. Jain, Phys. Rev. E 50, 2355 (1994).

[34] D. Biswas, Pramana, J. Phys. 42, 447 (1994).

[35] S. Sridhar and A. Kudrolli, Phys. Rev. Lett. 72, 2175 (1994);
H. Alt et al., Phys. Rev. E 54, 2303 (1996).

[36] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[37] R. W. Robinett, Phys. Rep. 392, 1 (2004).

[38] D. Biswas, Phys. Rev. E 57, R3699 (1998).

[39] M. V. Berry, Proc. R. Soc. London, Ser. A 400, 229 (1985).

[40] D. Biswas and S. R. Jain, Phys. Rev. A 42, 3170 (1990).

[41] D. Biswas and S. Sinha, Phys. Rev. Lett. 71, 3790 (1993).

[42] O. Agam, B. L. Altshuler, and A. V. Andreev, Phys. Rev. Lett.
75, 4389 (1995).

[43] E. B. Bogomolny and J. P. Keating, Phys. Rev. Lett. 77, 1472
(1996).

[44] M. M. Sano, Phys. Rev. E 59, R3795 (1999); 66, 046211
(2002).

[45] R. E. Prange, Phys. Rev. Lett. 78, 2280 (1997).

[46] See http://mathworld.wolfram.com/DeltaFunction.html.

046201-11



