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We consider two different approaches, to which we refer to as renewal and modulation, to generate time
series with a nonexponential distribution of waiting times. We show that different time series with the same
waiting time distribution are not necessarily statistically equivalent, and might generate different physical
properties. Renewal generates aging and anomalous scaling, while modulation yields no significant aging and
either ordinary or anomalous diffusion, according to the dynamic prescription adopted. We show, in fact, that
the physical realization of modulation generates two classes of events. The events of the first class are
determined by the persistent use of the same exponential time scale for an extended lapse of time, and
consequently are numerous; the events of the second class are identified with the abrupt changes from one to
another exponential prescription, and consequently are rare. The events of the second class, although rare,
determine the scaling of the diffusion process, and for this reason we term them as crucial events. According
to the prescription adopted to produce modulation, the distribution density of the time distances between two
consecutive crucial events might have, or not, a diverging second moment. In the former case the resulting
diffusion process, although going through a transition regime very extended in time, will eventually become
anomalous. In conclusion, modulation rather than ruling out the action of renewal events, produces crucial
events hidden by clouds of exponential events, thereby setting the challenge for their identification.
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I. INTRODUCTION

The new field of complexity is attracting the attention of
an increasing number of researchers, and it is triggering vi-
vacious debates about its true meaning �1–3�. Here we adopt
the simple minded definition of complexity science, as the
field of investigation of multi-component systems character-
ized by noncanonical distributions. On intuitive ground, this
means that we trace back the deviation from the canonical
form of equilibrium and relaxation to the breakdown of the
conditions on which Boltzmann’s view is based: Short-range
interaction, no memory, and no cooperation. Thus, the devia-
tion from the canonical form, which implies total random-
ness, is a measure of the system complexity.

However, this definition of complexity does not address
the delicate problem of the origin of the departure from ca-
nonical distributions. We plan to discuss this issue, although
focusing our attention on waiting time rather than energy
distribution. Thus, the canonical case is represented by the
waiting time exponential distribution and the noncanonical
condition is given by a distribution of waiting times that in
the time asymptotic limit gets the form of an inverse power
law. We use two different approaches to the time series �ti�,
so as to ensure, however, that in both cases the distribution
density of the time distances �i= ti+1− ti is

���� = �� − 1�
T�−1

�� + T�� , �1�

with 1����. Note that the parameter T�0, which elimi-
nates the unphysical divergence at t=0, gives also informa-

tion on the lapse of time necessary to reach the time
asymptotic condition where ���� becomes identical to an in-
verse power law. The choice of the form of Eq. �1� is dictated
by the simplicity criterion. This form has been known for
many years �4� see, for instance, Ref. �5�, and following
Metzler and Nonnenmacher �4� and Metzler and Klafter �6�
we shall be referring to it as Nutting law.

The two different approaches that we use to generate the
time series �ti� and the corresponding waiting time distribu-
tion of Eq. �1� are dynamic and are based on the renewal and
modulation perspective. The renewal approach generates the
time series �ti� by means of dynamical processes that reset
the system’s memory to zero after the production of each
waiting time �i. Thus, the renewal approach to �ti� is equiva-
lent to drawing the numbers �i from the distribution of Eq.
�1�, with each drawing having no memory of the earlier
drawings. The modulation approach, on the contrary, is
based on a dynamic process that for a very extended period
of time generates exponentially distributed waiting times
with a fixed exponential scale. This dynamic process is real-
ized in this paper with two different prescriptions, and with
both prescriptions, from time to time a transition from a
given exponential scale to another occurs, in such a way that
the resulting waiting time distribution, which is, therefore,
the superposition of infinitely many exponential distribu-
tions, gets the form of Eq. �1�. In conclusions, these two
approaches, although different, lead to the same nonexpo-
nential distribution of Eq. �1�. Thus, to a first sight, one
might be tempted to conclude that they are indistinguishable,
leaving no motivation whatsoever to prefer the one to the
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other. We shall prove that it is not so, and that there exist
physical properties, whose observation allows us to distin-
guish the two proposals and to assess which one is correct
for the given complex process under consideration.

The first property is renewal aging �7–9�. In an earlier
work �10� the conjecture was made that infinitely slow
modulation does not yield aging, while the renewal models
do. In this paper we check this prediction by means of nu-
merical simulation, and, as earlier mentioned, we create ar-
tificial time series, according to the modulation and the re-
newal prescription, and we find that the conjecture of Ref.
�10� on the lack of aging in the case of infinitely slow modu-
lation, is correct. As a second property to explore, to distin-
guish modulation from renewal, we select diffusion. To gen-
erate diffusion we proceed as follows. We note that between
an event occurring at time ti and the next, occurring at time
ti+1� ti, there is an empty time interval that we call laminar
region. The reason for the choice of this term is that the
dynamical model that we use to realize the renewal condition
is an idealization of the Manneville map �11�, which has
been originally used to study fluid-dynamic turbulence. This
term is appropriate, in principle, only within the renewal
perspective. However, for simplicity we shall use the term
laminar region, regardless of whether we work with the
modulation or the renewal model. Then for each laminar
region we assign a constant value, either W or −W, according
to a fair coin tossing prescription, to a velocity variable ��t�.
In other words, we convert the time series into a dichoto-
mous fluctuation ��t�, and we use this fluctuation to generate
the diffusion of the space coordinate x according to the usual
prescription

x�t� = �
0

t

��t��dt�. �2�

Thus, we are now in a position to illustrate the second prop-
erty that we shall explore to distinguish modulation from
renewal. This is diffusion scaling. The diffusion process gen-
erated according to the earlier prescription is described by
the probability density function �PDF� p�x , t�. In the
asymptotic regime the PDF is expected to yield the scaling
property

p�x,t� =
1

t	F� x

t		 , �3�

with the parameter 	 called scaling coefficient. The departure
from ordinary statistical mechanics is signaled by either
	�0.5 or F�y� different from the Gaussian form, or by both
properties. In the renewal case the scaling parameter 	 is
determined by the waiting time distribution of Eq. �1�. In the
case 2���3 it is well known see, for example, �12,13�,
that

	 =
1

� − 1
. �4�

Note that the waiting time distribution of Eq. �1�, whose
power index � is adopted to result in the scaling prediction
of Eq. �4�, can be derived, in principle, from the experimen-

tal observation, by converting into a histogram the set of
time distances between consecutive events. In the case of
modulation we shall find the interesting result that the scal-
ing coefficient is not determined by the power index of �1�.
This means that it is not determined by the experimental
histogram. This is so because the scaling coefficient is deter-
mined by the events corresponding to the abrupt change of
exponential scale. If the modulation is slow, these events are
very rare, but have nevertheless the important effect of de-
termining the scaling of the diffusion process. For this reason
we call these events crucial events. The set of time distances
between two consecutive crucial events, converted into a his-
togram, generates the waiting time distribution �crucial���.
The scaling of the diffusion process generated by modulation
depends on �crucial��� rather than ����, and it yields the same
scaling as renewal theory, only if the power index of
�crucial��� is the same as that of ����. The ratio of the number
of crucial events to the total number of events tend to zero
when modulation becomes infinitely slow, this being the con-
dition considered in the earlier work �10�. In this paper we
shall study the case when modulation is not infinitely slow,
so that the scaling determined by the crucial events is pro-
duced in a finite time.

In Secs. II and III we explain how to generate the
nonexponential waiting time distributions according to re-
newal and modulation prescriptions, respectively. Thus,
these sections give also a more precise definition of modula-
tion and renewal. In Sec. IV we shortly review the concept of
aging and we illustrate an aging experiment that turns out to
afford an efficient criterion to distinguish modulation from
renewal, in accordance with the conjecture of the earlier
work of Ref. �10� and with the results of a more recent paper
�14�. Section V is devoted to studying the diffusion process
generated by either renewal or modulation, with the interest-
ing discovery that the physical realization of modulation
might generate renewal properties. With Sec. VI we reiterate
the importance of crucial events, which, although ostensible
in the case of renewal theory and virtually invisible in the
case of modulation, are responsible for diffusion scaling in
both cases.

II. RENEWAL

We think that a reliable prototype of renewal process is
afforded by a dynamical model used in earlier work
�9,15–18�. To make this paper as self-contained as possible,
let us review here this simple model. Let us consider a par-
ticle moving within the interval I= �0,1� driven by the fol-
lowing equation of motion

d

dt
y = ayz, �5�

with

z 
 1, �6�

and
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a � 0. �7�

Due to the positivity of a the particle moves from the
left to the right, and any time it reaches the border y=1 is
injected back to a randomly chosen position y0, meeting the
condition

0 � y0 � 1. �8�

The distribution density of sojourn times, ����, is evaluated
as follows. First of all, we solve Eq. �5� to determine the time
necessary for the particle to reach the border moving from a
given initial condition y0. This time is given by

� =
1

a�z − 1�
 1

y0
z−1 − 1� . �9�

The probability for the particle to get the border in the in-
finitesimal interval �� ,�+d�� is determined by

����d� = p0�y0�dy0. �10�

We make the assumption of uniform back injection,
which yields p0�y0�=1. Thus, we obtain the form of Eq. �1�
with

� =
z

z − 1
�11�

and

T =
� − 1

a
. �12�

It is interesting to notice that using Eq. �1� leads to the fol-
lowing expression, for the mean sojourn time ��
,

��
 =
T

� − 2
. �13�

Thus, using Eq. �12� we express � as follows

� = 1 + aT = 2 +
T

��

. �14�

The condition p0�y0�=1 is the initial distribution of
the variable y. Upon change of time this distribution tends
to become peaked around y=0, and in the case where
��2, it is shown �17� to reach the invariant distribution
peq�y�= �2−z� /yz−1. The formula of Eq. �14� refers to the
case when the invariant distribution exists, as made evident
by the fact that ��
��, thereby yielding ��2. This is the
condition considered in this paper.

In practice, we create first the sequence �y0�i��, by means
of a succession of random drawings of numbers from within
the interval I. Then, using the transformation of Eq. �9�, we
associate y0�i� with �i, thereby creating the sequence ��i�. As
mentioned in Sec. I, we use the time series ��i� to create the
time series �ti�: The first event occurs at t1=�1, the second at
time t2=�1+�2, and so on.

The renewal character of the model is made evident by
Eq. �9�. In fact, the values of y0 are randomly chosen from a
uniform distribution, 0�y0�1. Any drawing does not have
memory of the earlier drawings. Consequently, a laminar re-

gion does not have any memory of the earlier laminar re-
gions. In literature there are many examples of renewal mod-
els yielding the distribution of Eq. �1�. Here we quote first
the model illustrated by Zaslavsky �19�, known as the hier-
archical island trap model. In the specific case of blinking
quantum dots, a model of the same kind as that of Ref. �19�
has been proposed by the authors of Ref. �20�. This model, in
turn, is formally equivalent to that proposed years ago by
Bouchaud �21,22�, to explain the dynamics of glassy sys-
tems. In this paper, to work within the renewal perspective
we use the dynamical model of this section, which, although
very simple, is essentially equivalent to the models currently
adopted to produce non-Poisson renewal processes
�19,21,22�.

III. MODULATION THEORY

To illustrate the modulation approach to the noncanonical
distribution of waiting times, let us consider a symmetric
double-well potential under the influence of white noise,
yielding the exponential distribution of the time of sojourn in
the two wells �23�. We have

��t� = � exp�− �t� . �15�

The parameter � is determined by the Arrhenius formula

� = k exp�−
Q

kB�
	 . �16�

In the case when either the barrier intensity Q �23� or
temperature � �24� are slowly modulated, the resulting wait-
ing time distribution becomes a superposition of infinitely
many exponentials. At least since the important work of
Shlesinger and Hughes �25�, and probably earlier, it is known
that a superposition of infinitely many exponentially decay-
ing functions can generate an inverse power law. This,
by itself, does not qualify the theory as modulation. It de-
pends on the criterion adopted to relate the time series ��i� to
the time series �ti�. Let us consider, for instance, the time ti,
and let us imagine that an exponential distribution with
time scale 1 /�i is used to draw the time distance �i.
This allows us to define the time ti+1= ti+�i. Let us
now move to define time ti+2= ti+1+�i+1, with the condition
that �i is drawn from an exponential distribution with time
scale 1 /�i+1, with �i+1 not correlated to �i. The resulting
process is no doubt renewal. To produce modulation, we
have to use the same exponential distribution for a large
number Nd of consecutive drawings.

In recent times, the term superstatistics has been coined
�26� to denote an approach to noncanonical distributions, of
any form, not only the Nutting form, as in the original work
of Beck �27�. We note that Cohen points out explicitly �26�
that the time scale to change from a canonical distribution to
another must be much larger than the time scale of each
canonical process. Thus, we can qualify superstatistics as a
form of slow modulation. Therefore, from now on we shall
indifferently refer to this approach to complexity either as
slow modulation or superstatistics.
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In conclusion, according to the modulation theory we
write the waiting time distribution ��t� under the following
form

���� =� d�
���� exp�− ��� , �17�

where 
��� is the � distribution of order �−1 given by


��� =
T�−1

��� − 1�
��−2 exp�− �T� . �18�

This formula, proposed by Beck �27� and used in a later
work �28�, exactly yields Eq. �1� for ��t�.

We make the assumption of being able to generate time
series with no computer time and computer memory limita-
tion. Of course, this is an ideal condition, and in practice we
shall have to deal with the numerical limits of the math-
ematical recipe that we adopt here to understand modulation.
The reader might imagine that we have a box with infinitely
many labeled balls. The label of any ball is a given number
�. There are many balls with the same �, so as to fit the
probability density of Eq. �18�. We randomly draw the balls
from the box and after reading the label we place the ball
back in the box. Of course, this procedure implies that we are
working with discrete rather than continuous numbers. How-
ever, we make the assumption that it is possible to freely
increase the ball number so as to come arbitrarily close to the
continuous probability density of Eq. �18�.

After creating the sequence �� j�, we create the sequence
��i� with the following protocol. For any number � j, the
reader must imagine that we have available a box with an-
other set of infinitely many balls. Each ball is labeled with a
number �, and in this case the distribution density is given by
����=� j exp�−� j��. To realize modulation, we adopt the fol-
lowing two different prescriptions:

Prescription N. 1 We create the sequence
��i����1

��1� ,�2
��1� , . . . ,�Nd

��1� ,�1
��2� ,�2

��2� , . . . ,�Nd

��2� , . . . �. This
means that from each box corresponding to a given � j we
draw the fixed number Nd of waiting times. The crucial event
corresponds to the choice of a new �, and the time between
the jth and the j+1-th crucial event is �1

��j�+�2
��j�+ ¯ +�Nd

��j�.
Prescription N. 2. The main purpose of this prescription

is to create extended time intervals, with the same time
duration Td, where the sojourn times are drawn from
an exponential distribution with the same parameter �.
In this case the time distance between two consecutive
crucial events is fixed and equal to Td. To realize this
purpose, we work with the sequence ��i�
���1

��1� ,�2
��1� , . . . ,�M1

��1� ,�1
��2� ,�2

��2� , . . . ,�M2

��2� , . . . �. The times

�Mj

��j� are defined in such a way that �1
��j�+�2

��j�+ ¯ +�Mj−1

��j−1�

�Td and �1
��j�+�2

��j�+ ¯ +�Mj

��j�
Td. As we see, the condition

�1
��j�+�2

��j�+ ¯ +�Mj

��j�=Td is not exactly realized. However,
the consequences of this error are expected to become
irrelevant in the limiting case of infinitely large Td values.
We shall limit our discussion to the case of very large Td
values, where this condition is realized with a very good

approximation. This corresponds to the case of very slow
modulation.

Notice that according to the arguments of Cohen �26� for
modulation to be identified with superstatistics, it is neces-
sary to make either Nd or Td very large, virtually infinite.
This serves the purpose of allowing the system to reach the
“local form” �i.e., within a time window with the same value
of �� of canonical equilibrium. In the case of this paper the
condition of canonical equilibrium means a form of ordinary
diffusion with ordinary scaling. As described in Sec. I, after
generating the time series ��i� with either prescription N. 1 or
prescription N. 2, we convert this time series into a fluctua-
tion ��t�, and then we use this fluctuation to generate a dif-
fusion process. The local form of diffusion process is ordi-
nary, as the local form of Cohen’s equilibrium is canonical.
The emergence of nonordinary diffusion is caused by the fact
that from time to time a transition from a given exponential
time scale to another occurs.

Both prescriptions yield for ��t� the nonexponential form
of Eq. �1�. In this paper, as pointed out in Sec. II, we con-
sider the condition ��2, which makes finite the mean value
of �, given by Eq. �13�. The corresponding renewal process
is ergodic, and the correlation function of the fluctuation ��t�,
���t1���t2�
, with t2� t1, can be evaluated by adopting the
time average,

���t1���t2�
 = lim
T→�

�
0

T

dt��t���t + t2 − t1�

T
. �19�

Using renewal theory �29� we find for the normalized corre-
lation function ���t� defined by

����� �
1

W2 ���t���t + ��
 , �20�

the following analytical expression

����� =
1

��
��

�

d��t − ������ , �21�

which yields

d2

dt2����� =
����
��


. �22�

It is important to point out, with the authors of Ref. �15�, that
the existence of the stationary correlation function does not
conflict with the property of renewal aging. In this case,
however, the system evolves towards the equilibrium condi-
tion, which is compatible with the condition ��2, albeit the
transition from the out of equilibrium to equilibrium is very
slow if ��3. The stationary correlation function is a prop-
erty of this equilibrium condition.

On the other hand, the distribution density 
��� is an
equilibrium distribution allowing us to evaluate the correla-
tion function through the prescription of Eq. �19� even if we
realize the inverse power law distribution of Eq. �1� through
modulation rather than by means of the renewal prescription.
We note that with prescription N. 1 the time spent by the
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system with a given � is inversely proportional to �, whereas
prescription N. 2 makes it independent of �. Thus, the use of
the prescription of Eq. �19� yields for the stationary correla-
tion function, with prescription N. 1 and prescription N. 2 the
expressions

����� =
� d�


���
�

exp�− ���

� d�

���

�

�23�

and

����� =� d�
���exp�− ��� , �24�

respectively.
As noted by the authors of �28�, in the case 2���3, the

adoption of prescription N. 1, and, consequently, of Eq. �23�,
makes ��t� proportional to the second time derivative of
���t�. It is straightforward to realize this fact by comparing
Eq. �23� to Eq. �17�. As a consequence of this property, we
see that prescription N. 1 makes the renewal and the modu-
lation approach share the same correlation function as well
as the same waiting time distribution of Eq. �1�. The analyti-
cal form of this correlation function is

���t� = � T

T + t
	�−2

, �25�

which is not integrable. With prescription N. 2, on the con-
trary, the waiting time distribution ��t� is proportional to the
first rather than to the second time derivative of ���t�. Thus,
in the same case 2���3 the correlation function becomes

���t� = � T

T + t
	�−1

, �26�

and consequently it is integrable. This allows us to conclude
that prescription N. 2 yields the ordinary scaling 	=0.5. In
fact, by integrating Eq. �2�, squaring x�t�, averaging on the
Gibbs ensemble, and exploiting the stationary nature of the
correlation function ���t1���t2�
= ���0���t2− t1�
, we obtain
�30�

�x2�t�
 = 2W2�
0

t

dt��
0

t�
dt����t�� , �27�

under the condition that all the walkers move from x=0 at
t=0. By using the analytical expression of Eq. �26�, we find

�x2�t�
 = 2W2T2t +
2W2T3−�

�3 − ���� − 2�
−

2W2�T + t�3−�

�3 − ���� − 2�
.

�28�

This means that, although slowly, the second moment tends
to increase linearly with time for t→�. Thus, as earlier
stated, prescription N. 2 leads to the scaling 	=0.5. We invite
the reader to keep in mind this conclusion. In fact, in Sec. V
we shall reach the same conclusion by using the concept of
crucial event illustrated in Sec. I.

IV. AGING EFFECTS IN RENEWAL AND MODULATION
THEORIES

The phenomenon of aging has been known for a long time
as a property of spin glasses and polymers �31�. For a review
on aging associated to critical phenomena we can refer the
reader to the recent work of Ref. �32�. The most popular
manifestation of aging is given by two time correlation func-
tions, depending on two times t1 and t2� t1 not only through
their difference. The decay as a function of t2− t1 becomes
slower for larger t1. Aging is thought to be determined by the
fact that the system under study is out of equilibrium and that
the regression to equilibrium involves times larger than the
observation time �32�.

In this paper we consider a specific form of aging, called
renewal aging, which is discussed in details in many recent
papers, a sample of which is given by Refs. �7–9�. The dy-
namic model illustrated in Sec. II is renewal and can be used
to produce this form of aging, which is revealed by the de-
pendence of ��t� on the observation time. In fact, the distri-
bution density ��t� has the following meaning: ��t�dt is the
probability that a laminar region beginning at t=0 ends in the
small interval �t , t+dt�. Let us imagine that we have at our
disposal a Gibbs ensemble of time series �ti�. We use these
time series to build up a Gibbs ensemble of symbolic se-
quences, with the symbol 1 when an event occurs, and the
symbol 0, when there are no events. This is equivalent to
filling the laminar regions with 0’s, and to assigning the sym-
bol 1 to the border between two consecutive laminar regions.
All these sequences are prepared in such a way that at t=0 an
event occurs, so that for each of them, at t=0 we find the
symbol 1. To produce the histogram determining ��t� we
have to observe the time at which the first laminar region of
each sequence of the sample ends. This is equivalent to mak-
ing preparation and observation at the same time.

What about the case when observation is delayed with
respect to preparation? Let us imagine now that preparation
is made at time t=−ta�0 and observation begins at time
t=0. The first measured waiting time is denoted by �1. The
first waiting time, at variance with the observation of the
successive waiting times, does not necessarily correspond to
the total time duration of a laminar region. In fact, the first
laminar region could have started at t=−ta, or at an unknown
later time t=−tu, earlier, though, than the time t=0 at which
observation begins. Thus, the real length of the laminar re-
gion corresponding to the first observed waiting time is given
by �1+ tu. The resulting histogram records time lengths that
are generally smaller than those corresponding to preparing
and observing the system at the same time. Nevertheless, in
the case when the waiting time distribution is exponential,
both long- and short-time lengths are reduced by the same
percent. Thus, turning the histogram into a normalized wait-
ing distribution density has the effect of recovering the same
exponential form. A renewal exponential process does not
age. In the nonexponential case delaying the observation pro-
cess has the effect of producing a percent cut of the short-
time laminar regions larger than that of the long-time laminar
regions. As a consequence, normalizing the histogram, so as
to produce the aging waiting time distribution �ta

, has the
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effect of reducing the weight of the short-duration laminar
regions and of enhancing that of the long-duration laminar
regions.

The dynamic model of Sec. II is useful to understand
renewal aging. Making observation and preparation at the
same time is equivalent to drawing the numbers y0 from a
uniform distribution on the interval I, thereby yielding by
means of the nonlinear transformation of Eq. �9� the inverse
power law distribution of Eq. �1�. The postponement of the
observation process corresponds to determining ��t� through
Eq. �10� again, with p0�y0� replaced by the distribution
p�ta ,y0�. This yields the aging waiting time distribution
�ta

�t�, which depends on ta for the following physical rea-
sons. The dynamic system of Sec. II is prepared in the uni-
form distribution p0�y0� and it is let free to evolve in time,
under the influence of the prescription of Eq. �5� and of the
back-injection process. Delaying the observation by the
quantity ta has the effect of selecting with a larger probability
the smaller values of y0. In fact p�ta ,y0�� p�ta ,y0�� if
y0�y0�. The experimental observation, yielding �ta

�t� allows
us to establish at which time the system was prepared. This is
a form of long-standing memory that yet is compatible with
the fact that the laminar regions showing up in the future do
not have any memory of those that occurred in the past.

In this section, we illustrate, with the help of a numerical
example, how aging effects are deeply related to the renewal
character of the process, whereas aging is annihilated by the
slow modulation. Monte Carlo simulations of a renewal pro-
cess with inverse-power-law distribution of waiting times,
Eq. �1�, are performed using the approach proposed in Sec.
II, i.e., we generate a sequence ��i� by using Eq. �9�.

As far as modulation theory is concerned, the numerical
treatment is a little bit more delicate. The first step in the
Monte Carlo simulation consists in generating a sequence of
random numbers � in agreement with the � distribution 
���
given in Eq. �18�. An approach similar to the one used in
Sec. II cannot be applied, because there is no simple analyti-
cal expression for the cumulative function related to � dis-
tributions. As a consequence, it is not possible to obtain a
simple explicit expression for the function relating the ran-
dom number � to a uniform random number in the interval
I= �0,1�. For this reason, we decided to use the rejection
method suggested by Ref. �33�. This method is based on the
use of a majorant function f���, i.e., a function that, for each
point, takes values slightly greater than the corresponding
values of the � distribution. The general idea is to draw
random points in the plane, uniformly distributed under the
graph of f���. Then, the points under the graph of the �
distribution are accepted and the others rejected. The random
points are drawn as follows. First of all, we draw a random
number � distributed as the probability distribution f��� /A,
where A�1 is the area under the graph of f���. This is easily
done if f��� is chosen with a simple analytical expression, in
order to apply the method of Sec. II. Then, given �, a uni-
form random number � is drawn in the interval �0, f����. The
coordinates �� ,�� define the random point. Finally, if � is
smaller than the corresponding value 
���, then � is ac-
cepted, otherwise it is rejected. Without loss of generality we
fix T=1 and we chose the following majorant function:

f��� = ��e−� if � � 1;

�

�2 if � � 1. � �29�

According to Ref. �33�, in order to obtain a certain number of
accepted numbers, the rejection method requires a greater
amount of random drawings, depending on the choice of the
majorant function. We found that, given the majorant func-
tion described by Eq. �29�, with �=1.7 and �=�e �e is the
Neper’s number�, the total number of drawings is about the
double of the accepted drawings. Furthermore, we compared
the histograms computed from the sequence of simulated
random numbers with the relative probability density distri-
bution 
��� given in Eq. �18�, with excellent agreement.
Following Prescription N. 1, for each number � we have to
draw Nd numbers from the exponential distribution described
in Eq. �15�, representing a sequence of waiting times. This is
easily obtained with the same standard method described in
Sec. II. In this Section we use this approach to generate
trajectories, i.e., artificial sequences of random waiting
times. We compare the results for the aging analysis of tra-
jectories characterized by the same exponent � of the power-
law, but generated from the renewal process and from modu-
lation processes with different Nd.

We perform the aging analysis in the following way.
Given the sequence of waiting times and an aging time ta, we
compute the truncated waiting times, i.e., the difference be-
tween each waiting time and ta. When the waiting time is
shorter than ta, then we take the successive waiting times
until their sum exceeds ta. Then the truncated waiting time is
defined as the difference between this sum and ta. In this
way, we obtain a sequence of truncated waiting times char-
acterized by some aged probability density distribution
�ta

���. Aging is revealed if this distribution changes with ta.
Note that the modulation process resting on Prescription N.
1, for Nd=1 is expected to coincide with the prediction of
renewal theory. To confirm this important property by means
of numerical calculation, in Fig. 1 we make a comparison
between the renewal and the modulation process, with

FIG. 1. Comparison between the function �ta
of a renewal pro-

cess �continuous lines� and the �ta
of a modulation process with

Nd=1 �dots� at different values of ta=0,50,100,150,200 �from the
lower to the upper curves�.
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Nd=1. For graphical reasons, rather than measuring the func-
tion �ta

, we evaluate the aged survival probability �ta
, which

is related to �ta
by the following relation:

�ta
��� = �

�

�

�ta
����d�� = 1 − �

0

�

�ta
����d��, �30�

conveying therefore the same information of �ta
.

The results of the numerical experiments are illustrated by
Figs. 1–4. All these four figures illustrate the aging effect on
both the renewal �continuous lines� and the modulation
model �dotted lines�. Figure 1 refers to the case Nd=1. In this
case, the choice of a given � determines only one waiting
time. As a consequence, any laminar region does not have
anything in common with the earlier laminar regions, and
modulation is indistinguishable from renewal, as shown by
Fig. 1. On the contrary, Fig. 2 shows that it is enough to set
Nd=10 to make the dotted lines significantly depart from the
dashed lines. We see that the dotted lines indicate a faster
decay than the dashed lines, which implies that with modu-
lation the aging effect is significantly reduced already at

Nd=10. With a further increase of Nd �see Figs. 3 and 4� this
effect becomes more pronounced. We see, in fact, that the
dotted lines tend to overlap with the brand new survival
probability. We conclude that for Nd→� the aging effect is
annihilated. We thus conclude that superstatistics, as a form
of infinitely slow modulation, yields no aging, in accordance
with the prediction of Ref. �10�.

V. DIFFUSION

We address the problem of diffusion generated by modu-
lation using two distinct procedures: Prescriptions N. 1 and
N. 2 of Sec. II. We shall use the approach of the Continuous-
Time Random Walk �CTRW� �34� to derive the asymptotic
scaling of the process. The problem of diffusion with re-
newal has been the object of earlier work �35� to which we
refer the interested reader to appreciate the difference be-
tween renewal and modulation on this specific issue. Here
we limit ourselves to remarking that the renewal diffusion
realizes the scaling condition of Eq. �3� with 	=1/ ��−1�
and F given by a symmetric Lévy ��−1�-stable function.
These are properties of the central part of the PDF, which is
truncated by ballistic peaks. As a consequence, the condition
of Eq. �3� is not exactly fulfilled and the resulting diffusion
process is multi-scaling �35�.

A. Continuous time random walk: Fixed number of drawings

We remind the reader that in Sec. I we have mentioned
the important role of the abrupt changes of exponential time
scale. We have decided to denote these abrupt changes of
exponential time scale as crucial events. More precisely, the
crucial event corresponds to drawing from a given exponen-
tial distribution the time length of a laminar region for the
first time. Let us assume that the drawing of the first waiting
time from a given exponential distribution and the drawing
of � from 
��� occur at the same time. Thus, we identify the
crucial events with the drawings of �’s from the distribution

���.

We plan to proceed as in the well known CTRW theory
�34� extended by Zumofen and Klafter �13� to the case where
the particle moves with constant velocity, in either the posi-

FIG. 4. The same as Fig. 2, but with Nd=500.FIG. 2. Comparison between the function �ta
of a renewal pro-

cess �dashed lines� and the function �ta
of a modulation process

with Nd=10 �dots�, at different values of ta=50,100,150,200 �from
the lower to the upper curves�. The lowest curve represents the
brand new function ��t�.

FIG. 3. The same as Fig. 2, but with Nd=100.
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tive or negative direction, in between two consecutive re-
newal events. With this theory it is essential to define and use
the properties ��t ,x�, �n�x , t�, and ��t ,x�. The first is the
probability density for the walker to move a distance x in
time t in a single motion event, the second is the probability
density that the walker moves a distance x as a result of n
events, the last of which makes the walker arrive at x exactly
at time t. Finally, the last property is the probability for the
walker to move a distance x with no event occurring up to
time t. We plan to build up the corresponding properties
P�x , t�, P�n��t�, and N�x , t�, where the CTRW events are re-
placed by the crucial events. It is evident that when Nd=1
this generalized theory coincides with the ordinary CTRW
�13,34�. With these generalized properties we express the
probability density p�x , t� for the walker to be at position x at
time t as follows

p�x,t� = �
n=1

� �
0

�

dt��
−�

+�

dx�P�n��x�,t��N�x − x�,t − t�� + N�x,t� .

�31�

To solve the intriguing problem of determining the scaling
produced by prescription N. 1, we shall use the Fourier-
Laplace transform of Eq. �31�, which reads

p̂�k,u� =
1

1 − P̂�k,u�
N̂�k,u� . �32�

Note that to get this result we have to use the property

P̂n�k,u� = �P̂�k,u��n, �33�

which is a consequence of the fact that the occurrence of
different crucial events produce uncorrelated motional ef-
fects on the random walker.

We have to explain now how to build up P�x , t�,
P�n��x , t�, and N�x , t�, by keeping in mind that according to
prescription N. 1, we have to draw Nd waiting times from the
same exponential waiting time distribution

����� = � exp�− ��� . �34�

Let us define first the function ��i��x , t�. This is the probabil-
ity density of moving by the quantity x in time t, with i time
drawings from the same Poisson distribution. This important
function reads

��i��x,t� = �
0

�

d���
�i��x,t�
��� , �35�

where ��
�i��x , t� denotes the probability density of moving by

x in time t as a result of drawing i numbers from a given
Poisson distribution, thereby corresponding to the same
value of the parameter �. The functions ��

�i��x , t� obey the
following recursion relation:

��
�i��x,t� = �

0

t

dt��
−�

+�

dx���
�i−1��x�,t����

�1��x − x�,t − t�� ,

�36�

with

��
�1��x,t� � � exp�− �t�

1

2
�	�x − Wt� + 	�x + Wt�� . �37�

We remind the reader that the symbol W and −W are values
assigned to the laminar regions by means of a fair coin toss-
ing prescription �see Sec. I�. This explains the two deltas of
Dirac, indicating that the particle with the same probability,
1 /2, can travel with constant velocity in both the positive
and negative direction. In conclusion, the physical meaning
of the function ��i��x , t� of �35� corresponds to adopting the
following procedure. We draw a given � from a set of many
� values with the probability density 
���. Then, we draw i
waiting times � from the corresponding distribution density
�����=� exp�−���. For very large values of i, the � subse-
quence, i.e., the portion of the time series �ti� corresponding
to �, has a time length equal to i /�. Let us assume that the �
subsequences are large enough as to produce diffusion and to
move the particle by a fluctuating quantity x, which can be
evaluated using the ordinary diffusion equation.

We are now in a position to express the quantity
P�x , t�� P�1��x , t� as follows

P�1��x,t� = ��Nd��x,t� . �38�

In other words, the transition by the quantity x in time t
generated by a single crucial event is derived from Eq. �36�
by setting i=Nd. As far as N�x , t� is concerned, we have

N�x,t� = �
0

+�

d�
���N��x,t� , �39�

and

N��x,t� = �
i=1

Nd �
0

t

dt��
−�

+�

dx���
�i−1��x�,t�����x − x�,t − t�� ,

�40�

where with ��
�0��x , t� we denote the initial condition 	�x�	�t�.

In �40� there are no crucial events involved because the
maximum numbers of time drawings is Nd−1, not enough to
generate a new crucial event, if we start at time t=0 with a
crucial event. As a result of this partial number of drawings
the particle reaches position x� in time t�. The remainder
portion of space x−x� in the remainder portion of time
t− t� is traveled with no further time drawing, according to
the prescription

���x,t� =
�	�x + Wt� + 	�x − Wt��

2
�

t

+�

dt�e−�t�. �41�

At this stage we are properly equipped to evaluate p̂�k ,u�
of Eq. �32�. This requires the evaluation of the Fourier-
Laplace transform of P�x , t� and N�x , t�, and, consequently,
according to the earlier equations, the Fourier-Laplace trans-
form of ��i��x , t�, ���x , t�, and P�x , t�. Using the convolution
theorem we have:

�̂�i��k,u� = �
0

+�

d�
���
 ��u + ��
�u + ��2 + k2W2�i

�42�

and
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�̂��k,u� =
�u + ��

�u + ��2 + k2W2 . �43�

From Eqs. �42� and �38� we derive immediately

P̂�k,u� = �
0

+�

d�
���
 ��u + ��
�u + ��2 + k2W2�Nd

. �44�

To evaluate the scaling of the diffusion process we have to
study the asymptotic limit, u→0 and k→0. In the
asymptotic limit the numerator on the right-hand side of Eq.
�32� tends to constant value

N̂�0,0� = Nd� d�

���

�
. �45�

This means that the scaling emerges from the denominator of
the term on the right hand side of Eq. �32�. It is easy to deal
with this scaling generating term if we go to the asymptotic
limit first and then we make the average on �. By making the
asymptotic expansion of Eq. �44� and using Eq. �45� we
arrive at the final result

p̂�k,u� =
1

u + k2W2� 1

�
�

�

, �46�

where the angle brackets with the subscript � indicate an
average over the weight 
��� /� as in Eq. �23�. In other
words,

� 1

�
�

�

=

�
0

�

d�

���

�2

�
0

�

d�

���

�

. �47�

This result, stemming from going to the asymptotic limit
before averaging, cannot be correct because it would produce
a diverging diffusion coefficient, when ��3. It signals any-
way that there must be an extended time region where the
diffusion process is characterized by the scaling

	 = 0.5. �48�

This is the condition of an ensemble of Poisson processes,
each of them characterized by a fixed value of �, selected
from the distribution 
��� /� and then kept fixed forever. In
this condition, aging would be totally annihilated, in accor-
dance with Ref. �10�.

B. The waiting time distribution of time distances between two
consecutive crucial events

As stated in Sec. I, in this paper we aim at studying the
case where modulation is slow, but not infinitely slow. Thus,
we have to go beyond the assumption made in the earlier
subsection. We use Eq. �36� and with some algebra, in addi-
tion to Eq. �37�, we find

��
�2��x,t� =

�2t exp�− �t�
4

���	�x − Wt� + 	�x + Wt�� +
��Wt − �x��

Wt
�

�49�

and

��
�3��x,t� =

�3t2 exp�− �t�
16

���	�x − Wt� + 	�x + Wt�� + 3
��Wt − �x��

Wt
� ,

�50�

where � denotes the step Heaviside function. We see that the
functions ��

�i��x , t� with i�1 are characterized by a nonvan-
ishing contribution between the two deltas of Dirac. This
contribution makes it difficult to move from ��

�i��x , t� to
��i��x , t�, according to the prescription of Eq. �35�, but in the
case i=1, yielding

��1��x,t� =
1

2
�	�x − Wt� + 	�x + Wt����t� , �51�

where ��t�, thanks to the average over �, gets the same ana-
lytical form as Eq. �1�.

This suggests to make a first attempt at evaluating the
scaling of this diffusion process by neglecting the nonballis-
tic contribution to ��

�i��x , t�. We denote these approximated
expressions for ��

�i��x , t� with the symbol ��
�i��x , t�. It is pos-

sible to find a general and exact expression for ��
�i��x , t�,

which reads

��
�i��x,t� =

1

2i �	�x − Wt� + 	�x + Wt��
�iti−1

i − 1!
exp�− �t� .

�52�

In this expression we identify three factors with a specific
meaning. The factor 2−i is a signature of the fact that for each
ballistic contribution we tossed the coin i times, always get-
ting the same result. The second term �	�x−Wt�+	�x+Wt��
means that we are considering only the ballistic motion. Fi-
nally in the third term, �iti−1 exp�−�t� / �i−1�! one can easily
recognize the Poisson distribution of obtaining the ith suc-
cess at the tth trial, in a urn model �36�. This indicates that
the elapsed time is generated by i distinct drawings from the
same Poisson distribution, with the same �.

The expression of Eq. �52� makes it easy to evaluate the
approximated expression corresponding to ��i�, denoted by
��i�. This is derived from Eq. �52� by making the proper
average on � with the statistical weight proportional to 
���.
After some algebra we obtain
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��i��x,t� =
1

�i − 1�!2i �	�x − Wt� + 	�x + Wt��

� 
 �i−1

��i−1�
0

�

d�
���� exp���t��
�=−1

, �53�

which yields

��i��x,t� = �	�x − Wt� + 	�x + Wt��

�
�� − 1�� ¯ �� + i − 2�T�−1ti−1

�i − 1�!2i�t + T��+i−1 . �54�

At this stage, we are ready to find the waiting time distri-
bution of the times of sojourn between two consecutive cru-
cial events, denoted by us as �crucial�t�. This distribution den-
sity is derived from Eq. �54� by setting i=Nd and by
integrating over x. This procedure yields

�crucial�t� =
1

�Nd − 1�!2Nd−1 �� − 1�� ¯ �� + Nd − 2�

�
T�−1tNd−1

�t + T��+Nd−1 . �55�

We see that this distribution density vanishes at t=0, and it
becomes an inverse power law at very large times. To esti-
mate the time necessary for this distribution to become in-
distinguishable from an inverse power law, we evaluate the
time at which it reaches a maximum. The larger this time, the
larger the time necessary for this waiting time distribution to
reach the asymptotic condition. This time turns out to be

t = tmax �
�Nd − 1�T

�
, �56�

namely, for large values of Nd it is proportional to the num-
ber of time drawings from the same exponential waiting time
distribution. Thus, increasing Nd has the effect of postponing
the transition from the microscopic to the asymptotic regime.
When the asymptotic regime is eventually reached, we see
the emergence of an inverse power law with index �. Thanks
to the renewal character of the crucial events, it is well
known, see, for instance, �12,13�, that the scaling coefficient
	 gets the following expression

	 =
1

� − 1
, �57�

which is identical to Eq. �4�. It is important to notice that Eq.
�4� is the scaling that we derive from the experimental his-
togram under the assumption that all the recorded events are
of renewal. In the modulation case, the assumption that all
the recorded events are renewal is incorrect. In the specific
case of prescription N. 1, we find that the waiting time dis-
tribution �crucial�t� of Eq. �55� has the same power index of
the distribution density of the time distances between two
consecutive recorded events, thereby forcing diffusion to
eventually reach the same scaling as the genuinely renewal
model.

C. A heuristic derivation of diffusion scaling

Which is the effect of the nonballistic contribution? In the
earlier subsection we have made the assumption of neglect-
ing the nonballistic contribution to diffusion. Cattaneo �37�
found the exact solution for a diffusion process correspond-
ing to drawing the waiting times always from the same ex-
ponential waiting time distribution and showed that in the
long-time limit the ballistic peaks can be neglected and the
diffusion process becomes indistinguishable from the ordi-
nary Gaussian diffusion. Thus now we adopt the approxima-
tion that the walker moving with the same exponential pre-
scription in a time t travels a distance x with the probability
density

p��x,t� =
1

�4�W2t/��1/2 exp�− x2�

4W2t
	 . �58�

This approximation allows us to define the function M�x�,
which is the probability density for the walker to travel the
distance x in the time interval between two consecutive criti-
cal events. We notice that the time duration of the motional
event created by the same exponential waiting time distribu-
tion with time scale 1 /� is given by tc�Nd /�. Thus, M�x� is
obtained from p��x , t� of Eq. �58� by setting t= tc and aver-
aging on all possible � with the statistical weight 
���,
thereby yielding

M�x� =
T�−1

��� − 1�
� �

0

� �

�4�W2Nd�1/2

�exp� − x2�2

4W2Nd
	��−2 exp�− �T�d� . �59�

Let us notice that the power index � of the distribution
density �crucial��� of the earlier subsection meets the condi-
tion 2���3. This means that the time distance between
two consecutive crucial events, �crucial, exists and has the
finite value ��crucial
, whose explicit expression is not rel-
evant for the present discussion. We limit ourselves to notic-
ing that in the large asymptotic time limit the number of
crucial events is n= t / ��crucial
, and the resulting distribution
p�x , t�� p�x ,n� is determined by the generalized central limit
theorem �38�. As proved in Ref. �35�, the generalized central
limit theorem is a reliable tool to determine the probability
distribution density emerging from the nonballistic contribu-
tions. According to Ref. �38�, if the second moment of M�x�
is finite, the system falls in the basin of attraction of Gauss
diffusion and 	=0.5. If, on the contrary, the second moment
of x is divergent, the system falls in the basin of attraction of
Lévy diffusion, the diffusion process being �-stable. This
means that to recover finite moments we have to study the
fractional moments ��x��
, with ��2. Note that the index �
of the Lévy inverse power law is �=�+1. Thus, a heuristic
way to establish if the process is of Lévy kind or not, rests on
the evaluation of the fractional moment ��x��
, with the
weight M�x� of Eq. �59�. Then, for any � we must establish
which is the threshold value of �. By threshold value of �
we mean the value of �, below which the fractional moment
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��x��
 diverges. The scaling 	 is given by 	=1/�=1/ ��−1�,
with � being the threshold value.

In other words, we set ��2, and we look for the mini-
mum value of � ensuring

�
−�

+�

dx�x���
0

+�

d���−1 exp
− �x��2

4W2Nd
− �T� � � . �60�

We reverse the integration order and use the fact that the
Gaussian moments are always finite, to get

�
−�

+�

dx�x����+1 exp
− �x��2

4W2Nd
� = C . �61�

Note that C is independent of of �. Thus the condition of
�61� becomes

�
0

+�

d���−�−2 exp�− �T� � � . �62�

Note that the only source of divergence for this integral
is the limiting condition �→0. In fact the exponential factor
exp�−�T� ensures convergence for large values of �. Thus, to
ensure the convergence of this integral we must focus on the
short values of �. We see that the integral convergence is
ensured by ���+1, which means that for � fitting the con-
dition 1���2, the values of � satisfying the condition
2���3 are threshold values. According to the earlier
illustrated criterion, this yields for the scaling 	=1/�,
	=1/ ��−1�, thereby confirming the Lévy scaling of
Eq. �57�.

D. Scaling with prescription N. 1: An exact prediction

We have seen that the function P�x , t� with the Laplace-
Fourier transform given by Eq. �44� determines the diffusion
scaling of the process and that making the asymptotic
limit k→0 and u→0 before averaging over � is not correct.
Thus, we address this scaling issue with a different procedure
that yields an exact result. We focus our attention on
p̂�k ,0�, which, according to the Lévy theory �39�, should be
p�k ,0��1−const k�. Using �32� we get the Lévy asymptotic

property provided that P̂�k ,0��1−const k�. Note that we
have to prove that �=�−1. For this purpose we focus on Eq.
�44�. First of all, without any loss of generality, we set
W=1 and T=1; then, considering u=0, and substituting
y=� /k, we obtain:

P̂�k,0� =
k�−1

��� − 1��0

�

y�−2e−Tky� y2

y2 + 1
	N

dy . �63�

At this point, we use the binomial expansion and we get:

� y2

y2 + 1
	N

=
y2N

�i=0

N �N

i
	y2i

= 1 −
�i=0

N−1 �N

i
	y2i

�i=0

N �N

i
	y2i

. �64�

Let us plug this expression into the integral, and divide it
into two parts:

k�−1

��� − 1�
� ��0

�

y�−2e−Tkydy

− �
0

� �i=0

N−1 �N

i
	y2i

�i=0

N �N

i
	y2i

y�−2e−Tkydy� . �65�

The first term gives ���−1� /k��−1� and, therefore, the unity

term in the zeroth order of P̂�k ,0�. Looking at the second
term, note that the integrand does not diverge in zero, at the
infinity either: the integral can be considered as a Laplace
transform �in Tk� of a finite quantity. So, at this first order,
we obtain a constant.

In conclusion, for the integral �63� we obtain the expres-
sion 1−const k�−1, which is the same first-order expansion as
that stemming from the renewal process, thus yielding �57�.
We think that at this stage the validity of Eq. �57� is widely
proved. In spite of the approximation made to get the Lévy
scaling, Eq. �57�, this property is correct and is expected to
show up in the time asymptotic limit. We note also that the
scaling of Eq. �57� is the same as that one would predict by
means of the observation of ���� of Eq. �1�, supplemented by
the assumption that the process is renewal. However, this is a
coincidence, due to the fact that �crucial�t�, determining the
time distance between two consecutive crucial events, has
the same power index of the distribution of Eq. �1�. In the
next subsection we shall see that when the power index of
�crucial�t� is different from that of of ����, the diffusion scal-
ing is determined by the former distribution.

E. Continuous time random walk: Fixed time Td for the
action of the same �

We have focused so far our attention on the modulation
prescription N. 1. Let us consider now the modulation pre-
scription N. 2. In the case where we keep drawing the times
� from the same � for a time Td, assumed to be very large,
we can apply the following argument. The probability den-
sity for the particle to travel by the quantity x is given by

Q�x� � p�x,Td� = �
0

+�

d�
���p��x,Td� , �66�

where p�x ,Td� denotes the probability density of traveling by
the quantity x, in the positive, x�0, or negative, x�0, di-
rection, for a time Td, throughout which the random times �i
has been always drawn from the same Poisson distribution of
Eq. �34�, with a fixed value of �. Note that also with pre-
scription N. 2 the crucial events correspond to the time when
a new value of � is drawn. As a consequence of the random
choice of �, as well as of the random choice of �i, the func-
tion Q�x� must be interpreted as a distribution of totally un-
correlated numbers. Therefore, as done earlier, we have to
focus now our attention on the fractional moments of Q�x�.
Notice that, with prescription N. 2, the jumps occur at regu-
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lar times, separated by the fixed distance Td, a property that
makes easier and even more rigorous our scaling evaluation.

For this prescription we have

p��x,Td� =
1

�4�W2Td/��1/2 exp� − x2�

4W2Td
	 . �67�

Substituting �58� into Eq. �66�, we obtain:

p�x,Td� =

�
0

�

�1/2 exp� − x2�

4W2Td
− �T	��−2T�−1d�

�4�W2Td�1/2��� − 1�
. �68�

Let us consider for simplicity T=1:

p�x,Td� =
1

��� − 1�
1

�4�W2Td�1/2

��0
� exp
− � x2

4W2Td
+ 1	����−3/2d� . �69�

Now, using integral 3.381�4� of Ref. �40�,

�
0

�

x�−1e−�xdx =
1

������ , �70�

with Re����0 and Re����0, we obtain

Q�x� =
��� − 1/2�
��� − 1�

1

�4�W2Td�1/2� 4W2Td

x2 + 4W2Td
	�−1/2

.

�71�

We see that for ��2, the second moment of Q is finite.
Thus, in this case the standard central limit theorem applies,
and consequently modulation realized with prescription N. 2
yields

	 = 0.5. �72�

Note that with Eq. �28� we have reached the same conclusion
on the basis of the properties of the correlation function
���t�. It should be now evident to the reader that this corre-
lation function is integrable for the very same reasons why in
the time asymptotic time limit we can apply the central limit
theorem. Equation �28� shows that the ordinary scaling is
reached after a very long transient. The time distance be-
tween two consecutive crucial events, although fixed, is very
large, and this make it possible for us to explain, in terms of
crucial events, why the transition process to scaling is so
slow.

VI. CONCLUDING REMARKS

Let us discuss which are the main results emerging from
this paper. First of all, we found that the waiting time distri-
bution is an ambiguous indicator of complexity. This con-
firms the conclusion of earlier work �41� from within a new
perspective made attractive by the modulation, or supersta-
tistics, approach to complexity �26,27�. It is remarkable that
the time sequence generated according to the modulation
prescription would pass the randomness test, based on the

use of the correlation function method. In fact, as we have
seen, the correlation enforced by modulation refers to the
persistent use of the same Poisson prescription to generate
waiting times that are otherwise totally uncorrelated. We
have seen that the adoption of the aging experiment of Sec.
IV bypasses the limits of the conventional methods of analy-
sis, since it establishes beyond any doubt the difference be-
tween the renewal and the modulation character of a se-
quence of times. This is a fact of some physical importance
for the physics of blinking quantum dots �42�. The work of
Brockmann et al. �43� has already established aging in the
intermittent fluorescence of these new materials, and the
more recent work of Ref. �14� confirms that this aging is due
to the renewal character of the process. Thus, we conclude,
in agreement with Refs. �10,14�, that the dynamic process
responsible for intermittent fluorescence must be built up on
the basis of a renewal perspective.

The second result of this paper is that the physical real-
ization of modulation might produce renewal events. Thus,
the phenomenon of renewal aging is not totally annihilated,
but rather strongly reduced. This means that, as argued in
Ref. �10�, aging is totally annihilated only in the limiting
case of Nd=�, which corresponds to the case of infinitely
slow modulation. A reduced, but not vanishing, aging corre-
sponds to the enhancement of the time duration of the regime
of transition from microscopic dynamics to scaling. It is evi-
dent, therefore, that crucial events are responsible for both
aging and scaling.

Finally, it is worth to make some remarks on the concept
of crucial event. In this paper we have defined the crucial
events as the abrupt changes of exponential time scales.
However, this definition of crucial event is valid only in the
specific case illustrated in this paper. The results of the ear-
lier work of Ref. �41� lead us to conclude that a more general
definition should be used. The authors of �41� studied the
heartbeat processes and monitored the heart beat sojourn
times in a given fixed frequency state. This approach gener-
ates the time series �ti� and ��i� and, with a walking rule
appropriately chosen for that problem, a diffusion process.
Also in the case of Ref. �41� the diffusion scaling does not
agree with the scaling that would be produced by ��t� if the
process were renewal. The authors of Ref. �41� proposed a
dynamic model with the occurrence of the observable and
recordable events determined by invisible renewal events.
The model proposed in �41� is quite different from the modu-
lation model studied in the present paper, insofar as the ob-
served events depend on the invisible events through a
simple deterministic prescription. In the present case the cru-
cial events determine a stochastic rather than deterministic
prescription to generate the ordinary events. Yet, in both
cases the diffusion scaling is not determined by the recorded
events, but by rare renewal events behind them. On the basis
of this comparison between this paper and the earlier work of
Ref. �41� we are inclined to propose for the crucial events the
more general definition of renewal events, visible �recorded�
or invisible �not recorded�, which determine the diffusion
scaling coefficient. The ratio of noncrucial to crucial events
is usually very small. Consequently, the noncrucial events
generate a sort of camouflage action that makes it difficult to
reveal the crucial events, even when they are recorded. This
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is a challenge for the search of methods of statistical analysis
so efficient and sensitive as to reveal the statistical properties
of rare crucial events, in spite of the camouflage action ex-
erted by the cloud of ordinary events. The numerical experi-
ment of aging is useful to establish whether the process is
renewal or not. The assessment of the asymptotic scaling,
and with it of the statistical properties of the corresponding
crucial events, is a challenge to the current methods of scal-
ing detection. We quote as an example the method of Ref.
�12�, which has been proven to be especially efficient. Yet, if

crucial events of the kind discussed in this paper were
present in real time series, an even more sensitive method of
analysis would be required.
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