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Fluctuation-dissipation relations in driven dissipative systems
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Exact theoretical results for the violation of time-dependent fluctuation-dissipation relations in driven dissi-
pative systems are presented. The ratio of the correlation to delayed response in the stochastic model intro-
duced in [Phys. Rev. Lett. 93, 240601 (2004)] is shown to depend on measurement time. The fluctuation
temperature defined by this ratio differs both from the temperature of the environment performing the driving,
and from other effective temperatures of the system, such as the average energy (or “granular temperature”).
General explanations are given for the time independence of the fluctuation temperature for simple measure-

ments or long measurement times.
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The fluctuation-dissipation relation (FDR) [1] provides a
fundamental connection between two small deviations from
thermodynamic equilibrium—the autocorrelation function of
an observable, and the response function of that observable
to changes in its conjugate field. In equilibrium, there are
two aspects to the FDR: (i) these functions have the same
spatial and temporal (or frequency) dependence, and (ii) for
every observable their ratio equals the system’s temperature.

Away from equilibrium, there is no such theorem connect-
ing correlation and response. This having been said, there is
much theoretical [2-13] and experimental [14,15] interest as
to what is the relation between these quantities. In particular,
one may ask whether either aspect (i) or (ii) holds for small
deviations from nonequilibrium steady states (NESS). Aspect
(ii) has been tested extensively for low frequency measure-
ments in various systems, and the effective temperature 7,
defined by the ratio of the correlation to response, clearly
differs from the environment temperature [2,3,14]. On the
other hand, numerical simulations indicate that T does co-
incide [16] in some cases with other effective temperatures
defined for glasses [4], sheared dissipative foams [5], dense
granular packings [6], and driven granular gases [7].

Regarding aspect (i), different frequency dependences of
the correlation and response functions have been observed in
simulations of glasses [2], sheared foam [8], and models of
driven systems [9], as well as in bacterial bath experiments
[17]. In all these cases, fast modes thermalize, while slower
modes manifest a higher (usually frequency-independent)
temperature reflecting driving or system history (e.g., tem-
perature quench). Experiments on vibrated granular systems
[15] have shown a weak dependence of T on measurement
frequency, which may not obviously be attributed to thermal-
ization of fast modes with the environment.

This work aims at understanding the relation between
time- (or frequency-) dependent correlations and response in
NESS. To our knowledge, these have not previously been
calculated exactly for any driven dissipative system. Here we
calculate the autocorrelation and response functions in the
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context of a simple stochastic model of a dissipative system.
The model introduced in [13] is constructed about the essen-
tial features of any driven dissipative system: energy loss
upon interaction between particles (or modes) and energy
input through an external driving mechanism. As such, we
have reason to hope that our results will be relevant to a
broad class of driven dissipative systems [18].

Our main results are: (1) There are certain observables for
which the correlation and response have identical temporal
dependence, however, (2) for a general measurement, they
have different temporal dependences. This notwithstanding,
(3) for asymptotically long times, the time dependence of the
correlation and response coincides. Spatial FDRs in our
model are investigated in [19].

The model consists of N particles, each with two degrees
of freedom (DOF), one “kinetic,” ¢;, and one “internal,” x;.
The energy of particle i is e;—x;F;, where F; is an external
field on particle i, which may depend on time. The {x;} may
be thought of as positions or any other coordinates used to
measure FDR. In our notation we emphasize the difference
between microscopic DOF’s {e;} and {x;} and macroscopic
quantities E EEﬁlei and X= Efilx,-. The system dissipates
energy through interactions and is maintained in a steady
state by being coupled to a thermal bath.

In every interaction two DOF’s are randomly chosen and
their energy is stochastically redistributed between them. In
interactions between two “kinetic” DOF’s (e—e) there is dis-
sipation: only a fraction 0<a<1 («a is like a restitution
coefficient) of the energy is conserved and the remaining is
dissipated out of the system. Interactions between a
“kinetic”” and an “internal” DOF (e—x), and between a “ki-
netic” DOF and a DOF from the bath (e—ej) conserve en-
ergy. When all interactions are elastic (a=1), detailed bal-
ance holds and the system reaches thermodynamic
equilibrium with the bath. Rates of interactions are deter-
mined by the per-particle interaction rate I', and the dimen-
sionless coupling strengths 0<(f,h)<1 of the “kinetic”
DOF’s to the bath and to the ‘“internal”” DOF’s, respectively.

The resulting stochastic equation of motion for particle i
reads,
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e(1) 1-Tdt
et+d) =4 zale)+e()] (1-HTdr  (la)
ZLei(t) + ep] S =n) dt
\Z[ei(t) -x;(OF ()] fhl dt,
’ Value: Probability:
x(t+dt) = x;(1) 1—fhl' dt (1b)
(2lxi(t) — e ()/F ()] fhT dt,

where j,ke{l,...,N} are indices of particles with which
particle i may interact, chosen randomly at every interaction
(we do not allow e;—e; interactions, therefore k#i); z
€[0,1] is the fraction of repartitioned energy given to par-
ticle 7 in the interaction, chosen randomly from a uniform
distribution at every interaction; ep is the energy of a bath
DOF chosen randomly at every interaction from the equilib-
rium distribution pB(eB)le;le‘eB/ s at the environment tem-
perature 7.

In the steady state we define one-particle and N-particle
autocorrelation functions, c¢(¢)= (x,(1)x,(0))—(x;)* and C(1)
=(X(1)X(0))—(X)?, respectively, and corresponding delayed
response  functions  r(f)=Kx,(¢))/IF;(0) and  R(¢)
= &X(r))/ IF(0). The responses r(z) and R(z) are to a sudden
change at time =0 of the field on the single particle i or of
the uniform field on all particles, respectively. ) denotes the
steady state ensemble average over possible states at the be-
ginning of the measurement (¢=0). In equilibrium (a=1 or
f=1), c(t)=r(t)Tg for any x;, and C(t)=R(t) Ty for X [20]; we
will be concerned with the nonequilibrium cases.

For one-particle FDR we consider a system evolving from
a given state at r=0 until a later time 7. We average Eq. (1b)
over the stochasticity in the dynamics for this initial state,
and denote this averaging by an overline,

2 dx, (t) E(1) )

T ar NF (1) @

ﬂl<X( )+
By the central limit theorem, for large systems (N> 1) the
relative fluctuation (x;—{x;))/{x;) of x; is much larger than the
relative fluctuation (E—(E))/(E) of E, thus the steady state
average (E) may be substituted for the instantaneous value
E(7) in Eq. (2). For a constant field, noting that (¢) =(E)/N
=—(x;)F; [21], this yields,

xi(1) = () + [x,0) = (x]e™, (3)

with y=fhI'/2. The correlation is obtained by multiplying
Eq. (3) by x,(0) and averaging over the steady state distribu-
tion for all possible initial (r=0) states of the system, which
yields ¢(r)=((x7)—(x;)?)e " [22].

The one-particle response is obtained by maintaining the
system in a steady state with some external field, then, at
time =0, changing the field F; acting on particle i from F to
F. We then follow x;(r) and average over the system’s steady
state distribution at time #=0 to yield (x;(z)). The steady state
solution of Eq. (2) yields —(x;(0))Fy=—(x;)F={(e), thus
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(x,-(t)}z—(e)[F‘l+(F61—F‘l)e‘7t]. After differentiating with
respect to F, and taking the limit F,—F, we get r()
={e)F 2.

We thus see that the one-particle correlation and response
have the same temporal dependence and aspect (i) of the
FDR exactly holds, with the time-independent fluctuation
temperature [22],

) D= W
Ty W

Aspect (ii), on the other hand, is violated [13], since T}p gen-
erally differs both from the environment temperature 7 and
from the granular temperature, defined as the average energy
per DOF: T;=(e). Only in the equilibrium limits (a¢—1,f
— 1) is the distribution of x; the exponential Boltzmann dis-
tribution and T1F=TG=TB.

The FDR is only proven for equilibrium, so one might
expect the correlation and response to depend differently on
time in a NESS. However, the correlation represents the sys-
tem’s return to steady state after deviating from it due to
spontaneous fluctuations, and the response represents its re-
turn to steady state after being moved away from it by some
external force. Both are governed by the same physical pro-
cesses and thus generally posses the same time scales. In
simple cases (as the one-particle measurement solved above)
there is only one time scale and the correlation and response
are not rich enough to have different time dependences. In
order to observe violations of aspect (i) in the FDR we now
consider a measurement on a macroscopic quantity. This
possesses two time scales—just enough to exhibit a different
temporal dependence for the correlation and response.

We assume uniform F and sum Eq. (2) over particles,

2dX(1) dX(t)

E(t)
D D)

F(1)

Now, fluctuations in E are not negligible compared to fluc-
tuations in X, so Eq. (5) must be solved in conjunction with
the equation similarly derived from Eq. (1a),

2 dE(t

f% =— fhX(1)F(1) = A\E(1) + f(1 = h)NTg,  (6)
where A, =n+(1-f)(1-2a"). The average evolution of the
system from a state with X(0) and E(0) is hence given by the
simultaneous solution of Egs. (5) and (6):

E0)-&]
F e

2

X(1) = (X) + 2 | adX(0) = (X)] + by

=1
(7)

where we denote k=(AT-2A,fh+5f2h*)", a,=(1-A,
)12k, as=(1+A,~fh)/2k, by=fhlk, by=—fhlk, ¥
=(A;+fh+k)I'/4, and y,=(A,+fh—k)I'/4, and the steady
state values are given by —(X)F=(E)=f(1-h)NTy/(A,-fh).

To compute the correlation we multiply X(r) by X(0) and

average over the steady state distribution of the initial states
[that is, over X(0) and E(0)] [22]:
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e v, (8)
=1 F

For the response we change the field from F, to F at ¢
=0, and after averaging Eq. (7) over the initial states taken
from the steady state corresponding to the field F|), differen-
tiating with respect to F;, and taking the limit F— F we
have

2
R(H) = <F£2>E ape ", 9)
(=1

In this N-particle measurement C(f) and R(¢) share the
rates y; and y,, however, with different prefactors, leading to
violation of aspect (i) in the FDR [23]. If one insists on
defining a fluctuation temperature TZ}’(t)EC(t) /R(z), it will
depend on the measurement time, as can be seen in Fig. 1,
which also demonstrates that the one-particle and N-particle
measurements yield fluctuation temperatures differing both
one from the other as well as from the granular temperature
T; and bath temperature 7.

As the correlation and response generally share the same
time scales, for measurement times longer than the maximal
time scale of the system (1/v, for the N-particle measure-
ment in our model) this time scale dominates both correla-
tion and response and aspect (i) of the FDR asymptotically
holds for long times (see Fig. 1). It is interesting to speculate
that this behavior may hold for general dissipative systems.

Although the FDR is generally not valid in NESS, it is
hard to observe its violations in simulations or experiments
on dissipative systems. One reason for this is that dissipative
systems often have nearly Boltzmann distributions with
some effective temperature, and deviations between different
effective temperatures of the system (like T and T;;) are too
small to be observed [10,13].

Another reason is that some measurements on some sys-
tems do not exhibit at all the FDR violations presented
above. To demonstrate this we now show that in the inelastic
Maxwell model [24] the frequency-dependent Kubo formula
[25] holds exactly with an effective temperature coinciding
with T, That is, the velocity autocorrelation D(w)
= [{(v(0)v(1))e"“dt relates to the mobility u(w) by D(w)
=u(w)Tx with Tx=T independent of frequency [26]. We
shall first show that for our model Ty is frequency-
independent and equals T}, which generally differs from 7,
and subsequently show that for the Maxwell model Tx=Tj.

To make contact with the standard Kubo relations we will
imagine the DOF’s {x;} in our model as positions; thus the
autocorrelation of the single-particle “velocity” v, =dx;/dt is
obtained by twice differentiating c(¢) calculated above. The
relation ¢(¢)=r(¢) TlF with T} independent of ¢, as obtained for
the one-particle FDR solved above, may be twice differenti-
ated with respect to time and transformed to frequency do-
main. The Kubo formula then immediately follows with T
=T1L. We have also verified this general result by explicitly
calculating D(w) and w(w) in our model and obtained
D(w)= (@) Tp= ()= (x)?) / (y+iw).

Our method may now be applied to the one-dimensional
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FIG. 1. (Color online) (a) Correlation and response functions
and (b) resulting fluctuation temperatures vs. measurement time for
the model with @=0.6, f=0.7, and £=0.9. Graphs are scaled to
Tg=1, F=1, and I'=1. The resulting decay rates are y=0.32, 7,
=0.72, and y,=0.07. Numerical simulations with N=10% (dashed
lines) agree with theoretical results for N> 1 (thick gray lines). The
bath temperature 7 and the granular temperature 7; are given for
reference.

(1D) inelastic Maxwell model (the 2D and 3D versions fol-
low trivially): During a finite time d¢>0, short compared to
the collision rate I" and to the coupling rate \ to the thermo-
stat, the effect of the fluctuating force in the Langevin dy-
namics each particle undergoes is proportional to vdr (see,
e.g., [27]). Thus the velocity of particle i evolves as,

Value:

(1= Ndt)v (1) + g()dr

2

Probability:

1-Tdt
Ui(t+dt) =

1+
avi(t) + Tavj(t) I' dr.

(10)

For stochastic thermostating, () is an uncorrelated random
force with (?)=2\Ty, while for Gaussian thermostating,
yi(1)=0 and N=(a?-1)'/4. Averaging Eq. (10) yields
WOw(@)=w?e™ with k=N+(1+a)[/2, thus D(w)
=(v?)/(k+iw). In the mobility measurement, a periodic ac-
celeration &(f)=&ye' is added to a single particle, and from
Eq. (10) we have

dli;t) =- Km + el (11)

This has the steady solution (v,(t))=&e™'/(k+iw), thus
pm(w)=1/(k+iw), and the Kubo formula holds with Tx=Tj.
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The difference in T between our model and the Maxwell
model derives from the fact that 7 and T, measure fluctua-
tions, expressed in second moments of DOF’s. In the Max-
well model T is defined from (v?), which is the second
moment of a DOF, while in our model Tg;=(e) is defined
from the first moment of a DOF. Only in equilibrium do all
moments of the exponential Boltzmann distribution yield a
single energy scale and these measurements in both models
give the actual temperature.

To our knowledge, we have presented the first exact re-
sults for time-dependent violations of FDR in driven dissipa-
tive systems by demonstrating that correlation and response
functions have different temporal behaviors. This violation,
like differences between different effective temperatures of a
system, may be small, requiring sensitivity in simulations
and experiments. We identified situations relevant to general
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driven dissipative systems where the correlation and re-
sponse have the same time dependence: In sufficiently
simple measurements the correlation and response share a
single time scale and so have the same dependence on time,
thus time-dependent FDR violations may be observed only
in systems or measurements exhibiting multiple time scales.
Finally, since the correlation and response typically share the
same time scales, their temporal behavior for measurements
with long waiting times asymptotically coincides.
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