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A quantum fluctuation theorem for a driven quantum subsystem interacting with its environment is derived
based solely on the assumption that its reduced density matrix obeys a closed evolution equation—i.e., a
quantum master equation �QME�. Quantum trajectories and their associated entropy, heat, and work appear
naturally by transforming the QME to a time-dependent Liouville space basis that diagonalizes the instanta-
neous reduced density matrix of the subsystem. A quantum integral fluctuation theorem, a steady-state fluc-
tuation theorem, and the Jarzynski relation are derived in a similar way as for classical stochastic dynamics.
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I. INTRODUCTION

The fluctuation theorems and the Jarzynski relation are
some of a handful of powerful results of nonequilibrium sta-
tistical mechanics that hold far from thermodynamic equilib-
rium. Originally derived in the context of classical mechan-
ics �1�, the Jarzynski relation has been subsequently
extended to stochastic dynamics �2�. It relates the distribu-
tion of the work done by a driving force of arbitrary speed on
a system initially at equilibrium �nonequilibrium property� to
the free energy difference between the initial and final equi-
librium states of the system �equilibrium property�. This re-
markable relation has recently been shown to hold for arbi-
trary coupling strength between the system and environment
�see Jarzynski’s reply �3� to criticism from Cohen and Mau-
zerall �4��. The fluctuation theorems are based on a funda-
mental relation connecting the entropy production of a single
system trajectory to the logarithm of the ratio of the prob-
ability of forward and backward trajectories �5�. The en-
semble average of the trajectory entropy production is the
macroscopic entropy production of the system whereas its
distribution gives rise to various kinds of fluctuation theo-
rems. The first has been derived for classical mechanics and
initially for deterministic �but non-Hamiltonian� thermostat-
ted systems �6–8�. Some interesting studies of fluctuation
relations valid for far from equilibrium classical Hamiltonian
systems were made even earlier �9–11�. Fluctuation theorems
for systems with stochastic dynamics have also been devel-
oped �12–19�. For classical stochastic dynamics, the connec-
tion between the fluctuation theorem and the Jarzynski rela-
tion has been established by Crooks �17�. Seifert has recently
provided a unified description of the different fluctuation re-
lations and of the Jarzynski relation for classical stochastic
processes described by master equations �19�.

The understanding of these two fundamental relations in
quantum mechanics is still not fully established. Quantum
Jarzynski relations have been investigated in �20–23�. Quan-
tum fluctuation theorems have been developed only in a few

restricted situations �24–27�. A quantum exchange fluctua-
tion theorem has also been considered in �28�. Some inter-
esting considerations of the quantum definition of work in
the previous studies have been made in �29�.

It should be noted that the dynamics of an isolated
�whether driven or not� quantum system is unitary and its
von Neumann entropy is time independent. Therefore, fluc-
tuation theorems for such closed systems are useful only pro-
vided one defines some reduced macrovariable dynamics or
some measurement process on the system �30�.

The purpose of this paper is to provide a unified deriva-
tion for the different quantum fluctuation relations �an inte-
gral fluctuation theorem, a steady-state fluctuation theorem,
and the Jarzynski relation�. We build upon the unification of
the different fluctuation relations recently accomplished by
Seifert �19� for classical stochastic dynamics described by a
birth and death master equation �BDME�. Quantum evolu-
tion involves coherences which make its interpretation in
term of trajectories not obvious. Nevertheless, we show that
it is possible to formally develop a trajectory picture of quan-
tum dynamics which allows one to uniquely represent en-
tropy, heat, and work distributions. This relies on the single
assumption that the reduced dynamics of a driven quantum
subsystem interacting with its environment is described by a
closed evolution equation for the density matrix of the
subsystem—i.e., a quantum master equation �QME� �31–34�.
However, while the physical quantities defined along classi-
cal trajectories are conceptually clear and experimentally
measurable, how to measure the physical quantities associ-
ated with quantum trajectories remains an open issue inti-
mately connected to quantum measurement.

The plan of the paper is as follows: We start in Sec. II by
defining quantum heat and quantum work for a driven sub-
system interacting with its environment, consistent with ther-
modynamics. We then discuss the consequences of defining
heat and work in terms of the time-dependent basis which
diagonalizes the subsystem density matrix in Sec. III. In Sec.
IV, we show that by assuming a QME for the subsystem
reduced density matrix we can recast its solution in a repre-
sentation which takes the form of a BDME with time-
dependent rates. In Sec. V, we show that the BDME repre-
sentation allows us to split the entropy evolution into two
parts: the entropy flow associated with exchange processes
with the environment and the entropy production associated
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with subsystem internal irreversible processes. In Sec. VI,
we show that the BDME representation naturally allows one
to define quantum trajectories as well as their associated en-
tropy flow and production. We then derive the fundamental
relation of this paper �Eq. �67�� which will allow us to de-
rive, in Sec. VII, a quantum integral fluctuation theorem and,
in Sec. VIII, a quantum steady-state fluctuation theorem.
Having identified in Sec. IX the heat and work associated
with the quantum trajectories, we show in Sec. X that the
fundamental relation of Sec. VI also allows one to derive a
quantum Jarzynski relation. We finally draw conclusions in
Sec. XI.

II. AVERAGE HEAT AND WORK

We start by defining the average quantum heat and work
for a driven subsystem interacting with its environment and
show the consistency of these definitions with thermodynam-
ics. Heat and work can be rigorously expressed in terms of
the reduced density matrix of the subsystem without having
to refer explicitly to the environment.

We consider a driven subsystem with Hamiltonian ĤS�t�.
Everywhere in this paper we denote operators with a caret
�and superoperators with two carets� and use the Schrödinger
picture where the time dependence of the observables is ex-
plicit and comes exclusively from external driving. We could

also have written ĤS(��t�), where ��t� is the external-time-
dependent driving. This subsystem is interacting with its en-

vironment whose Hamiltonian is ĤB. The interaction energy

between the subsystem and environment is described by ĤI.
The Hamiltonian of the total system reads therefore

ĤT�t� = ĤS�t� + ĤB + ĤI. �1�

We have assumed that the driving acts exclusively on the

subsystem and does not affect ĤB and ĤI.
The state of the total system is described by the density

matrix �̂�t� which obeys the von Neumann equation

�̇̂�t� = − i�ĤT�t�, �̂�t�� = L̂ˆ �t��̂�t� . �2�

The energy of the total system is given by

�ĤT�t � TrĤT�t��̂�t� . �3�

The change in the total energy between time 0 and t due to
the time-dependent driving is therefore given by

�ET�t� � �
0

t

d�
d�ĤT��

d�
= WT�t� + QT�t� , �4�

where the work and heat have, respectively, been defined as

WT�t� � �
0

t

d�TrĤ
˙

T�t��̂�t� , �5�

QT�t� � �
0

t

d�TrĤT�t��̇̂�t� . �6�

Using the von Neumann equation �2� and the invariance of
the trace under cyclic permutation �35�, we find that no heat
is generated in the isolated total system

QT�t� = − i�
0

t

d�TrĤT�t��ĤT�t�, �̂�t�� = 0. �7�

We next turn to the subsystem. Its reduced density matrix is
defined as �̂�t��TrB �̂�t�, and its energy is given by

�ĤS�t � TrĤS�t��̂�t� = TrSĤS�t��̂�t� . �8�

The change in this energy between time 0 and t is given by

�ES�t� � �
0

t

d�
d�ĤS��

d�
= WS�t� + QS�t� , �9�

where the work and heat are defined as

WS�t� � �
0

t

d�TrĤ
˙

S����̂T��� = �
0

t

d�TrSĤ
˙

S����̂��� , �10�

QS�t� � �
0

t

d�TrĤS����̇̂T��� = �
0

t

d�TrSĤS����̇̂��� . �11�

Since the time dependence of the total system Hamiltonian

comes solely from the subsystem Hamiltonian, Ĥ
˙

B= Ĥ
˙

I=0,

Ĥ
˙

T= Ĥ
˙

S, and the work done by the driving force on the sub-
system is the same as the work done by this force on the total
system,

WT�t� = WS�t� � W�t� . �12�

This also means that the energy increase in the subsystem
minus the amount of heat which went to the environment is
equal to the energy increase in the total system:

W�t� = �ET�t� = �ES�t� − QS�t� . �13�

It should be noticed that due to the absence of heat flux in the
total system QT�t�=0. Using Eq. �6� with Eqs. �1� and �11�,
we can also express the heat going from the subsystem to the
environment as

QS�t� = − �
0

t

d�
d�ĤB��

d�
− �

0

t

d�
d�ĤI��

d�
. �14�

III. CALCULATING HEAT AND WORK
IN A TIME-DEPENDENT BASIS

As will become clear in Sec. IV, in order to associate
trajectories with the quantum dynamics, one needs to repre-
sent the dynamics in a time-dependent basis. This is a fun-
damental difference from classical thermodynamics where
the basis set �coordinate system� is fixed. In order to associ-
ate heat and work with single trajectories they must be de-
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fined with respect to a time-dependent basis set. The en-
semble average of the quantities defined for the trajectories
will therefore also depend on this basis set. For this reason,
we introduce a modified definition of heat and work. The
effect of the basis time dependence on heat and work is
given in Appendix A.

The energy of the total system �3� can also be written as

�ĤT�t = 	
�

Pt
T�����t
ĤT�t�
�t� , �15�

where we have introduced the time-dependent basis �
�t��
which diagonalizes the instantaneous density matrix at all
times:

��t
�̂�t�
�t�� = ��t
�̂�t�
�t����� � Pt
T�������. �16�

The change in this energy between time 0 and t due to the
time-dependent driving can therefore be rewritten as

�ET�t� = W̃T�t� + Q̃T�t� , �17�

where the modified work and heat have, respectively, been
defined as

W̃T�t� � �
0

t

d�	
�

P�
T���

d

d�
����
ĤT���
���� , �18�

Q̃T�t� � �
0

t

d�	
�

Ṗ�
T������
ĤT���
��� . �19�

Because the total system is driven but otherwise isolated, its
evolution is unitary and we have �see Appendix A�

W̃T�t� = WT�t� = �ET�t� , �20�

Q̃T�t� = QT�t� = 0. �21�

This means that defining heat and work on the time-
dependent basis which diagonalizes the instantaneous den-
sity matrix for unitary evolution is equivalent to the original
definition of heat and work in a time-independent basis.

The energy of the subsystem �9� can also be written in
analogy to Eq. �15� as

�ĤS�t = 	
m

Pt�m��mt
ĤS�t�
mt� , �22�

where we have introduced the time-dependent basis �
mt��
which diagonalizes the instantaneous subsystem reduced
density matrix:

�mt
�̂�t�
mt�� = �mt
�̂�t�
mt��mm� � Pt�m��mm�. �23�

Let us note for future reference that

d

dt
��mt
�̂�t�
mt��� = �mt
�̇̂�t�
mt�� + �ṁt
�̂�t�
mt��

+ �mt
�̂�t�
ṁt�� . �24�

Equations �23� and �24� give

�mt
�̇̂�t�
mt�� = Ṗt�m��mm� − �ṁt
mt��Pt�m�� − �mt
ṁt��Pt�m� .

�25�

Notice also that for m=m�, we have

�mt
�̇̂�t�
mt� = Ṗt�m� �26�

because �ṁt 
mt�+ �mt 
 ṁt�= d
dt ��mt 
mt��=0.

Using Eq. �22�, the change in the subsystem energy be-
tween time 0 and t can be rewritten as

�ES�t� = W̃S�t� + Q̃S�t� , �27�

where the work and heat are defined in analogy to Eqs. �18�
and �19� as

W̃S�t� � �
0

t

d�	
m

P��m�
d

d�
��m�
ĤS���
m��� , �28�

Q̃S�t� � �
0

t

d�	
m

Ṗ��m��m�
ĤS���
m�� . �29�

It is shown in Appendix A that the work and heat defined in
the time-dependent basis �
mt�� are related to the original
work and heat defined in any time-independent basis by

W̃S�t� = WS�t� + AS�t� , �30�

Q̃S�t� = QS�t� − AS�t� , �31�

where

AS�t� � �
0

t

d�	
m

P��m���ṁ�
ĤS���
m�� + �m�
ĤS���
ṁ��� .

�32�

It should be emphasized that both the original and modified
work and heat of the subsystem can be defined exclusively in
terms of subsystem quantities, without referring explicitly to
the environment.

Using Eqs. �12� and �13� with Eqs. �30� and �31�, we get

�ET�t� = W�t� = W̃S�t� − AS�t� = �ES�t� − Q̃S�t� − AS�t� .

�33�

IV. BDME REPRESENTATION
OF THE QME SOLUTION

In this section we show that if we assume a closed evo-
lution equation for the subsystem reduced density matrix, we
can recast its solution in a BDME form with time-dependent
rates.

We assume that the reduced subsystem density matrix
�̂�t� obeys a closed QME �31–34�. This QME can be derived
microscopically by perturbation theory like in the Redfield
theory or using a quantum dynamical semigroup approach
leading to Lindblad-type master equations. In Liouville
space �36�, the QME of the externally driven subsystem in-
teracting with its environment reads
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�̇̂�t��� = K̂ˆ �t�
�̂�t��� . �34�

If the interaction with the environment vanishes, the genera-

tor K̂ˆ �t� becomes the anti-Hermitian superoperator K̂ˆ �t�

= L̂ˆ S�t�=−i�ĤS�t� , · � and the evolution superoperator M̂ˆ
t de-

fined by 
�̂�t���=M̂ˆ
t
�̂�0��� becomes the unitary superopera-

tor M̂ˆ
t=exp+�
0

t d�L̂ˆ S����. However, for nonvanishing cou-
pling this generator is not anti-Hermitian and leads to a
nonunitary evolution.

The QME in some given �possibly time-dependent� basis
reads

��ii�
�̇̂�t��� = 	
j j�

��ii�
K̂ˆ �t�
j j�����j j�
�̂�t��� , �35�

where ��j j� 
 �̂�t��� is the superoperator representation of
�j
�̂�t�
j��. Let us now use the time-dependent basis �
mt��
introduced in Eq. �23�. Since the QME keeps �̂�t� Hermitian,
this diagonalization is always possible:

��mtmt�
�̂�t��� = Pt�m��m,m�. �36�

A crucial property of this basis is that �see Eq. �26��

Ṗt�m� = ��mtmt
�̇̂�t��� . �37�

The consequence of this property is that by defining

Wt�m�,m� � ��mtmt
K̂
ˆ �t�
mt�mt��� �38�

and by projecting the QME �34� onto the time-dependent
superbra ��m�t�m�t�
 we get

Ṗt�m� = 	
m�

Wt�m�,m�Pt�m�� . �39�

Since the QME �34� preserves probability, we have
	mWt�m� ,m�=0 and Wt�m� ,m� real. Therefore, we can re-
write Eq. �39� as

Ṗt�m� = 	
m��m

�Wt�m�,m�Pt�m�� − Wt�m,m��Pt�m�� .

�40�

Even though this equation appears like a BDME, it should
not be viewed as an equation of motion. It is merely a way of
recasting the solution of the QME �34� in a diagonal basis. In
fact, in order to get the Pt�m�’s and Wt�m� ,m�’s, we need to
solve the QME first and find the time-dependent unitary
transformation diagonalizing the solution �̂�t� at any time.
Equation �39� should therefore be viewed as a formal defi-
nition of the rate matrix Wt�m� ,m�. We will show that
Wt�m� ,m� defined in this way can be used to derive quantum
fluctuation relations. Note that Wt�m� ,m� depends on the
subsystem initial condition �̂�0�.

If the subsystem �driven or not� does not interact with the

environment, the generator is anti-Hermitian and the evolu-

tion superoperator unitary. In this case 
�̂�t���=M̂ˆ
t
�̂�0���

and ��mtmt
= ��m0m0
M̂ˆ
t
−1, so that

Pt�m� = �m0
�̂�0�
m0� = P0�m� . �41�

This shows that the Pt�m�’s evolve only if the dynamics is
nonunitary.

When there is no driving and the subsystem does interact
with its environment, the dynamics is nonunitary and the
subsystem will reach equilibrium �̂eq on long time scales.
For an infinite isothermal environment this equilibrium state
will correspond to the canonical subsystem reduced density

matrix �̂eq=e−�ĤS /ZS where ZS=Tr e−�ĤS and �=1/T �kB

�1�. In this case the basis diagonalizing �̂eq becomes time
independent and will also diagonalize the subsystem Hamil-
tonian so that Peq�m�=e−�Em /ZS where Em are the eigenval-
ues of the subsystem Hamiltonian.

For a subsystem with nonequilibrium boundary conditions
and interacting with its environment, the subsystem can
reach a steady state �̂st at long times. In this case the matrix
diagonalizing the density matrix is again time independent
and both the probabilities Pt�m�= Pst�m� and rates
Wt�m� ,m�=Wst�m� ,m� become time independent.

V. ENTROPY FOR QUANTUM ENSEMBLES

In this section we define the von Neumann entropy asso-
ciated with the subsystem and separate its evolution into two
parts: the entropy flow associated with the heat going from
the subsystem to the environment and the always positive
entropy production associated with the internal entropy
growth of the subsystem.

The von Neumann entropy of the subsystem is defined by

S�t� � − Tr�̂�t�ln �̂�t� = − 	
m

Pt�m�ln Pt�m� . �42�

Using Eq. �40�, we can write its time derivative as

Ṡ�t� = − 	
m

Ṗt�m�ln Pt�m� �43�

=− 	
m,m�

Pt�m�Wt�m,m��ln
Pt�m��
Pt�m�

. �44�

In analogy with �13,15� for classical systems, this can be
partitioned as

Ṡ�t� = Ṡe�t� + Ṡi�t� , �45�

where

Ṡe�t� � − 	
m,m�

Pt�m�Wt�m,m��ln
Wt�m,m��
Wt�m�,m�

�46�

and
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Ṡi�t� � 	
m,m�

Pt�m�Wt�m,m��ln
Pt�m�Wt�m,m��
Pt�m��Wt�m�,m�

. �47�

As a consequence of the inequality �R1−R2�ln�R1 /R2�	0,

we notice that Ṡi�t�	0 is always a positive quantity. We will
therefore identify it with the entropy production. The remain-

ing part of the entropy Ṡe�t� is thus associated with the en-
tropy flow to the environment since in thermodynamics the
entropy evolution is partitioned in the �reversible� entropy
flow to the environment and the �irreversible� entropy pro-
duction �37,38�. To further rationalize this identification, let
us assume that Wt�m ,m�� satisfy the detailed balance condi-
tion �17,38,39�. For isothermal environments at temperature

T, the detailed balance condition with respect to Ĥs�t�, which
means that the nondriven subsystem tends to thermal equi-
librium at long time, reads

Wt�m,m��
Wt�m�,m�

= e���mt
ĤS�t�
mt�−�mt�
ĤS�t�
mt���. �48�

Noticing that the heat �29� can be rewritten as

Q̃
˙ �t� = 	

m

Ṗt�m��mt
ĤS�t�
mt�

= − 	
m,m�

Pt�m�Wt�m,m����mt
ĤS�t�
mt� − �mt�
ĤS�t�
mt���

= − T 	
m,m�

Pt�m�Wt�m,m��ln
e��mt
ĤS�t�
mt�

e��mt�
ĤS�t�
mt��
�49�

and using Eq. �46�, the immediate consequence of Eq. �48� is
that the entropy flow is equal to the modified heat going from
the subsystem to the environment divided by the environ-
ment temperature as expected from thermodynamics:

Ṡe�t� =
Q̃
˙

S

T
. �50�

This motivates our partition of the entropy �45� and the defi-
nition of the modified heat in Sec. III.

We can further show that the entropy flow is associated
with reversible entropy variations. In a thermodynamic
sense, a reversible transformation is a one during which the

entropy production is zero, Ṡi�t�=0. This property holds pro-
vided the following condition is satisfied �see Eq. �47��:

Pt�m�Wt�m,m�� = Pt�m��Wt�m�,m� . �51�

Using Eq. �48�, we find that for a reversible transformation
the subsystem has to be in the time-dependent state

Pt�m� =
e−��mt
ĤS�t�
mt�

	
m

e−��mt
ĤS�t�
mt�
. �52�

This state correspond to the instantaneous Gibbs state of the

subsystem �̂�t�=e−�ĤS�t� /ZS. In this case �
m�t� in Eq. �51�
becomes the adiabatic basis �basis diagonalizing the sub-
system Hamiltonian�. We thus show that for reversible trans-

formations the probability distribution remains Gibbsian

along the adiabatic levels. Because Ṡi�t�=0, we also have

Ṡ�t�= Ṡe�t�. Using Eq. �48�, this means that for a reversible
transformation the change in the entropy of the subsystem
results exclusively from the heat flow to the environment,

Ṡ�t�= Q̃
˙

S /T, consistent with thermodynamics.
When there is no driving, Eq. �51� with Eq. �48� defines

equilibrium. At equilibrium we have Ṡ�t�= Ṡi�t�= Ṡe�t�=0.

VI. ENTROPY FOR QUANTUM TRAJECTORIES

In this section we introduce quantum trajectories and dis-
tributions. We will associate an entropy with these trajecto-
ries and identify the entropy flow and production of these
trajectories, whose ensemble averages recover the entropies
discussed in Sec. V. This will allow us to derive a fundamen-
tal quantum relation similar to the classical relation obtained
by Crooks �17� and Seifert �19� connecting the ratio of the
probability of a forward trajectory and the backward one
with the trajectory entropy production.

From Eq. �40� it seems natural to unravel the evolution
equation for the probability Pt�m� in the same way as is done
for classical stochastic processes �19�. Let us consider a sto-
chastic trajectory of duration t which contains N jumps.
Different trajectories can of course have a different number
of jumps N. �= �0, t� labels time during the process.
j=1, . . . ,N labels the jumps. The trajectory n��� �see Fig. 1� is
made by the successive states taken by the system in time:

n��� = n0 → n1 → n2 → ¯ → nN. �53�

The system starts in n0, jumps at time � j from nj−1 to nj, and
ends up at time t in nN. We will denote �0=0 and �N+1= t.

The entropy associated with the trajectory n��� reads

s��� � − ln P��n���� , �54�

where P��n���� is the solution of Eq. �40� for an initial con-
dition P0�n0�, evaluated along the trajectory n���.

The time derivative of this trajectory entropy,

ṡ��� = − � ��P��n�
P��n�

�
n���

− 	
j=1

N

��� − � j�ln
P��nj�

P��nj−1�
, �55�

will be partitioned as

ṡ��� = ṡe��� + ṡi��� , �56�

where the trajectory entropy flux reads

ṡe��� � − 	
j=1

N

��� − � j�ln
W��nj−1,nj�
W��nj,nj−1�

�57�

and the trajectory entropy production reads
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ṡi��� � −� �tP��n�
P��n�

�
n���

− 	
j=1

N

��� − � j�ln
P��nj�W��nj,nj−1�

P��nj−1�W��nj−1,nj�
. �58�

The ensemble average over trajectories is carried out by us-
ing the probability P��nj−1�W��nj−1 ,nj� that a transition oc-
curs at time � j between nj−1 and nj. We get

Ṡ��� = �ṡ���� , �59�

Ṡe��� = �ṡe���� , �60�

Ṡi��� = �ṡi���� . �61�

The probability of a forward trajectory n��� starting at time 0
and ending at time t is given by


F�n���� = P0�n0���
j=1

N

exp�− �
�j−1

�j

d��	
m

W���nj−1,m��
�W�j

�nj−1,nj��exp�− �
�N

t

d��	
m

W���nN,m�� .

�62�

The exponentials represent the probabilities to stay in a given
state during the time interval between two successive jumps,
and the transition rates evaluated at the jump times give the
probability for the jumps to occur at these times.

Defining the backward process as done for classical sto-
chastic dynamics �19� is not possible. In the classical case, it
is sufficient after the forward process to revert the driving

protocol �̃���=��t−�� and to ask for the probability of a
backward trajectory �system taking the sequence of states of
the forward trajectory but in the reversed order� to occur. The
reversal of the driving protocol has the consequence of re-
versing the time dependence of the transition matrix

W̃��m ,m��=Wt−��m ,m��. The time dependence of the quan-
tum transition matrix Wt�m ,m�� does not come exclusively
from the external driving force and is different for different
initial conditions of the subsystem �̂�0�. Therefore, reversing
the driving protocol does not simply reverse the time depen-
dence of the transition matrix. In the quantum case, we de-
fine the backward process by taking �→ t–� everywhere in
the QME �the protocol is reversed and a minus sign appears
in the left hand side of Eq. �34� due to the time derivative�.
This has the effect of reversing the time dependence of the
quantum transition matrix Wt�m ,m��. This definition will al-
low us to derive important fluctuation relations in next sec-
tions.

Let us consider a new dynamics in the time interval �̃
= �0, t� obeying

P̃
˙

�̃�m� = 	
m̃�

W̃�̃�m̃�,m̃�P̃�̃�m̃�� , �63�

where the rates are related to the previous rates in the fol-
lowing way:

W̃�̃�m̃�,m̃� = Wt−�̃�m̃�,m̃� . �64�

The backward dynamics may have an arbitrary initial condi-

tion P̃0�ñ0�. We now define the following trajectory for this
backward dynamics:

ñ��̃� = ñ0 → ñ1 → ñ2 → ¯ → ñN

= nN → nN−1 → nN−2 → ¯ → n0, �65�

where the jumps between ñj−1 and ñj occur at time �̃ j = t
−�N−j+1 and where ñj =nN−j. Because this dynamics and the
dynamics �40� both span the same configuration space, sum-
ming over all trajectories of the backward process is equiva-
lent to summing over all the trajectories of the original pro-
cess. The trajectory �65� is depicted in Fig. 1. The probability
of this trajectory is evaluated in Appendix B and reads

FIG. 1. Representation of a quantum forward
trajectory n��� and of the associated backward tra-
jectory ñ��̃�.

M. ESPOSITO AND S. MUKAMEL PHYSICAL REVIEW E 73, 046129 �2006�

046129-6




B�ñ��̃�� = P̃0�nN���
j=1

N

exp�− �
�j−1

�j

d��	
m

W���nj−1,m��
�W�j

�nj,nj−1��exp�− �
�N

t

d��	
m

W���nN,m�� .

�66�

We now calculate the ratio of the forward �62� and backward
�66� probabilities. Noticing that the exponentials cancel, we
find the fundamental result of the paper:

r�t� = ln

F�n����


B�ñ��̃��
= ln

P0�n0�

P̃0�nN�
− �se�t� , �67�

where the trajectory entropy flow is

�se�t� � se�t� − se�0� = �
0

t

d�ṡe��� = 	
j=1

N

ln
W�j

�nj,nj−1�

W�j
�nj−1,nj�

.

�68�

In analogy with the classical results of Seifert �19�, we can
now derive the various fluctuation theorems by specific
choices of initial conditions for the backward trajectories. By

choosing P̃0�nN�= Pt�nN� and using the trajectory entropy

�s�t� � s�t� − s�0� = ln
P0�n0�
Pt�nN�

, �69�

Eq. �67� becomes

r�t� = ln

F�n����


B�ñ��̃��
= �s�t� − �se�t� = �si�t� , �70�

where �si�t�=si�t�−si�0� is the trajectory entropy production.
Equation �67� was first derived by Crooks �17� for classi-

cal stochastic processes and later generalized by others
�5,19�. We have shown that this relation may be extended to
quantum systems. In the classical case the time dependence
of the rates is exclusively due to the external driving. In the
quantum case it is also due to the quantum evolution of the
density matrix itself. However, in both cases, the backward
dynamics is obtained by reversing the time dependence of
the rate matrix.

VII. QUANTUM INTEGRAL FLUCTUATION THEOREM

Summing over all possible trajectories of the backward
process is equivalent to summing over all possible trajecto-
ries of the original process 	ñ��̃�

=	n���
. By averaging Eq. �67�

over all possible trajectories, we find

1 = 	
ñ��̃�


B�ñ��̃�� = 	
n���


B�ñ��̃��

= 	
n���


F�n����e−r�t� = �e−r�t�� . �71�

This integral fluctuation theorem �19� is valid for any choice

of P0�n0� and P̃0�nN� in Eq. �67�. Using the fact that �ex�

	e�x� this relation also means that on average the quantity

r�t� is always non-negative, �r�t��	0. Choosing P̃0�nN�
= Pt�nN� we have r�t�=�si�t� and we show again �see text
below Eq. �47�� that the ensemble averaged trajectory en-
tropy production is always non-negative, ��si�t��	0.

VIII. QUANTUM FLUCTUATION THEOREM
FOR A STEADY STATE

We consider a subsystem subjected to nonequilibrium
constraints, whose dynamics is described by a QME of the
form �34�. When the subsystem is in a steady state, its den-
sity matrix does not evolve in time and the rates in Eq. �40�
are time independent. An example of such system could be a
two-level atom driven by a coherent single-mode field on
resonance �in the dipole approximation and in the rotating
wave approximation� described by Bloch equations �see p.
154 of Ref. �34��. The basis set of the forward process is time
independent and is the same as the basis set of the backward
process. By definition, we have

pF„R�t�… = ��„R�t� − rF�t�…�F

= 	
n���


F�n�����„R�t� − rF�t�… . �72�

Using Eq. �67�, we can write

pF„R�t�… = 	
n���


B�n����erF�t��„R�t� − rF�t�…

= 	
n���


B�n����eR�t��„R�t� − rF�t�…

= ��„R�t� + rB�t�…�BeR�t�

= pB„− R�t�…eR�t�, �73�

where to go from the second to the third line, we used

rF�t�=−rB�t� which comes from Eq. �67�. When P̃0�nN�
= Pt�nN� and therefore Eq. �70� holds, Eq. �73� becomes a
fluctuation theorem for the entropy production:

pF„�Si�t�… = pB„− �Si�t�…e�Si�t�. �74�

This relation shows that at steady state, the ratio of the prob-
ability to observe a given entropy production during a fro-
ward process and the probability to observe the same entropy
production with a minus sign during the backward process is
given by the exponential of the entropy production. This is
the most familiar form of the fluctuation theorem. In the
infinite-time limit, if the subsystem has a finite number of
levels �this condition is usually implicitly assumed in QME

theory�, �S�t� will be bounded and �Si�t� =
t→�

�Se�t� so that
Eq. �74� also becomes a fluctuation theorem for the entropy
flow and therefore also for the heat. For completeness, we
give in Appendix C a different derivation of a fluctuation
theorem similar to Eq. �74� and which is not restricted to
steady states.
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IX. HEAT AND WORK FOR QUANTUM TRAJECTORIES

If we use the relation �48� together with the definition of
the trajectory entropy flow �68�, we find that the heat asso-
ciated with a single trajectory is given by

q̃S�t� � �−1�se�t�

= 	
j=1

N

��nj
ĤS�� j�
nj� − �nj−1
ĤS�� j�
nj−1�� . �75�

The interpretation of this result is that the heat flowing to the
environment results from transitions between the subsystem
states nj.

The energy associated with a trajectory is a state function
and only depends on the initial and final states of the trajec-
tory:

�eS�t� = �nN
ĤS�t�
nN� − �n0
ĤS�0�
n0�

= 	
j=1

N

��nj
ĤS�� j�
nj� − �nj−1
ĤS�� j�
nj−1��

= w̃S�t� + q̃S�t� . �76�

The work is therefore given by

w̃S�t� = �eS�t� − q̃S�t�

= 	
j=1

N

��nj−1
ĤS�� j�
nj−1� − �nj−1
ĤS�� j−1�
nj−1�� .

�77�

The work thus results from the time evolution of the Hamil-
tonian �due to the driving force� along the states nj of the
subsystem between the transitions. It is interesting to point
out the parallel between our description of heat and work in
the �
mt�� basis set and the adiabatic basis description of Ref.
�22�. In the latter the work comes from the evolution along
the adiabatic states and the heat comes from the transitions
between the adiabatic state. This can be understood by com-
paring Eqs. �A9� and �A10� with Eqs. �A12� and �A13�.

X. QUANTUM JARZYNSKI RELATION

We assume that the subsystem is initially at equilibrium

with respect to the Hamiltonian ĤS�0�= ĤS(��0�) and is
therefore described by a canonical distribution. The system is
then driven out of equilibrium by turning the driving force
from ��0� to ��t�� at time t�. After t� the driving force stop
evolving. On long time scales after t�—say, t �t
 t��—the
system is again at equilibrium in a canonical distribution but

now with respect to ĤS�t�= ĤS(��t�). We choose

P0�n0� =
e−��n0
ĤS�0�
n0�

Z0
,

Pt�nN� =
e−��nN
ĤS�t�
nN�

Zt
, �78�

where Z0=	nexp�−��n0
ĤS�0�
n0�� and Zt=	n

�exp�−��nN
ĤS�t�
nN��. Notice that �
n0�� ��
nt��� is now the

eigenbasis of ĤS�0� �ĤS�t��.
The free energy difference between the initial and final

states is given by

�F�t� = F�t� − F�0� = − �−1 ln
Zt

Z0
. �79�

Using Eq. �75� which defines the heat of a single subsystem
trajectory, we can write Eq. �70� as

�si�t� = − ln Pt�nN� + ln P0�n0� − �q̃S�t� . �80�

Using now Eqs. �78�, �79�, �76�, and �77�, we can rewrite Eq.
�80� as

�si�t� = − ��F�t� + �w̃S�t� . �81�

Finally, by inserting Eq. �81� into the integral fluctuation
theorem �71� where r�t�=�si�t�, we find the quantum Jarzyn-
ski relation

e−��F�t� = �e−�w̃S�t�� . �82�

XI. CONCLUSIONS

We have presented a unified derivation of a quantum in-
tegral fluctuation theorem, a quantum steady-state fluctuation
theorem, and the quantum Jarzynski relation for a driven
subsystem interacting with its environment and described by
a QME. This generalizes earlier results obtained for quantum
systems. By recasting the solution of the QME in a BDME
form with time-dependent rates for the eigenvalues of the
subsystem density matrix, we naturally define quantum tra-
jectories and their associated entropy, heat, and work and
study their fluctuation properties. The connection between
the trajectory quantities which naturally enter our formula-
tion and measurable quantum trajectory quantities is still an
open issue. Deriving quantum fluctuation relations without
having to assume QME’s, which do not correctly account for
strong subsystem-environment entanglement, is an exiting
perspective.
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APPENDIX A: BASIS DEPENDENCE
OF HEAT AND WORK

We consider a system with a time-dependent Hamiltonian

Ĥ�t� in the Schrödinger picture described by the density ma-
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trix �̂�t�. The evolution equation of �̂�t� is not necessarily
unitary.

The energy of the system is given by

�Ĥ� � TrĤ�t��̂�t� = 	
aa�

�at
Ĥ�t�
at���at�
�̂�t�
at� , �A1�

where �
at�� is an arbitrary time-dependent basis set. The
energy change of the system can be written as

�E�t� � �
0

t

d�
d�Ĥ����

d�
= W�t� + Q�t� = W̃�t� + Q̃�t� ,

�A2�

where the heat and work are given by

Q̇�t� � TrĤ�t��̇̂�t� , �A3�

Ẇ�t� � TrĤ
˙ �t��̂�t� , �A4�

in a time-independent basis, and by

Q̃
˙ �t� � 	

aa�

�at
Ĥ�t�
at��
d

dt
��at�
�̂�t�
at�� , �A5�

W̃
˙ �t� � 	

aa�

d

dt
��at
Ĥ�t�
at����at�
�̂�t�
at� , �A6�

in a time-dependent basis.

How does Q�t� �W�t�� relate to Q̃�t� �W̃�t��? We find

Q̃
˙ �t� = Q̇�t� − Ȧ�t� ,

W̃
˙ �t� = Ẇ�t� + Ȧ�t� , �A7�

where

Ȧ�t� = − 	
aa�

�at
Ĥ�t�
at����ȧt�
�̂�t�
at� + �at�
�̂�t�
ȧt��

= 	
aa�

��ȧt
Ĥ�t�
at�� + �at
Ĥ�t�
ȧt����at�
�̂�t�
at� . �A8�

We have used the fact that �at 
 ȧt��=−�ȧt 
at�� which come
from d

dt ��at 
at���=0.
If we consider the time-dependent basis set which diago-

nalizes the instantaneous density density matrix �
at��
= �
mt��, where �mt
�̂�t�
mt��= Pt�m��mm�, we have

Q̃
˙ �t� = 	

m

�mt
Ĥ�t�
mt�Ṗt�m� = Q̇�t� − Ȧ�t� , �A9�

W̃
˙ �t� = 	

m

d

dt
��mt
Ĥ�t�
mt��Pt�m� = Ẇ�t� + Ȧ�t� ,

�A10�

where

Ȧ�t� = 	
mm�

�mt
Ĥ�t�
mt���mt�
ṁt��Pt�m� − Pt�m���

= 	
m

��ṁt
Ĥ�t�
mt� + �mt
Ĥ�t�
ṁt��Pt�m� . �A11�

If we consider the time-dependent basis diagonalizing the
instantaneous Hamiltonian �adiabatic basis� �
at��= �
it��,
where �it
Ĥ�t�
it��=�i�t��ii�, we have

Q̃
˙
��t� = 	

i

�i�t�
d

dt
��it
�̂�t�
it�� = Q̇�t� − Ȧ��t� , �A12�

W̃
˙
��t� = 	

i

�̇i�t��it
�̂�t�
it� = Ẇ�t� + Ȧ��t� , �A13�

where

Ȧ��t� = − 	
i

�i�t���i̇t
�̂�t�
it� + �it
�̂�t�
i̇t��

= 	
ii�

��i�t� − �i��t���it
i̇t���it�
�̂�t�
it� . �A14�

It is interesting to notice the similarity between the two bases
�
mt�� and �
it��. In both cases, the heat results from changes
in the population of the states �and therefore from transitions
between states� �see Eqs. �A9� and �A12�� and the work from
the evolution of the Hamiltonian along the states �see Eqs.
�A10� and �A13��. Using Eqs. �A11� with �A14� one gets

Ȧ�t� − Ȧ��t� = W̃
˙ �t� − W̃

˙
��t�

= Q̃
˙
��t� − Q̃

˙ �t�

= 	
i,m

Pt�m��i�t�
d

dt
�
�it
mt�
2� . �A15�

Let us assume now that the density matrix of the system
obeys the von Neumann equation

�̇̂�t� = − i�Ĥ�t�, �̂�t�� = L̂ˆ �t��̂�t� , �A16�

whose solution reads

�̂�t� = Ûˆ �t��̂�0� = Û�t��̂�0�Û†�t� , �A17�

where

Ûˆ �t� = exp+��
0

t

d�L̂ˆ ���� ,

Û�t� = exp+�− i�
0

t

d�Ĥ���� . �A18�

The evolution operator �superoperator� ÛT�t� �Ûˆ T�t�� is uni-
tary. In this case, the expressions in the basis �
mt�� simplify
to

Q̃�t� = Q�t� = 0, �A19�
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W̃�t� = W�t� = �E�t� . �A20�

This is due to the fact that

P0�m� = �m0
�̂�0�
m0� = �m0
Û†�t�Û�t��̂�0�Û†�t�Û�t�
m0�

= �mt
�̂�t�
mt� = Pt�m� . �A21�

This means that no heat is produced by the driving force for
a unitary evolution. This is reasonable since there is no en-
vironment. The only way in which the energy of the system
may increase is via the work done on the system. Notice that

in the adiabatic basis both W̃��t� and Q̃��t� are finite for a
unitary evolution.

APPENDIX B: PROBABILITY OF THE BACKWARD
TRAJECTORY

The probability of a backward trajectory ñ��̃� reads


B�ñ��̃�� = P̃0�ñ0���
j=1

N

exp�− �
�̃j−1

�̃j

d�̃�	
m̃

W̃�̃��ñj−1,m̃��
�W̃�̃j

�ñj−1, ñj��exp�− �
�̃N

t

d�̃�	
m̃

W̃�̃��ñN,m̃�� ,

�B1�

where �̃0=0 and �̃N+1= t. Using Eqs. �64� and �65� and �̃ j = t
−�N−j+1, we can rewrite this probability as


B�ñ��̃�� = P̃0�nN���
j=1

N

exp�− �
t−�N−j+2

t−�N−j+1

d�̃�	
m

Wt−�̃��nN−j+1,m��W�N−j+1
�nN−j+1,nN−j��exp�− �

t−�1

t

d�̃�	
m

Wt−�̃��n0,m�� . �B2�

Using the change of variables �= t− �̃, we get


B�ñ��̃�� = P̃0�nN�exp�− �
0

�1

d��	
m

W���n0,m����
j=1

N

exp�− �
�N−j+1

�N−j+2

d��	
m

W���nN−j+1,m��W�N−j+1
�nN−j+1,nN−j�� . �B3�

With the help of j=N− jold+2, Eq. �B3� finally becomes
Eq. �66�.

APPENDIX C: QUANTUM FLUCTUATION THEOREM
FOR UNCORRELATED SUBSYSTEM AND BATH

We derive a general quantum fluctuation theorem �not re-
stricted to steady states� for a driven quantum subsystem in
contact with its environment. The derivation is similar to that
of Monnai in �27� and is given for completeness.

We assume weak coupling between the subsystem and
environment and that the environment is infinitely large so
that at all times the density matrix of the total system �sub-
system plus environment� can be written as

�̂�t� = �̂�t��̂B
eq, �C1�

where �̂B
eq=e−�ĤB /ZB is the time-independent equilibrium re-

duced density matrix of the environment and �̂�t� the time-
dependent reduced density matrix of the subsystem. Assum-
ing the form �C1� is not very different from assuming that
the subsystem density matrix obeys a QME since the QME
derivation implicitly assumes an invariant environment den-
sity matrix �e.g., the Born approximation �34��.

Let us define the basis �
mtb��, where �
mt�� diagonalize
the subsystem density matrix at time t and where �
b�� diag-
onalize the time-independent environment Hamiltonian. The
probability to go from 
m0b� at time 0 to 
mtb�� at time t is
given by


F�
m0b� → 
mtb��� = �m0b
�̂�0��̂B
eq
m0b�

�
�mtb�
Û�t�
m0b�
2, �C2�

where Û�t� is the unitary evolution operator of the total sys-
tem. The probability of the backward process to go from

mtb�� at time t to 
m0b� at time 0 by the time reversed
evolution �27,30,40� is given by


B�
mtb�� → 
m0b�� = �mtb�
�̂�t��̂B
eq
mtb��

�
�mtb�
Û�t�
m0b�
2. �C3�

We therefore have that


F�
m0b� → 
mtb���

B�
mtb�� → 
m0b��

=
P0�m0�
Pt�mt�

e−�Qbb�, �C4�

where P0�m0�= �m0
�̂�0�
m0�, Pt�mt�= �mt
�̂�t�
mt�, and Qbb�
=Eb−Eb�.

The entropy of a state mt is defined as

s�t� = − ln Pt�mt� . �C5�

This definition makes sense because �
mt�� diagonalizes �̂�t�,
so that by averaging over the different states we recover the
von Neumann entropy. The entropy difference between the
initial and final states of the subsystem starting at time 0 in

m0� and ending at time t in 
mt� is given by
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�s�s0,st;t� = ln
P0�m0�
Pt�mt�

. �C6�

The entropy production of this same process is given by

�si�m0,mt,b,b�;t� = ln
P0�m0�
Pt�mt�

−
Qbb�

T
, �C7�

because one assumes that the entropy flow difference is
given by

�se�b,b�;t� =
Qbb�

T
. �C8�

Using Eqs. �C6�–�C8�, Eq. �C4� becomes

ln

F�
m0b� → 
mtb���

B�
mtb�� → 
m0b��

= �si�m0,mt,b,b�;t�

= �s�s0,st;t� − �se�b,b�;t� .

�C9�

This result is the analog of our fundamental relation �70�. By
averaging the probabilities over all possible initial and final

states, we get the general fluctuation theorem

p��Si�t�� = 	
m0,mt,b,b�


F�
m0b� → 
mtb���

��„�Si�t� − �si�m0,mt,b,b�;t�…

= 	
m0,mt,b,b�


B�
m0b� → 
mtb���e�si�m0,mt,b,b�;t�

��„�Si�t� − �si�m0,mt,b,b�;t�…

= p„− �Si�t�…e�Si�t�. �C10�

This result agrees with Eq. �74� and is not restricted to steady
states. This approach is based on the time reversal invariance
of the evolution of the total system and does not provide a
trajectory picture. We note that in the total system space, the
heat �or the entropy flow� going from the subsystem to the
environment only depends on the end points and not on the
path itself. If one derive a Jarzynski relation from this result
as in �27�, the work is found to be path independent. When
considering the reduced dynamics of the system alone, as
done in this paper, these quantities become path dependent
and a trajectory picture is provided.
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