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We present a mathematical formulation of a theory of language change. The theory is evolutionary in nature
and has close analogies with theories of population genetics. The mathematical structure we construct similarly
has correspondences with the Fisher-Wright model of population genetics, but there are significant differences.
The continuous time formulation of the model is expressed in terms of a Fokker-Planck equation. This equation
is exactly soluble in the case of a single speaker and can be investigated analytically in the case of multiple
speakers who communicate equally with all other speakers and give their utterances equal weight. Whilst the
stationary properties of this system have much in common with the single-speaker case, time-dependent
properties are richer. In the particular case where linguistic forms can become extinct, we find that the presence
of many speakers causes a two-stage relaxation, the first being a common marginal distribution that persists for
a long time as a consequence of ultimate extinction being due to rare fluctuations.
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I. INTRODUCTION

Stochastic many-body processes have long been of inter-
est to physicists, largely from applications in condensed mat-
ter and chemical physics, such as surface growth, the aggre-
gation of structures, reaction dynamics, or pattern formation
in systems far from equilibrium. Through these studies, sta-
tistical physicists have acquired a range of analytical and
numerical techniques along with insights into the macro-
scopic phenomena that arise as a consequence of noise in the
dynamics. It is therefore not surprising that physicists have
begun to use these methods to explore emergent phenomena
in the wider class of complex systems which—in addition to
stochastic interactions—might invoke a selection mecha-
nism. In particular, this can lead to a system adapting to its
environment.

The best-known process in which selection plays an im-
portant part is, of course, biological evolution. More gener-
ally, one can define an evolutionary dynamics as being the
interplay between three processes. In addition to selection,
one requires replication �e.g., of genes� to sustain a popula-
tion and variation �e.g., mutation� so that there is something
to select on. A generalized evolutionary theory has been for-
malized by biologist and philosopher of science Hull �1,2�
that includes as special cases both biological and cultural
evolution. The latter of these describes, for example, the
propagation of ideas and theories through the scientific com-
munity, with those theories that are “fittest” �perhaps by pre-
dicting the widest range of experimental results� having a
greater chance of survival. Within this generalized evolution-
ary framework, a theory of language change has been devel-
oped �3–5� which we examine from the point of view of
statistical physics in this paper.

Since it is unlikely that the reader versed in statistical
physics is also an expert in linguistics, we spend some time
in the next section outlining this theory of language change.
Then, our formulation of a very simple mathematical model
of language change that we define in Sec. III should seem

rather natural. As this is not the only evolutionary approach
that has been taken to the problem of language change, we
provide—again, for the nonspecialist reader—a brief over-
view of relevant modeling work one can find in the literature.
The remainder of this paper is then devoted to a mathemati-
cal analysis of our model.

A particular feature of this model is that all speakers con-
tinuously vary their speech patterns according to utterances
they hear from other speakers. Since in our model, the utter-
ances produced represent a finite-sized sample of an under-
lying distribution, the language changes over time even in
the absence of an explicit selection mechanism. This process
is similar to the genetic drift that occurs in biological popu-
lations when the individuals chosen to produce offspring in
the next generation are picked entirely at random. Our model
also allows for language change by selection as well as drift
�see Sec. III�. For this reason, we describe the model as the
“utterance selection model” �3�.

As it happens, the mathematics of our model of language
change turn out to be almost identical to those describing
classical models in population genetics. This we discover
from a Fokker-Planck equation for the evolution of the lan-
guage, the derivation of which is given in Sec. V. Conse-
quently, we have surveyed the existing literature on these
models, and by doing so obtained a number of additional
results which we outline in Sec. VII and whose detailed deri-
vation can be found elsewhere �6�. Since in the language
context, these results pertain to the rather limiting case of a
single speaker—which is nevertheless nontrivial because
speakers monitor their own language use—we extend this in
Sec. VIII to a wider speech community. In all cases we con-
centrate on properties indicative of change, such as the prob-
ability that certain forms of language fall into disuse, or the
time it takes for them to do so. Establishing these basic facts
is an important step towards realizing our future aims of
making a meaningful comparison with observational data.
We outline such scope for future work and discuss our results
in the concluding section.
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II. LANGUAGE CHANGE AS AN EVOLUTIONARY
PROCESS

In order to model language change we focus on linguistic
variables, which are essentially “different ways of saying the
same thing.” Examples include the pronunciation of a vowel
sound, or an ordering of words according to their function in
the sentence. In order to recognize change when it occurs, we
will track the frequencies with which distinct variants of a
particular linguistic variable are reproduced in utterances by
a language’s speakers. Let us assume that among a given
group of speakers, one particular variant form is reproduced
with a high frequency. This variant we shall refer to as the
convention among that group of speakers. Now, it may be
that, over time, an unconventional—possibly completely
new—variant becomes more widely used among this group
of speakers. Clearly one possibility here is that by becoming
the most frequently used variant, it is established as the new
convention at the expense of the existing one. It is this com-
petition between variant forms, and particularly the propaga-
tion of innovative forms across the speech community, that
we are interested in.

We have so far two important ingredients in this picture of
language change: the speakers, and the utterances they pro-
duce. The object relating a speaker to her1 utterances we call
a grammar. More precisely, a speaker’s grammar contains
the entirety of her knowledge of the language. We assume
this to depend on the frequencies with which she has heard
particular variant forms used within her speech community
�7,8�. In turn, grammars govern the variants that are uttered
by speakers, and how often.

Clearly, a “real-world” grammar must be an extremely
complicated object, encompassing a knowledge of many lin-
guistic variables, their variant forms and their suitability for
a particular purpose. However, it is noticed that even com-
petent speakers �i.e., those who are highly aware of the vari-
ous conventions among different groups� might use uncon-
ventional variants if they have become entrenched �3�. For
example, someone who has lived for a long time in one
region may continue to use parts of the dialect of that region
after moving to a completely new area. This fact will impact
on our modeling in two ways. First, we shall assume that a
given interaction �conversation� between two speakers has
only a small effect on the established grammar. Second,
speakers will reinforce their own way of using language by
keeping a record of their own utterances.

Another observed feature of language use is that there is
considerable variation, not just from speaker to speaker but
also in the utterances of a single speaker. There are various
proposals for the origin of this variation. On the one hand,
there is evidence for certain variants to be favored due to
universal forces of language change. For instance articula-
tory and acoustic properties of sounds, or syntactic process-
ing factors—which are presumed common to all speakers—
favor certain phonetic or syntactic changes over others

�9,10�. These universals can be recognized through a high
frequency of such changes occurring across many speech
communities.

On the other hand, variation could reflect the wide range
of possible intentions a speaker could have in communica-
tive enterprise. For example, a particular nonconventional
choice of variant might arise from the desire not to be mis-
understood, or to impress, flatter, or amuse the listener �11�.
Nevertheless, in a recent analysis of language use with a
common goal �12�, it was observed that variation is present
in nearly all utterances. It seems likely, therefore, that varia-
tion arises primarily as a consequence of the fact that no two
situations are exactly alike, nor do speakers construe a par-
ticular situation in exactly the same way. Hence there is a
fundamental indeterminacy to the communicative process.
As a result, speakers produce variant forms for the same
meaning being communicated. These forms are words or
constructions representing possibly novel combinations, and
occasionally completely novel utterances. Given the large
number of possible sources of variation and innovation, we
feel it appropriate to model these effects using a stochastic
prescription.

In order to complete the evolutionary description, we re-
quire a mechanism that selects an innovative variant for sub-
sequent propagation across the speech community. In the
theory of Ref. �3� it is proposed that social forces play this
role. This is based on the observation that speakers want to
identify with certain subgroups of a society, and do so in part
by preferentially producing the variants used by members of
the emulated subgroup �13,14�. That is, the preference of
speakers to produce variants associated with certain social
groups acts as a selection mechanism for those variants.

This particular evolutionary picture of language change
�see Sec. IV for contrasting approaches� places an emphasis
on utterances �perhaps more so than on the speakers�. In-
deed, in Ref. �3� the utterance is taken as the linguistic ana-
log of DNA. As speakers reproduce utterances, linguistic
structures get passed on from generation to generation
�which one might define as a particular time interval�. For
this reason, the term lingueme has been coined in �3� to refer
to these structures, and to emphasize the analogy with genet-
ics. One can then extend the analogy to identify linguistic
variables with a particular gene locus and variant forms with
alleles.

We stress, however, that the analogy between this evolu-
tionary formulation of language change and biological evo-
lution is not exact. The distinction is particularly clear when
one views the two theories in the more general framework of
Hull �1,2,4�. The two relevant concepts are interactors and
replicators whose roles are played in the biological system
by individual organisms and genes, respectively. In biology,
a replicator �a gene� “belongs to” an interactor �an organ-
ism�, thereby influencing the survival of the gene itself and
the reproductive ability of the interactor. This is then taken as
the dominant force governing the make-up of the population
of replicators in the next generation. The survivability of a
replicator is not due to an inherent “fitness:” it is the organ-
ism whose fitness leads to the differential survival or extinc-
tion of replicators. Also, the relationship between genotype
and phenotype is indirect and complex. Nevertheless, there is

1We shall follow a convention where speakers and hearers of a
language are referred to using female and male pronouns, respec-
tively.
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a sufficient correlation between genes and phenotypic traits
of organisms such that the differential survival of the latter
causes the differential survival of the former, but the corre-
lation is not a simple one. Hull’s definition of selection re-
quires only that the differential survival of the interactors
�e.g., the phenotype in interaction with its environment�
cause the differential perpetuation of the relevant replicators
�the genotype� �1�; it does not specify how this causal rela-
tionship is implemented.

In the linguistic theory outlined here, the interactors
�speakers� and replicators �linguemes� have quite different
relationships to one another. The replicators are uttered by
speakers, and there is no one-to-one relationship between a
replicator �a lingueme� and the speaker who produces it.
Nevertheless, Hull’s generalized theory of selection can be
applied to the lingueme as replicator and the speaker as in-
teractor. Linguemes and lingueme variation is generated by
speaker intercourse, just as new genotypes are generated by
sexual intercourse. The generation process is replication, that
is, speakers are replicating sounds, words and construction
they have heard before. Finally, the differential survival of
the speakers, that is, their social “success,” causes the differ-
ential survival of the linguemes they produce, and so the
social mechanisms underlying the propagation of linguistic
variants conforms to Hull’s definition of selection.

In short, we do not suppose that the language uttered by
an interactor has any effect on its survival, believing the
dominant effects on language change to be social in origin.
That is, the survivability of a replicator is not due to any
inherent fitness, but arises instead from the social standing of
individuals associated with the use of the corresponding vari-
ant form. It is therefore necessary that in formulating a math-
ematical model of language change, one should not simply
adapt an existing biological theory, but start from first prin-
ciples. This is the program we now follow.

III. DEFINITION OF THE UTTERANCE SELECTION
MODEL

The utterance selection model comprises a set of rules
that govern the evolution of the simplest possible language
viewed from the perspective of the previous section. This
language has a single lingueme with a restricted number
V�2 variant forms. At present we simply assume the exis-
tence of multiple variants of a lingueme: modeling the the
communicative process and the means by which indetermi-
nacy in communication �see Sec. II� leads to the generation
of variation is left for future work.

In the speech community we have N individuals, each of
whose knowledge of the language—the grammar—is en-
coded in the set X�t� of variables xiv�t�. In a manner shortly
to be defined precisely, the variable xiv�t� reflects speaker i’s
�1� i�N� perception of the frequency with which lingueme
variant v �1�v�V� is used in the speech community at time
t. At all times these variables are normalized so that the sum
over all variants for each speaker is unity, that is,

�
v=1

V

xiv�t� = 1 " i,t . �1�

For convenience we will sometimes use a vector notation
x�i= �xi1 , . . . ,xiV� to denote the entirety of speaker i’s gram-

mar. The state of the system X�t� at time t is then the aggre-
gation of grammars X�t�= (x�1�t� , . . . ,x�N�t�).

After choosing some initial condition �e.g., a random ini-
tial condition�, we allow the system to evolve by repeatedly
iterating the following three steps in sequence, each iteration
having duration �t.

1. Social interaction. A pair i , j of speakers is chosen with
a �prescribed� probability Gij. There is no notion of an order-
ing of a particular pair of speakers in this model, and so we
implicitly have Gij =Gji, normalized such that the sum over
distinct pairs ��i,j�Gij =1. See Fig. 1.

2. Reproduction. Both the speakers selected in step 1 pro-
duce a set of T tokens, i.e., instances of lingueme variants.
Each token is produced independently and at random, with
the probability that speaker i utters variant v equal to the
production probability xiv� �t� which will be determined in one
of two ways �see below�. The numbers of tokens
ni1�t� , . . . ,niV�t� of each variant are then drawn from the mul-
tinomial distribution

P�n� i,x�i�� = � T

ni1 ¯ niV
	�xi1� �ni1

¯ �xiv� �niV �2�

where x�i�= �xi1� , . . . ,xiV� �, n� i= �ni1 , . . . ,niV�, �v=1
V niv=T, and

where we have dropped the explicit time dependence to
lighten the notation. Speaker j produces a sequence of tokens
according to the same prescription, with the obvious replace-
ment i→ j. The randomness in this step is intended to model
the observed variation in language use that was described in
the previous section.

The first and simplest possible prescription for obtaining
the reproduction probabilities is simply to assign
xiv� �t�=xiv�t�. Since the grammar is a function of the speak-
er’s experience of language use—the next step explains pre-
cisely how—this reproduction rule does not invoke any fa-
voritism towards any particular variants on behalf of the
speaker. We therefore refer to this case as unbiased reproduc-
tion, depicted in Fig. 2.

We shall also study a biased reproduction model, illus-
trated in Fig. 3. Here, the reproduction probabilities are a
linear transformation of the grammar frequencies, i.e.,

FIG. 1. �Color online� Speakers in the society interact with dif-
ferent frequencies �shown here schematically by different thick-
nesses of lines connecting them�. The pair of speakers i , j is chosen
to interact with probability Gij.
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xiv� �t� = �
w

Mvwxiw�t� �3�

in which the matrix M must have column sums of unity so
that the production probabilities are properly normalized.
This matrix M is common to all speakers, which would be
appropriate if one is considering effects of universal forces
�such as articulatory considerations� on language. Further-
more, in contrast to the unbiased case, this reproduction
model admits the possibility of innovation, i.e., the produc-
tion of variants that appear with zero frequency in a speak-
er’s grammar.

3. Retention. The final step is to modify each speaker’s
grammar to reflect the actual language used in the course of
the interaction. The simplest approach here is to add to the
existing speaker’s grammar additional contributions which
reflect both the tokens produced by her and by her interlocu-
tor. The weight given to these tokens, relative to the existing
grammar, is given by a parameter �. Meanwhile, the weight,
relative to her own utterances, that speaker i gives to speaker
j’s utterances is specified by Hij. This allows us to implement
the social forces mentioned in the previous section. These
considerations imply that

x�i�t + �t� � 
x�i�t� + ��n� i�t�
T

+ Hij
n� j�t�

T
	� �4�

for speaker i, and the same rule for speaker j after exchang-
ing all i and j indices. Figure 4 illustrates this step. The
parameter �, which affects how much the grammar changes
as a result of the interaction is intended to be small, for
reasons given in the previous section.

We must also ensure that the normalization �1� is main-
tained. Therefore,

x�i�t + �t� =
x�i�t� + ��/T��n� i�t� + Hijn� j�t��

1 + ��1 + Hij�
. �5�

Although we have couched this model in terms of the
grammar variables xiv�t�, we should stress that these are not
observable quantities. Really, we should think in terms of the
population of utterances produced in a particular generation,
e.g., a time interval �t��t as indicated in Fig. 5. However,
since the statistics of this population can be derived from the
grammar variables—indeed, in the absence of production bi-
ases they are the same—we shall in the following focus on
the latter.

IV. COMPARISON WITH OTHER MODELS
OF LANGUAGE CHANGE

Evolutionary modeling has a long history in the field of
language change and development. Indeed, at a number of
points in The Origin of the Species, Charles Darwin makes
parallels between the changes that occur in biological species
and in languages. Particularly, he used our everyday obser-
vation that languages tend to change slowly and continu-
ously over time to challenge the then prevailing view that
biological species were distinct species, occupying immov-
able points in the space of all possible organisms. As evolu-
tionary theories of biology have become more formalized, it
is not surprising that these there have been a number of at-
tempts to apply more formal evolutionary ideas to language
change �see, e.g., �15��. In this section we describe a few of

FIG. 2. �Color online� Both speakers i and j produce an utter-
ance, with particular lingueme variants appearing with a frequency
given by the value stored in the utterer’s grammar when no produc-
tion biases are in operation. In this particular case three variants are
shown �	 ,
 and �� and the number of tokens, T, is equal to 6.

FIG. 3. �Color online� In the biased reproduction model, the
probability of uttering a particular variant is a linear combination M
of the values stored in the grammar.

FIG. 4. �Color online� After the utterances have been produced,
both speakers modify their grammars by adding to them the fre-
quencies with which the variants were reproduced in the conversa-
tion. Note each speaker retains both her own utterances as well as
those of her interlocutor, albeit with different weights.

FIG. 5. �Color online� A generation of a population of utterances
in the utterance selection model could be defined as the set of to-
kens produced by all speakers in the macroscopic time interval �t.
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these studies in order that the reader can see how our ap-
proach differs from others one can find in the literature.

One area in which biological evolution plays a part is the
development of the capacity to use language �see, e.g., �16�
for a brief overview�. Although this is in itself an interesting
topic to study, we do not suppose that this �presumably� ge-
netic evolution is strongly related to language change since
the latter occurs on much shorter timescales. For example,
the FOXP2 gene �which is believed to play a role in both
language production and comprehension� became fixed
around 120 000 years ago �17�, whereas the patterns in the
use of linguistic variables can change over periods as short as
tens of years.

Given an ability to use language, one can ask how the
various linguistic structures �such as particular aspects of
grammar or syntax� come into being �18�. Here evolutionary
models that place particular emphasis on language learning
are often employed. Some aspects of this type of work are
reviewed in �19�—here we remark that in order to see the
emergence of grammatical rules, one must model a grammar
at a much finer level than we have done here. Indeed, we
have left aside the �nevertheless interesting� question of how
an innovation is recognized as “a different way of saying the
same thing” by all speakers in the community. Instead, we
assume that this agreement is always reached, and concen-
trate on the fate of new variant forms.

Similar kinds of assumptions have been used in a
learning-based context by Niyogi and Berwick �20� to study
language change. In learning-based models in general, the
mechanism for language change lies in speakers at an early
stage of their life having a �usually finite� set of possible
grammars to choose from, and using the data presented to
them by other speakers to hypothesize the grammar being
used to generate utterances. Since these data are finite, there
is the possibility for a child listening to language in use to
infer a grammar that differs from his parents’, which be-
comes fixed once a speaker reaches maturity. Our model of
continuous grammatical change as a consequence of expo-
sure to other speakers at all stages in a speaker’s life is quite
different to learning-based approaches. In particular, it as-
sumes an inductive model of language acquisition �21�, in
which the child entertains hypotheses about sets of words
and grammatical constructions rather than about entire dis-
crete grammars. Thus, our model does not assume that a
child has in her mind a large set of discrete grammars.

The specific model in �20� assigns grammars �languages�
to a proportion of the population of speakers in a particular
generation. A particular learning algorithm then implies a
mapping of the proportions of speakers using a particular
language from one generation to the next. Since one is deal-
ing with nonlinear iterative maps, one can find familiar phe-
nomena such as bifurcations and phase transitions �22� in the
evolution of the language. Note, however, that the dynamics
of the population of utterances and speakers are essentially
the same in this model, since the only thing distinguishing
speakers is grammar. In the utterance selection model, we
have divorced the population dynamics of speakers and ut-
terances, and allow the former to be distinguished in terms of
their social interactions with other speakers �which is explic-
itly ignored in �20��. This has allowed us to take a fixed

population of speakers without necessarily preventing the
population of utterances to change. In other words, language
change may occur if the general structure of a society re-
mains intact as individual speakers are replaced by their off-
spring, or even during a period of time when there is no
change in the makeup of the speaker population; both of
these possibilities are widely observed.

An alternative approach to language change in the
learning-based tradition is not to have speakers attempt to
infer the grammatical rules underpinning their parents’ lan-
guage use, but for grammars to evolve by a process of natu-
ral selection. This path has been followed most notably by
Nowak and co-workers in a series of papers �including
�23,24�� as well as by members of the statistical physics
community �25�. This thinking allows one to borrow the no-
tion of fitness from biological evolutionary theories—the
more people a particular grammar allows you to communi-
cate with, the fitter it is deemed to be. In order for language
use to change, speakers using a more coherent grammar se-
lectively produce more offspring than others so that the lan-
guage as a whole climbs a hill toward maximal coherence.
The differences between this and our way of thinking should
be clear from Sec. II. In particular we assume no connection
between the language a speaker uses and her biological re-
productive fitness. Finally on the subject of learning-based
models, we remark that not all of them assume language
transmission from parents to offspring. For example, in �26�
the effects of children also learning from their peers are
investigated.

Perhaps closer in spirit to our own work are studies that
have languages competing for speakers. The simplest model
of this type is due to Abrams and Strogatz �27� which deems
a language “attractive” if it is spoken by many speakers or
has some �prescribed� added value. For example, one lan-
guage might be of greater use in a trading arrangement. In
�27� good agreement with available data for the number of
speakers of minority languages was found, revealing that the
survival chances of such languages are typically poor. More
recently, the model has been extended by Minett and Wang
�28� to implement a structured society and the possibility of
bilingualism. One might view the utterance selection model
as being relevant here if the variant forms of a lingueme
represent different languages. However, there are then sig-
nificant differences in detail. First, the way the utterance se-
lection model is set up would imply that all languages are
mutually intelligible to all speakers. Second, in the models of
�27,28�, learning a new language is a strategic decision
whereas in the utterance selection model it would occur sim-
ply through exposure to individuals speaking that language.

To summarize, the distinctive feature of our modeling ap-
proach is that we consider the dynamics of the population of
utterances to be separate from that of the speech community
�if indeed the latter changes at all�. Furthermore, we assume
that language propagates purely through exposure with social
status being used as a selection process, rather than through
some property of the language itself such as coherence. The
purpose of this work is to establish an understanding of the
consequences of the assumptions we have made, particularly
in those cases where the utterance selection model can be
solved exactly.
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V. CONTINUOUS-TIME LIMIT AND FOKKER-PLANCK
EQUATION

We begin our analysis of the utterance selection model by
constructing a Fokker-Planck equation via an appropriate
continuous-time limit. There are several ways one could pro-
ceed here. For example, one could scale the interaction prob-
abilities Gij proportional to �t �the constant of proportional-
ity then being an interaction rate�. Whilst this would yield a
perfectly acceptable continuous time process, the Fokker-
Planck equation that results is unwieldy and intractable.
Therefore we will not follow this path, but will discuss two
other approaches below. The first will be applicable when the
number of tokens is large. This will not generally be the case,
but will serve to motivate the second approach, which is
closer to the situation which we are modeling.

A. The continuous-time limit

To clarify the derivation it is convenient to start with a
single speaker which, although linguistically trivial, is far
from mathematically trivial. It also has an important corre-
spondence to population dynamics, which is explored in
more detail in Sec. VI. In this case there is no matrix Hij, and
in fact we can drop the indices i and j completely. This
means that the update rule �5� takes the simpler form

x��t + �t� =
x��t� + ��/T�n��t�

1 + �
�6�

and so �x��t��x��t+�t�−x��t� is given by

�x��t� =
�

1 + �
�n��t�

T
− x��t�	 . �7�

The derivation of the Fokker-Planck equation involves the
calculation of averages of powers of �x��t�. Using Eq. �2�, the
average of n� is Tx��. If we begin by assuming unbiased re-
production, then x��=x� and so the average of �x��t� is zero. In
the language of stochastic dynamics, there is no deterministic
component—the only contribution is from the diffusion term.
This is characterized by the second moment which is calcu-
lated in the Appendix to be

��xv�t��xw�t�� =
�2

�1 + ��2

1

T
�xv�vw − xvxw� , �8�

where the angular brackets represent an average over all pos-
sible realizations. To give a contribution to the Fokker-
Planck equation, the second moment �8� has to be of order
�t. One way to arrange this is as follows. We choose the unit
of time such that T utterances are made in unit time. Thus the
time interval between utterances, �t=1/T, is small if T is
large. Furthermore, although the frequency of a particular
variant in an utterance, nv /T, varies in steps, the steps are
very small. Therefore, when T becomes very large, the time
and variant frequency steps become very small and can
be approximated as continuous variables. The second jump
moment, which is actually what appears in the Fokker-
Planck equation, is found by dividing the expression �8� by
�t=T−1, and letting �t→0:

	vw�x�,t� =
�2

�1 + ��2 �xv�vw − xvxw� . �9�

Since the higher moments of the multinomial distribution
involve higher powers of T−1=�t, they give no contribution,
and the only nonzero jump moment is given by Eq. �9�. As
discussed in the Appendix, or in standard texts on the theory
of stochastic processes �29,30�, this gives rise to the Fokker-
Planck equation

�P�x�,t�
�t

=
�2

2�1 + ��2�
v,w

�2

�xv � xw
�xv�v,w − xvxw�P�x�,t� ,

�10�

where we have suppressed the dependence of the probability
distribution function P�x� , t� on the initial state of the system.

Equation �10� holds only for unbiased reproduction. It
can be generalized to biased reproduction by noting that as
T→�, this process becomes deterministic. Thus Eq. �7� is
replaced by the deterministic equation

�x� =
�

1 + �
�x�� − x�� . �11�

However, we may write Eq. �3� using the condition
�wMwv=1 as

xv� − xv = �
w

Mvwxw − �
w

Mwvxv = �
w�v

�Mvwxw − Mwvxv� .

�12�

The diagonal entries of M are omitted in the last line because
the condition �wMwv=1 means that in each column one en-
try is not independent of the others. If we choose this entry to
be the one with w=v, then all elements of M in Eq. �12� are
independent. Thus the diagonal entries of M have no signifi-
cance; they are simply given by Mvv=1−�w�vMwv. From
Eqs. �11� and �12� we see that in order to obtain a finite limit
as �t→0, we need to assume that the off-diagonal entries of
M are of order �t. Specifically, we define Mvw=mvw�t for
v�w. Then in the limit �t→0,

dxv�t�
dt

=
�

�1 + �� �
w�v

�mvwxw − mwvxv� . �13�

Deterministic effects such as this give rise to O��t� contribu-
tions in the derivation of the Fokker-Planck equation, unlike
the O��t�1/2 contributions arising from diffusion. Therefore,
the first jump moment in the case of biased reproduction is
given by the right-hand side of Eq. �13�. The second jump
moment is still given by Eq. �9�, since any additional terms
involving Mvw are of order �t and so give terms which van-
ish in the �t→0 limit. This discussion may be straightfor-
wardly extended to the case of many speakers. The only
novel feature is the appearance of the matrix Hij. In order to
obtain a deterministic equation of the type �13�, a new matrix
has to be defined by Hij =hij�t.

Thus, in summary, what could be called the “large-T ap-
proximation” is obtained by choosing �t=T−1, and defining
new matrices m and h through Mvw=mvw�t for v�w and
Hij =hij�t. It is the classic way of deriving the Fokker-Planck
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equations as the “diffusion approximation” to a discrete pro-
cess. However, for our purposes it is not a very useful ap-
proximation. This is simply because we do not expect that in
realistic situations the number of tokens will be large, so it
would be useful to find another way of taking the
continuous-time limit. Fortunately, another parameter is
present in the model which we have not yet utilized. This is
�, which characterizes the small effect that utterances have
on the speaker’s grammar. If we now return to the case of a
single speaker with unbiased reproduction, we see from Eq.
�8�, that an alternative to taking T−1=�t is to take �= ��t�1/2.
Thus, in this second approach, we leave T as a parameter in
the model, and set the small parameter � equal to ��t�1/2. The
second jump moment �9� in this formulation is replaced by

	vw�x�,t� =
1

T
�xv�vw − xvxw� . �14�

Bias may be introduced as before, and gives rise to Eqs. �11�
and �12�. The difference in this case is that � has been as-
sumed to be O��t�1/2, and so the off-diagonal entries of M
�and the entries of H in the case of more than one speaker�
have to be rescaled by ��t�1/2, rather than �t. This means that
in this second approach we must rescale the various param-
eters in the model according to

� = ��t�1/2, �15�

Mvw = mvw��t�1/2 for v � w , �16�

Hij = hij��t�1/2, �17�

as �t→0. We have found good agreement between the pre-
dictions obtained using this continuous-time limit and the
output of Monte Carlo simulations when � was sufficiently
small, e.g., �
10−3. From Eqs. �15�–�17� we see that with
this scaling Mvw=�mvw and Hij =�hij. In the context of the
Fokker-Planck description of the model, the speaker interac-
tion is specified in terms of the rescaled parameters, and the
value of hij is taken to be independent of � �as in the figures
relating to the multispeaker model in Sec. VIII�. This means
that Hij, if we require it, must be made proportional to �.

B. The general form of the Fokker-Planck equation

In Sec. V A we have outlined the considerations involved
in deriving a Fokker-Planck equation to describe the process.
We concluded that, for our present purposes, the scalings
given by Eqs. �15�–�17� were most appropriate. Much of the
discussion was framed in terms of a single speaker, because
the essential points are already present in this case, but here
will study the full model. The resulting Fokker-Planck equa-
tion describes the time evolution of the probability distribu-
tion function P�X , t �X0 ,0� for the system to be in state X at
time t given it was originally in state X0, although we will
frequently suppress the dependence on the initial conditions.
The variables X comprise N�V−1� independent grammar
variables, since the grammar variable xiV is determined by
the normalization 
v=1

V xiv=1.
The derivation of the Fokker-Planck equation is given in

the Appendix . It contains three operators, each of which

corresponds to a distinct dynamical process. Specifically, one
has for the evolution of the distribution

�P�X,t�
�t

= �
i

Gi�L̂i
�bias� + L̂i

�rep��P�X,t� + �
�ij�

GijL̂ij
�int�P�X,t�

�18�

in which Gi=� j�iGij is the probability that speaker i partici-
pates in any interaction.

The operator

L̂i
�bias� = �

v=1

V−1
�

�xiv
�
w=1

w�v

V

�mwvxiv − mvwxiw� �19�

arises as a consequence of bias in the production probabili-
ties. Note that the variable xiV appearing in this expression
must be replaced by 1−�v=1

V−1xiv in order that the resulting
Fokker-Planck equation contains only the independent gram-
mar variables.

As discussed above, the finite-size sampling of the �pos-
sibly biased� production probabilities yields the stochastic
contribution

L̂i
�rep� =

1

2T
�
v=1

V−1

�
w=1

V−1
�2

�xiv � xiw
�xiv�v,w − xivxiw� �20�

to the Fokker-Planck equation. In a physical interpretation,
this term describes for each speaker i an independently dif-
fusing particle, albeit with a spatially dependent diffusion
constant, in the �V−1�-dimensional space 0�xi1+xi2+ ¯

+xi,V−1�1. On the boundaries of this space, one finds there
is always a zero eigenvalue of the diffusion matrix that cor-
responds to the direction normal to the boundary. This re-
flects the fact that, in the absence of bias or interaction with
other speakers, it is possible for a variant to fall into disuse
never to be uttered again. These extinction events are of
particular interest, and we investigate them in more detail
below.

The third and final contribution to �18� comes from speak-
ers retaining a record of others’ utterances. This leads to
different speakers’ grammars becoming coupled via the in-
teraction term

L̂ij
�int� = �

v=1

V−1 �hij
�

�xiv
− hji

�

�xjv
	�xiv − xjv� . �21�

We end this section by rewriting the Fokker-Planck
equation as a continuity equation in the usual way:
�P /�t+�i,v�Jiv /�xiv=0 �29,30�, where

Jiv�X,t� = − �
w=1

w�v

V

Gi�mwvxiv − mvwxiw�P�X,t�

−
1

2T
�
w=1

V−1
�

�xiw
Gi�xiv�v,w − xivxiw�P�X,t�

− �
j�i

Gijhij�xiv − xjv�P�X,t� �22�
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is the probability current. The boundary conditions on the
Fokker-Planck equation with and without bias differ. In the
former case, the boundaries are reflecting, that is, there is no
probability current flowing through them. In the latter case,
they are so-called exit conditions: all the probability which
diffuses to the boundary is extracted from the state space.
The result �22� will be used in subsequent sections when
finding the equations describing the time evolution of the
moments of the probability distribution.

VI. FISHER-WRIGHT POPULATION GENETICS

The Fokker-Planck equation derived in the previous sec-
tion is well known to population geneticists, being a
continuous-time description of simple models formulated in
the 1930s by Fisher �31� and Wright �32�. Despite criticism
of oversimplification �see, e.g., the short article by Crow �33�
for a brief history�, these models have retained their status as
important paradigms of stochasticity in genetics to the
present day. Although biologists often discuss these models
in the terms of individuals that have two parents �34,35�, it is
sufficient for our purposes to describe the much simpler case
of an asexually reproducing population.

The central idea is that a given �integer� generation t of
the population can be described in terms of a gene pool con-
taining K genes, of which a number kv have allele Av at a
particular locus, with �v=1

V kv=V and v=1, . . . ,V. In the lit-
erature, an analogy with a bag containing K beans is some-
times made, with different colored beans representing differ-
ent alleles. The next generation is then formed by selecting
with replacement K genes �beans� randomly from the current
population. This process is illustrated in Fig. 6. The replace-
ment is crucial, since this allows for genetic drift—i.e.,
changes in allele frequencies from one generation to the next
from random sampling of parents—despite maintaining a
fixed overall population size.

The probability of having kv� copies of allele Av in genera-
tion t+1, given that there were kv in the previous generation,
is easily shown to be multinomial, i.e.,

P�k1�,k2�, . . . ,kV� ;t + 1�k1,k2, . . . ,kV;t�

=
K!

k1 ! k2 ! ¯ kV!
� k1

K
	k1� k2

K
	k2

¯ � kV

K
	kV

. �23�

Using the properties of this distribution �see the Appendix�,
it is straightforward to learn that the mean change in the
number of copies of allele Av is the population from one
generation to the next is zero. If we introduce xv�t� as the
fraction kv /K of allele Av in the gene pool at generation t, we
find that the second moment of this change is �34�

��xv�t + 1� − xv�t���xw�t + 1� − xw�t���

=
1

2K
�xv�t��v,w − xv�t�xw�t�� . �24�

By following the procedure given in the Appendix, one ob-
tains the Fokker-Planck equation

�P�x�,t�
�t

=
1

2K
�
v,w

�2

�xv � xw
�xv�v,w − xvxw�P�x�,t� �25�

to leading order in 1/K. Since one is usually interested in
large populations, terms of higher order in 1/K that involve
higher derivatives are neglected. Thus one obtains a continu-
ous diffusion equation for allele frequencies valid in the limit
of a large �but finite� population.

We see by comparing the right-hand side of �25� with �20�
that the Fisher-Wright dynamics of allele frequencies in a
large biological population coincide with the stochastic com-
ponent of the evolution of a speaker’s grammar. Because of
this mathematical correspondence, it is useful occasionally to
identify a speaker’s grammar with a biological population.
However, as noted at the end of Sec. III, this should not be
confused with the population of utterances central in our
approach to the problem of language change.

As we previously remarked, the fact that a speaker retains
a record of her own utterances means that the grammar of a
single speaker will be subject to drift, even in the absence of
other speakers, or where zero weight Hij given to other
speaker’s utterances. In this case, a single speaker’s grammar
exhibits essentially the same dynamics as a biological popu-
lation in the Fisher-Wright model. We outline existing results
from the literature, as well as some extensions recently ob-
tained by us, in Sec. VII below.

The requirement that the population size K is large for the
validity of the diffusion approximation �25� of Fisher-Wright
population dynamics relates to the large-T approximation of
Sec. V A. By contrast, the small-� approximation relates to
an aging population, i.e., one where a fraction � / �1+�� of
the individuals are replaced in each generation. This is simi-
lar to a Moran model in population genetics �36�, in which a
single individual is replaced in each generation. Its
continuous-time description is also given by �25� but with a
modified effective population size K.

It is worth noting that when production biases are present,
i.e., the parameters mvw are nonzero, the resulting single-
speaker Fokker-Planck equation corresponds to a Fisher-
Wright process in which mutations occur �34�. In the bean-
bag picture, one would realize this mutation by having a
probability proportional to mvw of placing a bean of color v

FIG. 6. �Color online� Fisher-Wright “beanbag” population ge-
netics. The population in generation t+1 is constructed from gen-
eration t by �i� selecting a gene from the current generation at ran-
dom; �ii� copying this gene; �iii� placing the copy in the next
generation; �iv� returning the original to the parent population.
These steps are repeated until generation t+1 has the same-sized
population as generation t.
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in the next population, given that the bean selected from the
parent population was of color w. It is again possible to
obtain exact results for this model, albeit for a restricted set
of mutation rates. We discuss these below in Sec. VII.

The remaining set of parameters in the utterance selection
model, hij, correspond to migration rates from population j
to i in its biological interpretation. It is apparently much
more difficult to treat populations coupled in this way under
the continuous-time diffusion approximation. A prominent
exception is where one has two populations: a fixed main-
land population and a changing island population �34�. The
assumption that the mainland population is fixed is reason-
able if it is much larger than the island population. Since a
speaker’s grammar does not have a well-defined size, this
way of thinking is unlikely to be of much utility in the con-
text of language change. Therefore in Sec. VIII we pursue
the diffusion approximation where all speakers �islands� are
placed on the same footing. This work contrasts with inves-
tigations based on ancestral lineages �“the coalescent
method”� that one can find in the population genetics litera-
ture �see, e.g., �37� for a recent review of applications to
geographically divided populations�. We shall also make use
of these results to gain an insight into the multispeaker
model.

Finally in this section we note that a feature ubiquitous in
many biological models, namely the selective advantage �or
fitness� of alleles, is not relevant in the context of language
change. For reasons we have already discussed in Sec. II, we
do not consider lingueme variants to possess any inherent
fitness.

VII. SINGLE-SPEAKER MODEL

We begin our analysis of the utterance selection model by
considering the case of a single speaker which is nontrivial
because a speaker’s own utterances form part of the input to
her own grammar. We outline both relevant results that have
been established in the population genetics literature, along
with an overview of our own findings which we have pre-
sented in detail elsewhere �6�. We begin with the case where
production biases �mutations� are absent.

A. Unbiased production

When the probability of uttering a particular variant form
v is equal to the frequency xv stored in the speaker’s gram-
mar �we drop the speaker subscript i as there is only one of
them�, the Fokker-Planck equation reads

�P�x�,t�
�t

=
1

2T
�
v=1

V−1

�
w=1

V−1
�2

�xv � xw
�xv�v,w − xvxw�P �26�

where V is the total number of possible variants. We see that
in this case, T enters only as a time scale and so we can put
T=1 with no loss of generality in the following.

One way to study the evolution of this system is through
the time dependence of the moments of xv. Multiplying �26�
by xv�t�k and integrating by parts one finds �6�

d�xv�t�k�
dt

=
k�k − 1�

2
��xv�t��k−1�� − �xv�t�k�� . �27�

We see immediately that the mean of xv is conserved by the
dynamics. The higher moments have a time dependence that
can be calculated iteratively for k=2,3 , . . .. For example, for
the variance one finds that

�xv�t�2� − �xv�t��2 = xv,0�1 − xv,0��1 − e−t� . �28�

Remarkably—and as we showed in �6�—the full time-
dependent solution of �26� can be obtained under a suitable
change of variable. The required transformation is

ui =
xi

1 − �
j�i

xj

�29�

which maps the space 0�x1+x2+ ¯ +xV−1�1 onto the
�V−1�-dimensional unit hypercube, 0�ui�1 " i. In the
new coordinate system the Fokker-Planck equation is �6�

�P�u� ,t�
�t

=
1

2 �
v=1

V−1
�2

�uv
2

uv�1 − uv�

�
w�v

�1 − uw�
P �30�

�D̂V�u1, . . . ,uV−1�P . �31�

The solution is then obtained by separation of variables.
First, we separate the time and space variables so that given
a fixed initial condition u�0 one has

P�u� ,t� = �
�V

C�V
�u�0���V

�u��e−�Vt. �32�

Here, � and ��V
�u�� are the eigenvalues and corresponding

eigenfunctions of the operator D̂V appearing in �31�, and
C�V

�u�0� a set of expansion coefficients that are determined by
the initial condition.

One can then separate each of the u variables, since we
have the recursion

D̂V+1�u1, . . . ,uV� = D̂2�u1� +
1

1 − u1
D̂V�u2, . . . ,uV� . �33�

To see this, let us assume we have found an eigenfunction

��V
�u1 , . . . ,uV−1� of the V-variant operator D̂V�u1 , . . . ,uV−1�

with accompanying eigenvalue �V. Now, we make an ansatz

��V+1
�u1, . . . ,uV� = ��V+1,�V

�u1���V
�u2, . . . ,uV� �34�

for an eigenfunction of the �V+1�-variant operator

D̂V+1�u1 , . . . ,uV�, where the corresponding eigenvalue �V+1

remains to be determined. Inserting this ansatz into �33�
yields the ordinary differential equation

1

2

d2

du2u�1 − u���V+1,�V
�u� = ��V+1 −

�V

1 − u
	��V+1,�V

�u�

�35�

that has to be solved for the function �. Note that when
V=2, we have only one independent variable u1 and the
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eigenfunction of D̂2�u1� with eigenvalue �2 is the solution of
�35� with �1=0. Beginning with this case in �34� and iterat-
ing the requisite number of times, one finds that the solution
for an eigenfunction of the V-variant Fokker-Planck equation
is

��V
= ��V,�V−1

�u1���V−1,�V−2
�u2� ¯ ��2,�1

�uV−1� . �36�

That is, the partial differential equation �31� is separable in
the variables ui as claimed, and each factor in the product is
a solution of the ordinary differential equation �35� that con-
tains two parameters. After an appropriate substitution, �35�
can be brought into a standard hypergeometric form whose
solutions are Jacobi polynomials �38�. This analysis �6�
yields the eigenvalues of the Fokker-Planck equation. When
there are initially V variants these are

�V =
1

2
LV−1�LV−1 + 1�, Lv = �

w=1

v

��w + 1� , �37�

in which the variables �w are non-negative integers.
Note that all the eigenvalues are positive: that is, the func-

tion P�u� , t� decays over time. This is because of the fact that,
when no production biases are present, once a variant’s fre-
quency vanishes, it can never be uttered again: i.e., variants
become extinct until eventually one of them becomes fixed.
Hence, the stationary probability distribution comprises �
functions at the points where one of the frequencies xv=1.
Since the mean of the distribution is conserved �see above�,
the weight under each � function—which is the probability
that the corresponding variant is the only one in use as
t→�—is simply the variant’s mean frequency in the initial
condition. Although we do not give the solution explicitly
here, it is plotted for a two-variant unbiased system in Fig. 7.
The distribution in the interior of the domain decays with
time, as the probability of one variant being eliminated �not
plotted� grows.

It is remarkable that the solution of the Fokker-Planck
equation for V variants is not much more complicated than
the solution of the corresponding equation for two variants.

This turns out to be a feature of other quantities associated
with this problem. For example, the probability fv�x�0 , t� that
variant v is the only one remaining at a finite time t, given an
initial condition x�0, can be calculated rather easily because a
reduction to an effective two-variant problem can be found
to work in this case as well. To understand this idea, it is
helpful to return to the beanbag picture of population genet-
ics of the previous section. We are interested in knowing the
probability that all beans in the bag have the same color—
say, for concreteness, chartreuse. Let then x be the fraction of
such beans in the bag in the current generation. In the next
generation, each bean has a probability x of being chartreuse,
and a probability 1−x of being some other color. Clearly, the
number of chartreuse beans in the next generation has the
distribution �23� with V=2, which is the reduction to the
two-variant problem. The form of f in this case was first
found by Kimura �39� and is given by

fv�x�0,t� = xv,0 −
1

2�
�=1

�

�− 1���P�+1�1 − 2xv,0�

− P�−1�1 − 2xv,0��e−���+1�t/2 �38�

in which P��z� is a Legendre polynomial. Several other re-
sults can be obtained by utilizing the above reduction to an
equivalent two-variant problem together with combinatorial
arguments. For example, the probability that exactly r vari-
ants coexist at time t may be expressed entirely in terms of
the function f and various combinatorial factors �6�.

Other quantities, such as the mean time to the rth extinc-
tion, or the probability that a set of variants become extinct
in a particular order, can be most easily found from the back-
ward Fokker-Planck equation �29�, which involves the ad-

joint of the operator L̂i
�rep�. In some cases, one can carry out

a reduction to an equivalent two-variant problem wherein
such quantities as the mean time to fixation of a variant v
averaged over those realizations of the dynamics in which it
does become fixed �40�

�v = − 2
�1 − xv,0�ln�1 − xv,0�

xv,0
�39�

come into play. Note, however, that this reduction is not
always possible. For instance, in the two examples given at
the start of this paragraph, the former can be calculated from
such a reduction, whereas the latter cannot. These subtleties
are discussed in �6�.

B. Biased production

We turn now to the case where the production probabili-
ties and grammar frequencies are not identical, but related by
�3�. Here, calculations analogous to those above are possible
in those cases where mvw=mv. That is, in the interpretation
where mvw are mutation rates, we can obtain solutions when
mutation rates depend only on the end product of the muta-
tion.

To calculate moments of xv�t� it is most efficient to use
the Fokker-Planck equation in the form �P /�t+�v�Jv /�xv
=0 and the explicit formula for the current �22� adapted to

FIG. 7. Time development of the exact solution P�x , t� of the
Fokker-Planck equation for a single speaker with two variants ini-
tially, when bias is absent and x0=0.7.

BAXTER et al. PHYSICAL REVIEW E 73, 046118 �2006�

046118-10



the single-speaker case to find the equation satisfied by the
moments:

d�xv�t�k�
dt

=� dx� xv
k �P�x�,t�

�t
= − �

w
� dx� xv

k �Jw

�xw

= k� dx� xv
�k−1�Jv�x�,t� , �40�

using the condition that the current vanishes on the boundary.
Using Eq. �22� the equation for the first moment, for in-
stance, is

d�xv�t��
dt

= − �
w�v

�mw�xv� − mv�xw��

= �− �
w�v

mw	�xv� + mv�1 − �xv��

= mv − R�xv� �41�

in which R=�v=1
V mv. This has the solution

�xv�t�� =
mv

R
+ �xv,0 −

mv

R
	e−Rt, �42�

a result that does not depend on the number of tokens ex-
changed per interaction since this affects only the stochastic
part of the evolution. Higher moments have more compli-
cated expressions which can be found in �6�.

Once again, we can find the complete time-dependent so-
lution of the Fokker-Planck equation using the same change
of variable and separation of variables as before. To achieve
this, one makes the replacement

1

2

�

�uv
uv�1 − uv� →

1

2T

�

�uv
uv�1 − uv� + �Rvuv − mv�

�43�

in Eq. �30� and where we have introduced

Rv = �
w=v

V

mw. �44�

Note that it is necessary to reinstate the parameter T since
two time scales are now in operation: one corresponding to
the probabilistic sampling effects, and the other to mutations.
In the ensuing separation of variables, we find that each
product � in the eigenfunction analogous to �36� picks up a
dependence on the variant v through the parameters mv and
Rv. The eigenvalue spectrum also changes, becoming now

�V =
1

2T
LV−1� �2TR + LM−1� − 1�, Lv� = �

w=1

v

�w �45�

where �w are, as before, non-negative integers and R
=�w=1

V mw. On this occasion, we have a zero eigenvalue when
�w=0 " w. The corresponding eigenfunction is then the
�unique� stationary state P*�x�� which is given by

P*�x�� = ��2R��
v=1

V
xv

2Tmv−1

��2mv�
. �46�

This result first appeared for the case V=2 in Ref. �32�.
When V=2, this is a 
 distribution. It is peaked near the

boundaries when m1 and m2 are both less than 1/2, as illus-
trated in Fig. 8. When the bias parameters are greater than
1/2, the distribution is centrally peaked, and is asymmetric
when m1�m2, as can be seen in Fig. 9.

It is perhaps interesting to note that the probability current
is zero everywhere in this steady state: i.e., that a detailed-
balance criterion is satisfied. It seems likely that the more
general situation where mvw can depend both on the initial
and final variants will give rise to a steady state in which
there is a circulation of probability. We believe a solution for
this case has not yet been found.

Finally in this survey of the single-speaker model we re-
mark on the existence of a hybrid model in which some of
the production biases are zero. Then, those variants that have
xv=0 will fall into disuse, and the subsequent dynamics will
be the same as for the case of biased production among that
subset of variants to which mutation is possible.

VIII. MULTISPEAKER MODEL

Having established the basic properties of the single-
speaker model—moments, stationary distribution, and fixa-

FIG. 8. The stationary distribution with one speaker and two
variants for m1=m2=0.2.

FIG. 9. The stationary distribution with one speaker and two
variants for m1=0.8 and m2=0.6.
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tion times—we now seek their counterparts in the rather
more realistic situation where many different speakers are
interacting. The large number of potential parameters speci-
fying the interaction between speakers �Gij and hij� means
the complexity of the multiple speaker model is much greater
than that for a single speaker. However, some analytic results
can be obtained by considering the simplest set of interac-
tions between speakers, one where all the interaction prob-
abilities and weightings are equal. That is, we set

Gij � G =
1

2N�N − 1�
and hij � h " i, j . �47�

This greatly simplifies the situation, as the interactions be-
tween speakers are now identical, with different speakers
being only distinguished by their initial conditions. From a
linguistic point of view, it also seems natural to begin with
all speakers interacting with the same probability, as might
happen in a small village �41,42�. We are also not consider-
ing social forces here, and so we assume that Hij is constant.
It can also be seen from the results for a single speaker that
the majority of behaviors can be observed in systems with
only two variants. Therefore we will not consider more than
two variants for the remainder of this section.

The Fokker-Planck equation �18� now takes the relatively
simple form

�

�t
P = �N − 1�G�

i
� �

�xi
�Rxi − m1� +

1

2T

�2

�xi
2xi�1 − xi�	�

+ h
�

�xi
�xi −

1

N − 1�
j�i

xj		P

= �N − 1�G�
i
� �

�xi
�Rxi − m1�

+
1

2T

�2

�xi
2xi�1 − xi�	� +

N

N − 1
h

�

�xi
�xi − x�	P �48�

where we use x without a subscript to denote the overall
proportion of the first variant in the population x��ixi /N.
The parameter m1 is the bias parameter, m1�m12, and
R=m1+m2=m12+m21. Although we have not succeeded in
solving this equation exactly, we have been able to perform a
number of calculations and analyses which we present be-
low.

A. Moments

Differential equations for moments of xi can be found
using the same methods as before. When production biases
are present we find, by multiplying �48� by xi, integrating
and using the fact that the probability current vanishes at the
boundaries, that �compare with Eq. �41��

d

dt
�xi� = − �N − 1�G��R + h��xi� − m1 −

h

N − 1�
j�i

�xj�	 .

�49�

Note that the sum over j in this expression can be written as
N�x�− �xi� where

�x� =
1

N
�

i

�xi� �50�

is the mean frequency over the entire community of
speakers.

Using this substitution, and summing �49� over all speak-
ers, we find that

d

dt
�x� = − G�N − 1��R�x� − m1� . �51�

Subtracting this expression from �49� gives

d

dt
�xi − x� = − G��N − 1�R + Nh��xi − x� . �52�

These equations are now decoupled and their solution fol-
lows readily after implementing the initial condition and us-
ing the definitions �47�. We find that

�xi�t�� =
m1

R
+ 
�x0 −

m1

R
	 + �xi,0 − x0�e−ht/2�N−1��e−Rt/2N,

�53�

�x�t�� =
m1

R
+ �x0 −

m1

R
	e−Rt/2N, �54�

where x0=x�0�= 1
N�ixi,0.

Each speaker’s mean thus converges to the community’s
mean at a rate controlled by h, and the latter relaxes to the
fixed point of the bias transformation M at a rate determined
by R. In both cases, the decay time grows linearly with the
number of speakers N. This behavior is shown in Fig. 10 in
which the time development of the mean of a particular
speaker has been plotted for two different bias parameter
choices.

In the unbiased case we can repeat the same procedure to
find the time dependence of �xi�. The result is simply �53�
and �54� with R and m1 set to zero, though one must be
careful with the boundaries when deriving the equivalent of
�49�. In particular

FIG. 10. The time development of the mean of a single speaker
�xi� for two different choices of mutation parameters. In each case
xi,0=0.7, N=10, and h=0.5. T=1. The overall population mean �x�
is shown as a dashed line for comparison, with x0=0.3.
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�xi�t�� = x0 + �xi,0 − x0�e−ht/2�N−1�, �55�

and we see explicitly that the expected overall fraction of
each variant in the population is conserved, just as in the
single-speaker case:

�x�t�� = x0. �56�

Although we could write time-dependent equations for
higher moments, they are much more complicated. Instead
we now turn to the stationary distribution.

B. Stationary distribution

In the absence of production biases, the stationary distri-
bution is one in which all speakers’ grammars contain only
one variant. This is similar to the situation for a single
speaker, only we should note that �except in the special case
of h=0, which is equivalent to the single-speaker case� equi-
librium is only reached when all the speakers have the same
variant. Since �x�t�� is conserved by the dynamics, we have
once again that the weight under the �-function peaks is
equal to the initial mean frequency of the corresponding vari-
ants within the entire community. In the next subsection, we
shall investigate the relaxation to this absorbing state of fixa-
tion.

When production biases are present, we expect an ex-
tended stationary distribution with a mean given by �54� in

the t→� limit. The second moments can be calculated by
multiplying Eq. �48� by xi

2 and xixj, i� j, integrating, and
using the fact that the probability current vanishes at the
boundaries, just as in the derivation of Eq. �49�, except that
in this case there is no time derivative. Using the symmetry
of the speakers we find that

�R + h +
1

2T
	�xi

2�* − �m1 +
1

2T
	�xi�* − h�xixj�* = 0,

�57�

��N − 1�R + h��xixj�* − �N − 1�m1�xi�* − h�xi
2�* = 0,

�58�

where the asterisk denotes the steady state. Solving gives

�xi
2�* =

m1

R � �N − 1�Rm̃ + h��N − 1�m1 + m̃�

�N − 1�RR̃ + h��N − 1�R + R̃�
	 �59�

and, for i� j,

�xixj�* =
m1

R � �N − 1�m1R̃ + h��N − 1�m1 + m̃�

�N − 1�RR̃ + h��N − 1�R + R̃�
	 �60�

where m̃=m1+1/2T, R̃=R+1/2T. For the overall proportion
of the first variant

�x2�* =
1

N2�
i,j

�xixj�* =
m1

NR
� � �N − 1�Rm̃ + �N − 1�2m1R̃ + Nh��N − 1�m1 + m̃�

�N − 1�RR̃ + h��N − 1�R + R̃�
	 , �61�

where the sum on the first line now includes the case i= j.
When there are only two variants, the single speaker sta-

tionary distribution �46� is a 
 distribution. The marginal
distribution for each speaker in the multiple speaker model is
modified by the presence of other speakers, but still the dis-
tribution is peaked near the boundaries when the bias is
small, and changes to a centrally peaked distribution as the
bias becomes stronger. We therefore propose that it is appro-
priate to approximate the stationary marginal distribution as
a 
 distribution with mean and variance just calculated. That
is,

P*�xi� 

��	 + 
�
��	���
�

xi
	−1�1 − xi�
−1, �62�

where

	 = 2Tm1� �N − 1�R + hN

�N − 1�R + h
	 , �63�


 = 2T�R − m1�� �N − 1�R + hN

�N − 1�R + h
	 . �64�

Unlike in �46� the parameters of the distribution now depend
on h and N as well as mv. The marginal distribution is well
fitted by this 
 distribution for a broad range of h and N. An
example is shown in Fig. 11, where the distribution calcu-
lated from simulations is compared to an approximating 

distribution.

When N and h are small, the transition from concave to
convex shape occurs at approximately the same values of the
mutation parameters as it does in the single-speaker case,
when m1=m2=0.5. As N or h becomes larger, the transition
value becomes smaller. For sufficiently large N or h, indi-
vidual speakers will retain significant proportions of both
variants, even for very small �but still nonzero� bias param-
eter values; the distribution will be centrally peaked unless
m1 and m2 are extremely small. This can be seen in Fig. 12,
which shows the value of m=m1=m2 at which the transition
from concave to convex takes place for a range of h and
three different population sizes. This critical value of m, de-
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noted by mc, is the value of m for which the parameters 	
and 
 in Eq. �62� pass through 1.

The stationary distribution of x �the proportion of variant
1 throughout the population of speakers� on the other
hand, does not always have a simple shape. Consider first
when the mutation strength is fixed at some small value:
m1=m2�0.5. When h is small some speakers can be at op-
posite ends of the interval. For small N, this leads to a mul-
tiply peaked distribution, with each peak representing a cer-
tain fraction of the speakers being at one end. As h gets
larger, the tendency to be at the same end increases, and the
central peaks dwindle, leaving the familiar double-peaked
distribution. This only holds so long as the mutation strength
remains below the critical value mc, as shown in Fig. 12. For
sufficiently large h or for larger N, the distribution becomes
centrally peaked.

When m1 and m2 are above the critical value, or if N is
sufficiently large that the central-limit effect becomes signifi-
cant, the stationary distribution of x is smooth and single
peaked for all values of h, becoming more bell shaped the
higher the value of N in accordance with the central limit
theorem. Here we find that both 
 and Gaussian distributions
calculated from the mean and second moment fit well—see
Fig. 13. The value of h has only a small effect, altering the
width of the distribution slightly.

C. Fixation times

In the calculations of Sec. VIII A we established that a
single speaker’s mean converges to the overall community’s
mean more slowly as the number of speakers is increased.
When production biases are absent, we can also anticipate
that the time to reach fixation also increases with the number
of speakers. This fact can be established analytically by re-
casting the description of the system in terms of the coales-
cent, a technique which can be found in �43,44�. We will not
give the details of this calculation here, but merely state the
result, which is derived in �45�. The mean time to extinction
of the second variant, which corresponds to fixation of the
first is

�2�X�0�� =
1 − x0

x0
�N�N − 1�

2h
F�X�0�� − TN2ln�1 − x0�	 .

�65�

Note that the second term is of the same form as �39�. The
function F depends on the initial distribution of speakers’
grammars. For example, when all the speakers start with the
same initial proportion �xi�0�=x0" i�, which we call the ho-
mogeneous initial condition,

F�X�0�� = �
m=1

N−1
x0

m

m
−

x0

N

1 − x0
N−1

1 − x0
, �66�

while when M =Nx0 of the speakers start with xi=1 and
N−M start with xi=0 �so that the overall proportion is still
the same�, which we call the inhomogeneous initial condi-
tion,

F�X�0�� = �
m=1

M �M

m
	

�N

m
	

1

m
. �67�

These are perhaps the extreme possibilities for the initial
distribution, and in fact the values of F differ little between
them. For large N they are virtually the same and both are
well approximated by

FIG. 11. The single-speaker marginal stationary distribution
when N=10, h=0.2, and m1=m2=0.2. Bars are the distribution ob-
tained from simulation, while the curve is the approximate 

distribution.

FIG. 12. The mutation value mc at which the stationary prob-
ability distribution function of xi changes from a concave to a con-
vex distribution, as a function of h for N=2, 10, and 100. Mutation
is assumed symmetric: m1=m2.

FIG. 13. The average speaker stationary distribution when
N=10, h=0.2, and m1=m2=0.2. Bars are the distribution obtained
from simulation, while the curve is the approximate 
 distribution.
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F�X�0�� � − ln�1 − x0� �68�

which gives the much simpler expression for the mean time
to extinction of the second variant

�2 � −
1 − x0

x0
ln�1 − x0��N�N − 1�

2h
+ TN2	 �69�

that appeared in �44�. Figure 14 shows the mean time to
fixation at each boundary ��1 and �2� for a system with only
20 speakers. Already the times for inhomogeneous �solid
lines� and homogeneous �dashed lines� are very similar. No-
tice also the dramatic increase in the fixation time as h be-
comes smaller. To calculate the mean time to fixation of any
variant, we take a weighted average of the time for each
variant:

� = x0�2 + �1 − x0��1

� − ��1 − x0�ln�1 − x0� + x0ln�x0���N�N − 1�
2h

+ TN2	 .

�70�

D. Quasistationary distribution en route to fixation

An interesting feature of the fixation time is that it in-
creases quadratically with the number of speakers N,
whereas the moments were seen to relax with time constants
that grow linearly with N. These results relate to the qualita-
tive behavior observed in simulation. One notices the initial
condition relaxes quickly to one in which speakers have a
distribution that persists for a long time until a fluctuation
causes the extinction of a variant. The nature of this distri-
bution depends on the size of h. When it is very small, the
attraction of speakers to the boundaries is stronger than that
to the other speakers. Therefore, some speakers dwell near
the x=0 boundary, others near the x=1 boundary with only a
few being in the central part of the interval at any one time.
Here it is evident that for fixation to occur, one needs all
speakers near one of the boundaries thus explaining why the
fixation time is so much longer than the initial relaxation. For
larger h, the attraction between speakers overcomes the ten-

dency to approach the boundaries, so the speakers tend to
dwell in the interior of the interval.

We shall concentrate on the quasistationary distribution
with h small. We obtain this using a mean-field argument,
expected to be valid for large N. As usual when applying
mean-field theory we focus on one constituent, in this case
speaker i. We then replace the term involving all the other
speakers in the Fokker-Planck equation by an average value.
Thus Eq. �48�, in the unbiased case, becomes

�

�t
P = �N − 1�G�

i
� 1

2T

�2

�xi
2xi�1 − xi�	� + h

�

�xi
�xi − �x��	P .

�71�

The solution to this equation is separable, so we write
P�X , t�=�ip�xi , t�, and find the Fokker-Planck equation for a
single speaker to be

�

�t
p�xi,t� = �N − 1�G� �

�xi
�hxi − h�x��	�

+
1

2T

�2

�xi
2xi�1 − xi�	p�xi,t� . �72�

After a rescaling of time t→ �N−1�Gt, and dropping the in-
dex i, this is exactly the Fokker-Planck equation for a single
speaker with bias and two variants, with the identification
h→R and h�x�→m1. At large times we have from �55� that
�xi�=x0=xi,0. Therefore we expect that at large times the so-
lution of the Fokker-Planck equation will be identical to that
of the single-speaker Fokker-Planck equation with bias, as
long as the identification R→h and m1→hx0 is made. In
particular, we expect the marginal probability distribution for
a single speaker to have a stationary form which is a 
 func-
tion of the form �46� with V=2 and 2Tm1→2Thx0 and
2Tm2→2Th�1−x0�, that is,

punfixed�xi� �
����

������� − ��
xi

�−1�1 − xi���−��−1, �73�

where

� = 2Th and � = 2Tx0h . �74�

This distribution is shown in the lower half of Fig. 15 for the
case of h small. In the upper half of this figure is the equiva-
lent distribution calculated from numerical simulations, and
it can be seen that the shape is maintained over time �the
numerical result only includes realizations that do not fix in
the time period specified�, and that it is very similar to the
beta approximation.

If we assume that the rate at which any individual real-
ization of the process becomes fixed is constant, the number
of unfixed realizations exhibits an exponential decay with a
time constant � given by �70�. That this is the case is sug-
gested by Fig. 16 in which the number of unfixed realizations
as a function of time obtained from Monte Carlo simulation
is compared with this prediction. This then suggests for the
full time-dependent distribution the expression

FIG. 14. The mean time to fixation to each boundary as a func-
tion of h, for a system with 20 speakers and x0=0.3. The solid
curves are for an inhomogeneous initial condition, and the dashed
curves are for a homogeneous initial condition. The lower curves
are �2 and the upper curves are �1.
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p�xi,t� �
����

������� − ��
xi

�−1�1 − xi���−��−1e−t/�. �75�

In Fig. 17 we compare this approximation, shown in the
lower half, with numerical results in the upper half �where
now the numerical results include realizations that fix during
the time interval�.

IX. DISCUSSION AND CONCLUSION

In this paper we have cast a descriptive theory of lan-
guage change, developed by one of us �3–5�, into a math-
ematical form, specifically as a Markovian stochastic pro-
cess. In the resulting model there are a set of N speakers who
each have a grammar which consists of V possible variants
of a particular linguistic structure �a lingueme�. In the initial
phase of formulating the process, two speakers out of the N
are picked out at every time step and allowed to communi-
cate with each other. The utterances they produce modify the
grammar of the other speaker—as well as their own—by a
small amount. Another two speakers are then picked at the
next time step and allowed to communicate. This process is
repeated, with two speakers i and j being chosen at each time
step with a probability Gij. This matrix therefore prescribes
the extent of the social interaction between all speakers.

After many time steps the initial grammar of the speakers
will have been modified in a way which depends on the
choice of the model parameters. The above formulation, that
is, in terms of events which happen at regular time steps, is
ideal for computer simulation. Of course, the model is sto-
chastic, and so many independent runs have to be carried
out, and the results obtained as averages over these runs. The
randomness in the model enters in two ways: in the choice of

FIG. 15. The distribution of speaker grammar values over a time
series, for �top� an ensemble of realizations �none of which reach
fixation during the period shown� and �bottom� the analytic 
 dis-
tribution approximation, both for N=20 and h=0.2.

FIG. 16. The number of realizations remaining unfixed at time t,
with initially 1000 realizations. Dashed curve is 1000e−t/� where �
is given by Eq. �70�.

FIG. 17. The distribution of speaker grammar values over a time
series, for �top� an ensemble of realizations �including fixing real-
izations� and �bottom� the analytic 
 distribution approximation,
both for N=20 and h=0.2.

BAXTER et al. PHYSICAL REVIEW E 73, 046118 �2006�

046118-16



speakers i and j and in the choice of the variants spoken by
a speaker in a particular utterance. We showed that it is pos-
sible to take the time interval between steps to zero, and
derive a continuous time description of the process. When
this procedure is carried out, the model takes the form of a
Fokker-Planck equation.

The whole approach to language change we have been
investigating was conceived as an evolutionary process, with
linguemes being analogous to genes in population genetics.
So it is perhaps not surprising that the mathematical struc-
tures encountered when quantifying these theories are so
similar. However, as stressed in Sec. VI, there are important
differences. The most direct correspondence with population
genetics is when there is a single speaker and where the
number of tokens is large. Furthermore, at each time step the
update rule �6� applies in the linguistic model, whereas the
equivalent rule in the population genetics case would be
x��t+�t�=K−1n��t� corresponding to a completely new genera-
tion of K individuals being created through random mating.
Thus the genetic counterpart is formally equivalent to letting
�→�, and giving the previous grammar �x��t�� zero weight
compared to the random element �n��t��; for the actual lin-
guistic problem, � is small, and it is x��t� that has by far the
greater weight. Taking �→� and reinstating the factor of T
through a rescaling of the time, does indeed give the popu-
lation genetics result �25�, with K taking the role of T. Al-
though the limit �→� is the precise correspondence, the
scaling choice �15�–�17� which we use also gives a math-
ematical, if not a precise conceptual, equivalence between
the genetic and linguistic models.

Our analysis of the Fokker-Planck equation began by con-
sidering the case of only one speaker. This is far from trivial,
and as we have seen is formally equivalent to standard mod-
els of population genetics. This has the advantage that many
results from population genetics may be taken over essen-
tially without change. Remarkably, the Fokker-Planck equa-
tion is in this case exactly soluble. This is due to the simple
way in which the equation for V variants is embedded in the
�V+1�-variant equation. A similar simplification holds when
calculating quantities such as the probability that a given
number of variants coexist at time t or the mean time to the
nth extinction of a variant: they can be related by induction
to the solution of the two-variant problem.

While the exact solution of the mathematically nontrivial
single-speaker case gives considerable insights into the ef-
fects caused by the bias �or mutation� term �19� and the
diffusion term �20�, to understand the evolution of variants
across a speech community it is clearly necessary to include
the third term �21� in the Fokker-Planck equation. In Sec.
VIII we carried out an analysis of the model with this term
included in the simplest situation where all speakers were
equally likely to talk to all other speakers �Gij independent of
i and j� and where all speakers gave the same weight to
utterances from other speakers �hij independent of i and j�.
Just as for the single-speaker case, there are distinctions be-
tween the situations where there is bias and where there is no
bias. While the presence of a bias �through the term �19��
makes the model more complicated, its behavior is in fact
simpler than if there were no bias: the distribution of the

probability of a variant in the population tends to a stationary
state which can be approximately characterized as a 

distribution. As we have seen, when no bias is present, inter-
actions between the speakers causes them all to converge
relatively quickly to a common marginal distribution
which persists for a long time until a fluctuation causes the
same variant to be fixed in all grammars. Under a mean-
field-type approximation, valid in the limit of a large number
of speakers, we established the form of this quasistationary
distribution.

In this paper, we have been primarily concerned with the
mathematical formulation of the theory and beginning a pro-
gram of systematic investigation of the model. We believe
that we have laid the foundations for this study with the
analysis we have presented, but clearly there is much left to
do. In order to make connection with observational data we
will need to consider more realistic social networks through
which linguistic innovations may be propagated—i.e., non-
trivial Gij, as in Fig. 1. Bearing in mind the proposed impor-
tance of social forces that described in Sec. II, it will also be
necessary to include of speakers or groups of speakers which
may have more influence on language change than others—
i.e., nontrivial Hij. Many of these cases will only be ame-
nable to analysis through computer simulations, but it should
be possible to obtain some analytical results with, for ex-
ample, a simplified network structure. However, it is clear
that even without any further developments, some of our
results can be generalized. For instance, by proceeding as in
Sec. VIII A, we can find that for general Gij and hij,

d�xi�
dt

= �
j�i

Gijhij��xi� − �xj�� , �76�

and therefore that the rate of change of �x�=�i�xi� is given
by

d�x�
dt

= �
i

�
j�i

Gij�hij − hji��xi� . �77�

Therefore �x� is conserved not only when h is constant, as
demonstrated in Sec. VIII A, but also when hij is symmetric.
In fact, the result can be further generalized. If we define the
net “rate of flow” by

�i = �
j�i

�Gijhij − Gijhji� , �78�

then Eq. �77� may be written as

d�x�
dt

= �
i

�i�xi� . �79�

So as long as �i=0 for all i, which may be thought of as a
kind of detailed balance condition, then the overall mean is
conserved. Now if the mean is conserved, then the probabil-
ity of a particular variant become fixed is simply its initial
value. Therefore no matter what the network or social struc-
ture, if � jGijhij =� jGijhji for all i, then this structure will
have no effect on the probability of fixation.

It is clear, however, that in general the further develop-
ment of the model will necessitate the investigation of dif-
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ferent models of social structures and of generational change,
in order to approach realistic models of actual sociolinguistic
situations. A priori investigation of networks used to model
social structures will provide evidence of the time scales for
the fixation of a novel variant in a society, and the behavior
of different generations, using a set of linguistic variants.
These results can be compared to empirical data of language
use, where available, beginning with the relatively simple
social cases of new dialect formation and possibly creole
formation �compare �46��. As an example of this we have
recently begun to analyze the model in the context of the
formation of the New Zealand English dialect, for which a
reasonable amount of data is available �42,47�. In particular,
these give some information about the frequencies with
which different linguistic variables were used by the first
generations of native New Zealand English speakers and
their ultimate fate in the formation of today’s conventional
dialect. Predictions from our model relating to extinction
probabilities and time scales will play an important part in
better understanding this data. More widely, we hope that the
work presented here will underpin many subsequent applica-
tions and form a basis for a quantitative theory of language
change.
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APPENDIX: DERIVATION OF THE FOKKER-PLANCK
EQUATION

In this appendixwe derive the Fokker-Planck equation
�18�. The method is standard, and involves the calculation of
the so-called jump moments for the process under consider-
ation �29,30�. Since we have already sketched some of the
background in Sec. V A for the single-speaker case, let us
begin with this simpler version of the model.

Our starting point is the Kramers-Moyal expansion

�P�x�,t�
�t

= − �
v=1

V−1
�

�xv
�	v�x��P�x�,t��

+
1

2 �
v=1

V−1

�
w=1

V−1
�2

�xv � xw
�	vw�x��P�x�,t�� + ¯ .

�A1�

Here the ellipsis represents higher-order terms �which will
turn out not to contribute� and the 	 functions are the jump
moments

	v�x�� = lim
�t→0

��xv�t��
�t

, �A2�

	vw�x�� = lim
�t→0

��xv�t��xw�t��
�t

, �A3�

where �xv�t��xv�t+�t�−xv�t�. The Kramers-Moyal expan-
sion itself is derived from the assumption that the stochastic
process is Markov together with a continuous-time approxi-
mation �29,30�.

In the single-speaker case we have already established a
form for �xv�t� �see Eq. �7�� and since the mean of the mul-
tinomial distribution �2� is simply

�nv� = Txv�, �A4�

a manipulation as in Eq. �12� and a rescaling as in Eqs. �15�
and �16� leads to

��xv� = �
w�v

�mvwxw − mwvxv���t� + ¯ , �A5�

where the ellipsis indicates higher orders in �t. Therefore,
from Eq. �A2�, 	v�x��=�w�v�mvwxw−mwvxv�. To find the sec-
ond jump moment, we need to consider ��xv�t��xw�t��, but
from Eq. �7� we see that this is already O��2�, that is, O��t�.
Therefore any terms in the matrix M which vanish as
�t→0 do not contribute at this order. Since all off-diagonal
entries and diagonal entries apart from 1 are of this form, M
may be replaced by the unit matrix everywhere in this
second-order term, i.e., any bias can be neglected. Using Eq.
�7� and Eq. �A4� with x�� replaced by x�, we obtain

��xv�xw� =
1

T2 ��t���nvnw� − �nv��nw�� + ¯ . �A6�

Now the variance of the multinomial distribution is given by

�nvnw� − �nv��nw� = �Txv��1 − xv��, v = w ,

− Txv�xw� , v � w ,
� �A7�

and so once again replacing x�� by x� and using the definition
of the jump moment �A3�, we obtain Eq. �14�. All higher
jump moments vanish, since from Eq. �7� we see that the
third and higher moments of �x� are at least O���3, that is, at
least O��t�3/2. Therefore the Kramers-Moyal expansion is
truncated at second order and we obtain the Fokker-Planck
equation

�P�x�,t�
�t

= − �
v=1

V−1
�

�xv
�
w�v

�mvwxw − mwvxv�P�x�,t�

+
1

2T
�
v,w

�2

�xv � xw
�xv�v,w − xvxw�P�x�,t� . �A8�

The derivation in the case of the full model with N
speakers follows similar lines. Here X�t�= �x�1�t� , . . . ,x�N�t��
is an N�V−1�-dimensional grammar variable whose compo-
nents we have written as xiv. It is sometimes convenient
to replace the two labels �i ,v� by the single one I with
I=1, . . . ,N�V−1�. Then Eqs. �A1�–�A3� in the derivation of
the one-speaker case can be taken over by replacing v and w
by I= �v , i� and J= �w , j�, respectively. In the full utterance
selection model, there is randomness both in the choice of
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speakers that interact in the interval �t following time t and
in the tokens they produce.

The jump moments are derived from averages of products
of the quantity �xI=xI�t+�t�−xI�t�. From �5� we find the
analog of the one-speaker result �7� to be

�xiv =
�

1 + ��1 + Hij�

niv

T
− xiv + Hij�njv

T
− xiv	� �A9�

for a speaker i given that speakers i and j have already been
chosen as the interacting pair in the time step at t.

The mean change in the grammar variable ��xiv� can then
be determined by knowing that the mean of the multinomial
distribution �2� is simply

�niv� = Txiv� . �A10�

Then

��xiv� =
�

1 + ��1 + Hij�
�xiv� − xiv + Hij�xjv� − xiv��

= �� �
w�v

�Mvwxiw − Mwvxiv� + Hij�xjv − xiv�	
+ O��HM,�2H,�2M� �A11�

in which the second equality was arrived at from the first by
using �3�. Similarly, from the variance of the multinomial
distribution

�nivnjw� − �niv��njw� = �Txiv� �1 − xiv� �, v = w, i = j ,

− Txiv� xiw� , v � w, i = j ,

0, i � j ,
�
�A12�

one finds

��xiv�xjw� =
�2

T
�xiv�v,w − xivxiw� + O��2H,�2M,�3�

�A13�

if i= j, and ��xiv�xjw�=0 otherwise.
In order to have both a deterministic and stochastic part to

the Fokker-Planck equation, we need both ��xiv� and
��xiv�xiw� to be proportional to �t in the limit �t→0. One
can verify that the only way this can be arranged is if one
rescales the variables as in Eqs. �15�–�17�, a choice which
was motivated in more detail in Sec. V A. Then, only the
leading terms in Eqs. �A11� and �A13� remain in when one
takes the limit �t→0 in Eqs. �A2� and �A3�. Furthermore, all
higher jump moments vanish, as also discussed in Sec. V A,
and the sum in Eq. �A1� terminates at the second moment.
After substituting the jump moments into �A1� and averaging
over all possible pairs of speakers, weighted by the interac-
tion probabilities Gij, one finally arrives at the Fokker-Planck
equation given in the main text, Eq. �18�.

�1� D. L. Hull, Science as a Process: An Evolutionary Account of
the Social and Conceptual Development of Science �University
of Chicago Press, Chicago, 1988�.

�2� D. L. Hull, Science and Selection: Essays on Biological Evo-
lution and the Philosophy of Science �Cambridge University
Press, Cambridge, U.K., 2001�.

�3� W. Croft, Explaining Language Change: An Evolutionary Ap-
proach, Longman Linguistics Library �Pearson Education,
Harlow, U.K., 2000�.

�4� W. Croft, Selection 3, 75 �2002�.
�5� W. Croft, in Different Models of Linguistic Change, edited by

O. N. Thomsen �John Benjamins, Amsterdam, in press.�
�6� G. Baxter, R. A. Blythe, and A. J. McKane, e-print q-bio.PE/

0508045.
�7� J. L. Bybee, Phonology and Language Use �Cambridge Uni-

versity Press, Cambridge, U.K., 2001�.
�8� J. Pierrehumbert, Lang. Speech 45, 115 �2003�.
�9� J. Ohala, in The Production of Speech, edited by P. F. Mac-

Neilage �Springer, New York, 1983�, pp. 189–216.
�10� J. A. Hawkins, Efficiency and Complexity in Grammars �Ox-

ford University Press, Oxford, 2004�.
�11� R. Keller, On Language Change: The Invisible Hand in Lan-

guage �Routledge, London, 1994�.
�12� W. Croft �unpublished�.
�13� W. Labov, Principles of Linguistic Change, Vol. 1: Internal

Factors �Basil Blackwell, Oxford, 1994�.
�14� L. Milroy, Language and Social Networks �Basil Blackwell,

Oxford, 1987�.
�15� W. Zuidema, Ph.D. thesis, University of Edinburgh, 2005 �un-

published�, http://www3.isrl.uiuc.edu/~junwang4/langev/
localcopy/pdf/zuidema05phd.pdf

�16� W.S.-Y. Wang and J. W. Minett, Trends Ecol. Evol. 20, 263
�2005�.

�17� W. Enard, M. Przeworski, S. E. Fisher, C. S. L. Lai, V. Wiebe,
T. Kitano, A. P. Monaco, and S. Pääbo, Nature �London� 418,
869 �2002�.

�18� M. H. Christiansen and S. Kirby, Language Evolution, Studies
in the Evolution of Language �Oxford University Press, Ox-
ford, 2003�.

�19� S. Kirby, Artif. Life 8, 185 �2002�.
�20� P. Niyogi and R. C. Berwick, Linguistics Philos. 20, 697

�1997�.
�21� M. Tomasello, Constructing a Language: A Usage-Based

Theory of Language Acquisition �Harvard University Press,
Cambridge, MA, 2003�.

�22� P. Niyogi, in Variation and Universals in Biolinguistics, edited
by L. Jenkins �Elsevier Press, 2004�.

�23� M. A. Nowak, N. L. Komarova, and P. Niyogi, Science 291,
114 �2001�.

�24� N. L. Komarova and M. A. Nowak, J. Theor. Biol. 221, 445
�2003�.

�25� K. Kosmidis, J. M. Halley, and P. Argyrakis, Physica A 353,
595 �2005�.

�26� F. A. Matsen and M. A. Nowak, Proc. Natl. Acad. Sci. U.S.A.

UTTERANCE SELECTION MODEL OF LANGUAGE CHANGE PHYSICAL REVIEW E 73, 046118 �2006�

046118-19



101, 18053 �2004�.
�27� D. M. Abrams and S. H. Strogatz, Nature �London� 424, 900

�2003�.
�28� J. W. Minett and W.S.-Y. Wang �unpublished�.
�29� H. Risken, The Fokker-Planck Equation �Springer, Berlin,

1989�.
�30� C. W. Gardiner, Handbook of Stochastic Methods, 3rd ed.

�Springer, Berlin, 2004�.
�31� R. A. Fisher, The Genetical Theory of Natural Selection �Clar-

endon Press, Oxford, 1930�.
�32� S. Wright, Genetics 16, 97 �1931�.
�33� J. F. Crow, Nature �London� 409, 771 �2001�.
�34� J. F. Crow and M. Kimura, An Introduction to Population Ge-

netics �Harper and Row, New York, 1970�.
�35� R. Bürger, The Mathematical Theory of Selection, Recombina-

tion and Mutation �Wiley, Chichester, 2000�.
�36� P. A. P. Moran, Proc. Cambridge Philos. Soc. 54, 60 �1958�.
�37� B. Charlesworth, D. Charlesworth, and N. H. Barton, Annu.

Rev. Ecol. Syst. 34, 99 �2003�.

�38� Handbook of Mathematical Functions, edited by M.
Abramowitz and I. Stegun �Dover, New York, 1974�.

�39� M. Kimura, Evolution �Lawrence, Kans.� 9, 419 �1955�.
�40� M. Kimura and T. Ohta, Genetics 61, 763 �1969�.
�41� W. Labov, Principles of Linguistic Change, Vol 2: Social Fac-

tors �Basil Blackwell, Oxford, 2001�.
�42� P. Trudgill, New-Dialect Formation: The Inevitability of Clo-

nial Englishes �Edinburgh University Press, Edinburgh, 2004�.
�43� J. F. C. Kingman, J. Appl. Probab. 19A, 27 �1982�.
�44� N. Takahata, Genetics 129, 585 �1991�.
�45� R. A. Blythe �unpublished�.
�46� S. S. Mufwene, R. Chaudenson, B. Kachru, L. Milroy, S.

Poplack, and M. Silverstein, The Ecology of Language Evolu-
tion �Cambridge University Press, Cambridge, U.K., 2001�.

�47� E. Gordon, L. Campbell, J. Hey, M. MacLagan, A. Sudbury,
and P. Trudgill, New Zealand English: Its Origins and Evolu-
tion �Cambridge University Press, Cambridge, U.K., 2004�.

BAXTER et al. PHYSICAL REVIEW E 73, 046118 �2006�

046118-20


