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We describe two distinct approaches to obtaining the cloud-point densities and coexistence properties of
polydisperse fluid mixtures by Monte Carlo simulation within the grand-canonical ensemble. The first method
determines the chemical potential distribution ���� �with � the polydisperse attribute� under the constraint that
the ensemble average of the particle density distribution ���� match a prescribed parent form. Within the
region of phase coexistence �delineated by the cloud curve� this leads to a distribution of the fluctuating overall
particle density n, p�n�, that necessarily has unequal peak weights in order to satisfy a generalized lever rule.
A theoretical analysis shows that as a consequence, finite-size corrections to estimates of coexistence properties
are power laws in the system size. The second method assigns ���� such that an equal-peak-weight criterion
is satisfied for p�n� for all points within the coexistence region. However, since equal volumes of the coexisting
phases cannot satisfy the lever rule for the prescribed parent, their relative contributions must be weighted
appropriately when determining ����. We show how to ascertain the requisite weight factor operationally. A
theoretical analysis of the second method suggests that it leads to finite-size corrections to estimates of
coexistence properties which are exponentially small in the system size. The scaling predictions for both
methods are tested via Monte Carlo simulations of a polydisperse lattice-gas model near its cloud curve, the
results showing excellent quantitative agreement with the theory.
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I. INTRODUCTION AND BACKGROUND

Examples of polydisperse fluids arise throughout soft
matter science, notably in colloidal dispersions, polymer so-
lutions, and liquid crystals. Typically the polydispersity of
such systems is manifest as a variation of some attribute such
as particle size, shape, or charge, which is customarily de-
noted by a continuous parameter �. The state of the system is
then quantifiable in terms of a distribution ���� measuring
the number density of particles of each �; more precisely,
����d� is the number density of particles in the range
� . . .�+d�. As such, one can regard the system as a mixture
of an infinite number of particle “species,” each labeled by
the value of � �1�.

As has long been appreciated, polydispersity can pro-
foundly influence the thermodynamical and processing prop-
erties of complex fluids �2,3�, making a clear elucidation of
its detailed role a matter of both fundamental and practical
importance. In particular the phase behavior of polydisperse
systems is known to be considerably richer in both variety
and character than that of corresponding monodisperse sys-
tems �see �4� for a recent review�. The source of this richness
can be traced to fractionation effects: at coexistence a poly-
disperse fluid described by some initial “parent” distribution,
��0����, may divide into two or more “daughter” phases
��a����, a=1,2 , . . ., each of which differs in composition
from the parent. The sole constraint is that the volumetric
average of the daughter distributions equal the parent distri-
bution.

The occurrence of fractionation can engender dramatic
alterations to phase diagrams. Insight into the essential fea-
tures of polydisperse phase behavior can be gained by first

considering the simpler case of a binary mixture of two com-
ponents whose densities we denote �1 and �2 �see also Ref.
�4��. Let us confine our attention to the case of a “dilution
line” in the full phase diagram, in which we vary �at some
fixed temperature� the overall �parent� density n�0�=�1

�0�

+�2
�0�, while holding constant the ratio of the densities,

�1
�0� /�2

�0�—i.e., the overall composition. These parents thus lie
on a straight line through the origin in the ��1 ,�2� plane, as
shown in Fig. 1�a�. So-called cloud points �marked A and B�
delimit the range of parent densities for which phase coex-
istence occurs on the dilution line. At cloud point A, the
low-density parent phase coexists with an infinitesimal vol-
ume of a high-density daughter phase A�, while at cloud
point B, the parent coexists with an infinitesimal volume of a
low-density daughter phase B�. Owing to fractionation, how-
ever, the compositions �1 /�2 of the incipient daughter or
“shadow” phases differ in general from that of the parent: the
shadow points �A� and B�� lie off the dilution line.

For parents on the dilution line but with densities n�0�

intermediate between the cloud points �e.g., point C of Fig.
1�b��, two daughter phases �C� and C�� form. These phases
occupy finite fractional volumes, and their compositions
�1

�a� /�2
�a� �a=1,2� both differ from that of the parent. More-

over, the daughter phase compositions vary nontrivially as
one scans the parent density n�0� between the cloud points.
Consequently and as a result of the lever rule �1−���i

�1�

+��i
�2�=�i

�0� �i=1,2�, the fractional volumes 1−� and � of the
two phases will in general depend nonlinearly on the parent
density. To fully specify the coexistence properties, one thus
needs to determine the variation of � and �1

�a� /�2
�a� �a=1,2�

with n�0�.
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Turning now to the fully polydisperse case, we consider a
family of parent density distributions ��0����=n�0�f �0���� with
fixed �normalized� particle size distribution f �0���� and vary-
ing overall number density n�0�, the value of which param-
etrizes the location of the system on the dilution line. Repeat-
ing the above considerations for a range of temperatures, one
finds that the familiar liquid-vapor binodal in the density-
temperature plane of a monodisperse fluid splits into cloud
and shadow curves �4�, as shown schematically in Fig. 2.
These mark, respectively, the density of the onset of phase
separation and the density of the incipient �shadow� phase
�5�. The critical point no longer occurs at the maximum of
the cloud curve but at the intersection of the cloud and
shadow curves �at which both coexisting phases are identi-
cal�. One interesting implication of this is that even at the
critical temperature, liquid-vapor coexistence can occur pro-

vided the overall parent density is less than its critical value.
In this work we address the problem of accurately deter-

mining the phase coexistence properties or, more specifically,
cloud-point densities of polydisperse mixtures via Monte
Carlo �MC� simulation. In a monodisperse system, this task
is relatively straightforward �see, e.g., Ref. �6��, because the
properties of the coexisting phases at a given temperature are
the same for all values of the overall density lying within the
coexistence region �as delineated by the binodal�. By con-
trast, for multicomponent fluids, the occurrence of fraction-
ation implies �as we have seen� that the compositions of the
phases vary across the coexistence region �i.e., as a function
of the parent density n�0�� and one needs to consider carefully
the repercussions of this for simulation estimates of coexist-
ence properties.

The layout of our paper is as follows. In the following
section we describe the principal computational issues aris-
ing from fractionation and detail two distinct strategies for
locating cloud-point densities within a grand-canonical en-
semble framework. The finite-size scaling properties of both
methods are analyzed theoretically by generalizing to poly-
disperse systems scaling concepts developed originally in the
context of monodisperse phase equilibria. The predictions for
both methods are tested in Sec. III via detailed MC simula-
tions of a polydisperse lattice-gas model. We conclude in
Sec. IV by comparing and contrasting the relative merits of
the two approaches.

II. METHODS FOR CLOUD-POINT DETERMINATION

We shall work within the grand-canonical ensemble
�GCE�, where the set of chemical potentials ���� is the con-
trol parameter, while the particle density n and the particle
size distribution are fluctuating variables. �Temperature is as-
sumed held fixed and not written explicitly.� The existence of
two phases at given chemical potentials can be detected from
the presence of two separate peaks in the probability distri-
bution of the fluctuating order parameter, which we take to
be the number density n. The fractions x�1� and x�2� of prob-
ability mass under each of the two peaks of p�n� �i.e., the
peak weights� are related to the pressure difference between
the two phases as discussed below. For an infinitely large
system, where the GCE and canonical ensemble become
equivalent, x�1� and x�2� would correspond to the fractions of
overall system volume occupied by each phase—i.e., 1−�
and � as defined above.

The density distributions ��1���� and ��2���� of the two
phases can be assigned by averaging only over configura-
tions belonging to either peak of p�n�. These are related to
the overall average density distribution by

�̄��� = x�1���1���� + x�2���2���� , �1�

which can be regarded as a generalized form of the lever
rule.

In order to estimate the cloud point for the set of dilution
line parents ��0����=n�0�f �0����, one needs to find the value
ncl

�0� of the parent density n�0� at the boundary of the coexist-
ence region, where the fractional volume of one of the

FIG. 1. Schematic representation of the fractionation behavior
of a binary fluid mixture, as described in the text. The parent den-
sities �1

�0� and �2
�0� are constrained to the dilution line �dashed

curve�. The curved line indicates the boundary of the coexistence
region; straight tielines connect coexisting phases. �a� At the cloud
points A and B, the parent phase coexists with the shadow phases
A� and B�, respectively. �b� For a general parent density C in the
coexistence region, two daughter phases C� and C� form. The par-
ent lies on the tieline connecting them; this is the geometrical rep-
resentation of the lever rule.

FIG. 2. A schematic fluid-fluid phase diagram for a polydisperse
fluid, showing temperature T against density; the cloud curve gives
the parent density n�0� where phase separation first occurs while the
shadow curve records the density of the incipient coexisting phases.
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phases—say, x�2�—drops to zero. Of course, a value of ex-
actly zero is obtained only in the thermodynamic limit of
infinite system size; the key question is how a reliable esti-
mate of ncl

�0� can nevertheless be extracted from data for
finite-sized systems.

A. Method A

In method A, proposed originally in �7�, we take the natu-
ral step of tuning the chemical potentials ���� such that �̄���
from Eq. �1� equals directly the parent ��0���� and measure
the density dependence of the peak weight ratio r=x�2� /x�1�.
�We do not detail here the algorithm for tuning the ����,
which is explained in �8�.� To understand how r will depend
on the parent density n�0� and system size, note that r is
determined by the difference in the grand potential; this is
directly related to the pressure P so that r=exp�Ld��P� for
large system size L. Here d is the dimension of space, �
=1/kBT, and �P= P�2�− P�1�. The criterion for stable coexist-
ence is that r must have a finite value as L→�; the pressure
difference then has to scale as �P�L−d except in the special
case r=1 �see method B below�.

For finite L, metastable coexistence can still be observed
in the density region n�0�	ncl

�0� where �P=O�1�, but here r
will be exponentially small. To estimate ncl

�0� from data for a
finite system, we use the fact that �P is O�1� and scales
linearly with n�0�−ncl

�0� to leading order near the cloud point,
and hence ln r�Ld�n�0�−ncl

�0��. This applies for n�0�	ncl
�0�,

while above ncl
�0� one has ln r=O�1�. Thus the derivative

�� /�n�0��ln r should drop from an O�Ld� plateau to O�1�
around n�0�=ncl

�0�. In the second derivative −�� /�n�0��2 ln r
this drop will manifest itself as a peak, whose position serves
as an estimate for ncl

�0�. We next derive the finite-size scaling
of the location and shape of this peak.

Our starting point is the rigorous result of �9� for first-
order phase transitions driven by some field h. The authors of
�9� showed that, if the transition is at h=0, the free energy
density around this point is given by

f�h� = − L−dkBT ln�e−Ld�f�1��h� + e−Ld�f�2��h�� �2�

up to exponentially small corrections of order
L−d exp�−const
L�, which can be neglected. The function
f �1��h� �f �2��h�� is the thermodynamic free energy of the first
�second� phase in the regime where that phase is stable;
elsewhere—i.e., for values of h where the phase would be
only metastable in an infinite system—it can be chosen as
the continuation with smooth derivatives �up to at least third
order �9�� of the stable free energy. Intuitively, the approxi-
mation �2� tells us that the partition function close to the
phase transition can be obtained by adding the partition func-
tions of the coexisting �stable or metastable� phases. For-
mally, it is valid only for values of �h��L−1, but in fact we
will be interested in rather smaller values of h�L−d ln L
where the smaller phase is not yet exponentially suppressed,
so that this is not a restriction.

For a polydisperse system within the GCE, the analog of
the field h is the set of chemical potentials. Conceptually it is
easiest to think first of particle sizes discretized into a large

but finite number M of bins; there are then M chemical po-
tentials and densities which we write as vectors � and �,
respectively. More precisely, we take � as the difference of
the chemical potentials from those at the desired cloud point,
so that the latter is located at �=0. Assuming that the result
�2� can be extended to situations with M field variables in-
stead of a single one we have then for the negative grand-
potential density, which is nothing but the pressure,

P��� = L−dkBT ln�eLd�P�1���� + eLd�P�2����� . �3�

The single-phase pressures expanded to second order in �
read �a=1,2�

P�a���� = Pcl + �cl
�a� · � +

1

2
� · ��a�� . �4�

Here Pcl is the coexistence pressure at the cloud point, which
is common to both phases, while �cl

�1� and �cl
�2� are the �vectors

of� particle densities at the cloud point; �cl
�1� is then equal

to the parent density vector �cl
�0� at the cloud point, while �cl

�2�

is the shadow density vector. The matrices ��a�=����a�

=����P�a� are the susceptibilities of the particle densities to
chemical potential changes, again evaluated at the cloud
point.

Taking the chemical potential derivative of Eq. �3� we
have, for the overall density vector,

�̄ =
��P�1����eLd�P�1���� + ��P�2����eLd�P�2����

eLd�P�1���� + eLd�P�2����
. �5�

This is of the form �1� with the natural correspondences
��a����=��P�a����, x�1�=1/ �1+r�, x�2�=r / �1+r�, and ln r
=Ld��P�2����− P�1�����. We now expand near the transition,
keeping terms to the same order as in Eq. �4�. With the
abbreviations ��cl=�cl

�2�−�cl
�1� and ��=��2�−��1� and using

that method A imposes �̄=n�0�f�0�, where f�0� is the normal-
ized parent size distribution, one has

n�0�f�0� = �cl
�1� + ��1�� +

r

1 + r
���cl + ���� , �6�

ln r = Ld���� · � + � · ���� . �7�

After eliminating �, these relations determine the depen-
dence of r on n�0� that we seek. To make progress, we antici-
pate that the peak in the second derivative −�� /�n�0��2 ln r
will occur at a point where r=O�L−d�. From Eq. �7� this
implies that �=O�L−d ln L� is also small. Keeping only
leading-order terms in the small quantities r and � and using
that �cl

�1�=ncl
�0�f�0�, our previous relations then become

�n�0� − ncl
�0��f�0� = ��1�� + r��cl, �8�

ln r = Ld���cl · � . �9�

Solving the first equation for � and inserting into the second
then gives
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ln r = Ld���cl · ���1��−1��n�0� − ncl
�0��f�0� − r��cl� . �10�

To absorb the numerical coefficients and make the parent
density dimensionless we define

z = arLd, �11�

ñ�0� = bLd�n�0� − ncl
�0�� + ln�aLd� , �12�

with

a = ���cl · ���1��−1��cl, �13�

b = ���cl · ���1��−1f�0�. �14�

The relation �10� then becomes just

ñ�0� = z + ln z . �15�

Differentiating with respect to ñ�0� gives �� /�ñ�0��ln z= �z
+1�−1 and −�� /�ñ�0��2 ln z= �z+1�−2z�� /�ñ�0��ln z=z�z+1�−3.
Bearing in mind that ln z and ln r differ only by a constant,
we therefore arrive at a universal large-L scaling form for our
second-derivative plot:

− � �

�ñ�0��2

ln r =
z

�1 + z�3 , ñ�0� = z + ln z , �16�

which is parametrized by z. All dependence on system details
is encoded in the two numerical constants in the definition
�12� of the scaled parent density. The curve �16� has its peak
at z=1/2 so that, from Eq. �11�, r is O�L−d� in the region of
interest as anticipated in our derivation. The position of the
peak on the horizontal axis is ñ�0�= �1/2�−ln 2. The scaling
�12� then implies that the cloud point estimated from the
peak position has finite-size corrections of the order of
L−d ln L, while the peak width and height scale as L−d and
L2d, respectively. We will find these scalings, and indeed the
full shape of the master curve �16�, confirmed in the simula-
tion data shown below.

B. Method B

While the scaling analysis described above provides a de-
tailed picture of the finite-size corrections that arise when
using method A to estimate the location of the cloud point, it
would clearly be desirable from a practical point of view to
reduce these corrections and ideally make them exponen-
tially small in system size. For monodisperse phase coexist-
ence, this is achieved by measuring the densities of the co-
existing phases at the special point where the peaks of p�n�
have equal weights x�1�=x�2�=1/2—i.e., r=1. At this point
the pressure difference vanishes. In method A, on the other
hand, the pressure difference is �P=L−dkBT ln r�L−d ln L,
and this causes the relatively large finite-size corrections.
This observation suggests that one should also consider co-
existing phases with r=1 in the polydisperse case. Of course,
one can then no longer require the parent density distribution
to equal the overall density distribution in the system, since
the latter is an equal mixture of ��1���� and ��2����. One has
to allow, more generally,

��0���� = �1 − ����1���� + ���2���� , �17�

where � is a parameter to be determined; the cloud point is
estimated as the parent density at which � reaches zero. The
results do, however, have physical meaning also for other
values of � in the range 0���1: they then provide esti-
mates of the properties of the coexisting phases for parent
densities n�0� within the coexistence region, with � estimating
the fractional volume of the second phase. In simple cases,
the cloud point ncl

�0� could in fact be estimated by linearly
extrapolating a few measurements of ��n�0�� to �=0. In a
monodisperse system this would be exact since ��n�0�� varies
strictly linearly across the coexistence region. In the polydis-
perse case, on the other hand, ��n�0�� is a nonlinear function
and can exhibit very significant curvature near the cloud
point �4,7,10�. Linear extrapolation is then unreliable and
best avoided in favor of direct determination of the density
n�0� where �=0, as explained above.

We will call this approach “method B.” In practice, it is
implemented as follows. A parent density is fixed, along with
a trial value of �. The chemical potentials are then tuned until
the density distributions of the two coexisting phases satisfy
Eq. �17�. One measures r=x�2� /x�1�; if this deviates from r
=1, � is adapted �e.g., using a bisection method� and the
process is iterated until r=1 to numerical accuracy. If a so-
lution with 0	�	1 is found, we are in the coexistence re-
gion. The parent density is then reduced and the process
repeated until � drops to zero or no solution with positive �
can be found.

It is straightforward to adapt the above scaling analysis to
show that, within method B, finite-size corrections are in-
deed exponentially small. The condition �17� with �=0 to-
gether with r=1 gives, as the analogs of Eqs. �8� and �9�,

�n�0� − ncl
�0��f�0� = ��1�� , �18�

0 = Ld���cl · � . �19�

Solving the first equation and inserting into the second gives

0 = �n�0� − ncl
�0��Ld���cl���1��−1f�0�, �20�

which �barring accidental vanishing of the constant factor,
equal to b from Eq. �14�� is satisfied only for n�0�=ncl

�0�.
Finite-size corrections therefore arise only from terms that
we had discarded from the outset in our analysis; these are
exponentially small. Note that in a practical implementation
it is important that � is determined to high accuracy; indeed,
the analysis above assumes that there is no error in the value
of �. It is easy to see that, if instead � was found only with an
accuracy of O�L−d�, then finite-size corrections of the same
order as in method A arise.

To summarize, method B is algorithmically a little more
involved than method A because it requires for each parent
density an “inner loop” over �, but compensates for this by
producing much smaller finite-size corrections. This it
achieves by forcing coexisting phases to have identical pres-
sures. The parameter � has to be introduced to ensure that the
parent distribution is still obtained as an uneven mixture of
the two phases. Note that this is a peculiarity of the polydis-
perse case: no such parameter is necessary for monodisperse
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systems since the properties of the coexisting phases are the
same everywhere within the coexistence region. In a poly-
disperse scenario, on the other hand, the coexisting phases do
change �4�, and so it is important that the mixing proportions
appropriate to the chosen parent density be maintained.

III. APPLICATION TO A POLYDISPERSE
LATTICE-GAS MODEL

A. Model definition

In order to test the predictions for the finite-size scaling
properties of the two methods detailed above, we have per-
formed a systematic Monte Carlo simulation study of a
lattice-gas model for a polydisperse fluid. The choice of a
lattice-based rather than a continuum model was made on the
grounds of computational tractability: it permits the study of
a larger range of system sizes than is feasible for continuum
models. We do not expect the scaling predictions for the
cloud-point estimates to be affected by the presence, or oth-
erwise, of a lattice.

Our polydisperse lattice-gas �PLG� model is defined
within the grand-canonical ensemble by the Hamiltonian

H = − 	
ij,�,��

���ci���cj���� − 	
i,�

����ci��� . �21�

Here � is the particle “species,” whose chemical potential is
����, while ci��� is the number of particles of species � at
site i, for which we impose a hard-core constraint such that
	�ci���=0 or 1. The instantaneous density distribution fol-
lows as ����=L−d	ici���, with d=3 in the simulations re-
ported below; i runs over the sites of a periodic lattice, i
=1, . . . ,Ld, assumed cubic in this work. The sum in the first
term on the right-hand side of Eq. �21� similarly runs over all
pairs i and j of nearest-neighbor sites, as well as over all
combinations of � and ��.

For a study of this model under conditions of fixed poly-
dispersity, one requires knowledge of the chemical potential
distribution ���� corresponding to some prescribed form of
the ensemble-averaged density distribution �̄���. In the con-
text of method A, one tunes ���� such that �̄���=��0����,
while for method B one simultaneously tunes ���� together
with the parameter � to satisfy Eq. �17� and the equal-peak-
weight criterion for p�n�. Such tuning can be efficiently
achieved by the combination of a nonequilibrium Monte
Carlo procedure and histogram extrapolation techniques, as
has been described previously elsewhere �8�.

We have studied the dilution-line properties for a parent
distribution having the Schulz form

f �0���� =
1

Z!
�Z + 1

�̄
�Z+1

�Z exp
− �Z + 1

�̄
��� . �22�

The mean value of the distribution �̄ defines the unit length,
while the parameter Z controls the width of the distribution.
We fixed the latter to be Z=50, resulting in a dimensionless
degree of polydispersity:


 �

�� − �̄�2

�̄
=

1

Z + 1

� 14 % . �23�

Lower and upper cutoffs were imposed on the distribution at
�=0.5 and 1.4, respectively, and the distribution was normal-
ized accordingly.

B. Simulation results

A determination of the critical-point parameters for the
PLG model using well-established finite-size scaling meth-
ods �6� found the critical temperature to be located at
�nc

�0� ,Tc�= (0.521�1� ,1.171�1�) in reduced units. This is to be
compared with the critical parameters of the monodisperse
�Ising� lattice gas �0.5, 1.127955� �11�. Thus the inclusion of
polydispersity of the form �21� is seen to raise both the criti-
cal temperature and the critical density. Moreover, it splits
the liquid-gas binodal into well-separated cloud and shadow
curves �cf. Fig. 2� in a manner similar to that occurring in
continuum fluid models for which polydispersity affects the
interparticle interaction strength as well as its range �7,12�.
As a consequence, the critical point lies below the maximum
of the cloud curve and phase coexistence can be observed
even at T=Tc, provided that n�0�	nc

�0�.
In view of this we have adopted the critical temperature as

a convenient reference point and have studied coexistence
along the dilution line ��0����=n�0�f �0���� for fixed T=Tc.
This involved performing a series of MC runs starting from
the critical density and reducing n�0� in a stepwise fashion.
Multiple histogram reweighting techniques were employed
to estimate the chemical potential distribution at each succes-
sive step, while use of multicanonical preweighting tech-
niques �13� ensured that both coexisting phases were effi-
ciently sampled in the course of each simulation run �see
Ref. �12� for a fuller account of this procedure�.

The dilution line was scanned in this manner for lattices
of sizes L=10,12,15,18,21 using both methods A and B.
The GCE simulations directly yield the form of p�n� corre-
sponding to either case. For method A, one observes �Figs.
3�a� and 3�b�� that as n�0� is reduced from its critical-point
value, the peaks in p�n� separate, while the valley between
them deepens. This is accompanied by a gradual transfer of
weight from the liquid to the gas peak. We extract the ratio of
the peak areas at a given n�0� from p�n� via

r�n�0�� =

�
n�n*

p�n�dn

�
n	n*

p�n�dn

. �24�

Here n* is a convenient threshold density intermediate be-
tween vapor and liquid densities, which we take to be the
location of the minimum in p�n�.

The form of p�n� obtained using method B is shown in
Fig. 3�c� for a selection of values of n�0�. Here, by virtue
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of the appropriate tuning of the parameter �, the vapor and
liquid peaks maintain equal weights throughout the coexist-
ence region. The estimate of the ratio of fractional phase
volumes is obtained simply as r�=� / �1−��. We use the sub-
script � here to distinguish this quantity from the probability
mass ratio r as extracted from Eq. �24�, the latter being more
directly related to the pressure difference between the phases
as explained above.

In Fig. 4, we plot the dependence of r on parent density
n�0� as obtained from method A for the various system sizes
we have studied, alongside the results for r� from method B.
The curves for method A �thick lines� show a strong L de-
pendence within the metastable coexistence region which
borders the cloud point at small n�0�. As n�0� is increased,
however, and the cloud point is approached, the curves cross
over to their L-independent limit values in the coexistence
region.

Looking in more detail at the finite-size scaling properties
of the curves for r�n�0�� from method A, the analysis of Sec.
II A shows that the cloud-point region is associated with a
peak in the second derivative −�� /�n�0��2 ln r. In Fig. 5 we
plot this quantity for the various systems sizes studied. Su-
perimposed on each plot is a suitably scaled form of the
predicted universal master curve �16�. The nonuniversal
scale factors for the height and width of the master curves
implicit in the fitting shown are plotted in the insets against
the predicted scaling variables L2d and L−d, respectively �cf.
Sec. II A�. Clearly there is good agreement with the predic-
tions for both the general shape of the peak and the scaling
of its width and height. Some discrepancies between the ob-
served and measured peak shapes are apparent on the low-
density side, well away from the peak maximum, particularly
for the smaller system sizes. These are presumably attribut-
able to the breakdown of the validity of the linear expansion
in the density difference used in the derivation of Eq. �16�.

FIG. 3. �a� Estimates of the form of p�n� for a selection of
values of n�0� within the liquid-vapor coexistence region as obtained
from the GCE simulation data produced by method A. The associ-
ated estimates of r are, in order of decreasing n�0�, r
=0.4483,0.2682,0.1643,0.0901,0.0379. �b� The distributions for a
selection of small values of n�0� displayed on a logarithmic scale. �c�
The corresponding estimates of p�n� produced by method B �for
which the peak weight ratio is constrained to unity�. The associated
estimates of r� are, in order of decreasing n�0�, r�

=0.4158,0.2411,0.1477,0.0822,0.0335, 0. All the plots refer to
system size L=15.

FIG. 4. The value of r as estimated from method A �labeled
thick curves� and of r� from method B �unlabeled, thin curves�;
both are plotted against parent density n�0�. The inset shows in
greater detail the results for method B in the vicinity of the cloud-
point density. Estimates of the statistical errors of the procedure
were obtained via a block analysis. The errors for the smallest and
largest system size are indicative of the statistical uncertainty of our
results.
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The estimates of r��n�0�� deriving from application of
method B, as shown in Fig. 4, exhibit a qualitatively differ-
ent behavior. As the density is increased from the cloud
point, one observes a rapid, near-vertical increase in ln r�

from a large negative value �where r� is essentially zero� to
values of O�1�. There is only a weak dependence of this
behavior on the system size �see the Inset of Fig. 4�. Within
this method the cloud-point density can thus be directly read
off as the lowest density at which an equal-peak-weight so-
lution exists to the numerical procedure described in Sec.
II B. We note that, as expected, r from method A and r� from
method B approach each other for parent densities well
within the coexistence region.

Figure 6 compares for the two methods the finite-size be-
havior of the cloud-point density estimates. In the case of
method A, the estimate for a given L derives from the posi-
tion of the peak in the second-derivative plot �Fig. 5�. Figure
6 confirms that �as predicted� these estimates deviate from
their limiting value by a correction O�L−d ln L�. A least-
squares fit yields ncl

�0�=0.202 66�12� as the best estimate of
the cloud-point density �see also the inset�. In the case of
method B, the cloud point is estimated as the lowest value of
n�0� for which an equal-peak-weight solution for p�n� can be
found. The finite-size corrections to this estimate are ex-
pected to be exponentially small in the system size, and our
results �Fig. 6�b�� are consistent with this, yielding a cloud-
point estimate ncl

�0�=0.2028�1�. Indeed the corrections appear
to be so small that even for the smallest system size studied
�L=10� the estimate of the cloud-point density obtained us-
ing method B deviates from the limiting value by just 0.5%.
This compares with a relative deviation of approximately
10% for method A.

IV. CONCLUSIONS

Summarizing, we have presented and tested two distinct
finite-size scaling strategies for estimating the coexistence

properties and cloud points in polydisperse fluids within a
grand-canonical ensemble framework. Both are, of course,
also directly applicable to multicomponent mixtures of many
discrete species. The first approach, “method A,” takes the
natural step of constraining the ensemble average of the den-
sity distribution ���� to match the prescribed parent form.
However, in order to satisfy the lever rule, this necessarily
leads to unequal peak weights in the order-parameter distri-
bution function p�n�. For systems of finite size, this trans-
lates to a finite-pressure difference between the coexisting
phases, which in turn engenders finite-size corrections to es-
timates of the cloud-point density which are powers of the
system size.

The second approach, “method B,” strictly imposes equal
peak weights for p�n� and, hence, pressure equality in sys-
tems of finite size. The coexistence properties of the desired
parent are obtained by appropriately weighting the relative
contributions of the coexisting phases to the overall density
distribution in such a way that the lever rule is satisfied. We

FIG. 5. Points show the estimated second derivative
−�� /�n�0��2 ln r obtained within method A. The solid lines superim-
posed on these data points are scaled fits of the form �16�. The
insets show the L dependence of the peak width and height plotted
in terms of the predicted scaling variable and accompanied by a
least-squares fit.

FIG. 6. Finite-size scaling of the cloud-point estimates deriving
from methods A and B. �a� The data for both methods are plotted
against the predicted scaling variable for method A. The dashed line
is a least-squares fit to the estimates from method A, and the inset
shows a magnified view of the region of large L. �b� The estimates
deriving from method B, plotted against L−d exp�−�L� with �
=8.988
10−3. Except where error bars are shown, statistical uncer-
tainties are smaller than the symbol sizes.
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have detailed how to determine this weight factor operation-
ally and shown that method B has finite-size corrections to
the coexistence properties which are exponentially small in
the system size. As such and notwithstanding the need to
determine the phase weighting factor �, method B is clearly
superior to method A. It can be regarded as a generalization
to multicomponent mixtures of the well-known equal-peak-

weight criterion �9� developed in the context of monodis-
perse systems by Borgs and co-workers.
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