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We experimentally study the synchronization and the emergence of leader-follower dynamics in two time-
delayed mutually coupled fiber ring lasers. We utilize spatiotemporal representations of time series to establish
the roles of leader and follower in the synchronized dynamics.
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The synchronization of physical, chemical, and biological
systems has been of great interest in the study of dynamical
systems. Many examples of the synchronization of low-
dimensional systems are to be found in recent texts �1�.
However, it is often very difficult to discern changes in dy-
namical patterns and synchronization of high-dimensional
coupled systems. High-dimensional systems that exhibit dy-
namics on multiple time scales are prevalent in nature, and it
is now possible to acquire large data sets with suitable de-
tectors, but the tools for analysis of such complex dynamics
are still being developed. For example, when two mutually
delay-coupled systems synchronize, they may exhibit a sym-
metry breaking through which one of the system leads �and
the other lags� the dynamics, by a time equal to the coupling
delay �2�. Determining who leads the dynamics in that case
is a very challenging task. Recent studies have attempted to
develop and use statistical measures for this purpose �3�.

We illustrate these difficulties with the time series shown
in Figs. 1�a� and 1�c�, which correspond to the dynamics of
two mutually coupled ring lasers for two different coupling
strengths �. The individual ring lasers are time-delayed dy-
namical systems, and in this experiment they are coupled to
each other through the mutual injection of light between the
cavities �see the description of the experimental setup
below�. Each laser is capable of very high-dimensional
dynamics �4�. The time series in Fig. 1�a� are not synchro-
nized, while those in Fig. 1�c� display clear synchronization
with an offset, but it is hard to determine which laser leads
the dynamics.

In this paper, we propose a technique for analyzing this
question in terms of a space-time representation of time-
delayed dynamical systems �5�. Such a representation is
shown in Fig. 2. Each plot represents 1 ms of data sampled
at 1 ns intervals; they are, thus, compact visual representa-
tions of the system’s dynamical patterns. Our ability to rep-
resent the data spatiotemporally comes from the round-trip
periodicity of the laser and the fixed detector position using
the Taylor hypothesis �6�. The Taylor hypothesis allows us to

express a measurement made in the laboratory frame as a
function of the value of the measurement in the rest frame of
the traveling object, as long as the detector is at a fixed
location. In our case, the photodetector measures the inten-
sity at a fixed location in the ring and the traveling objects
are patterns of intensity fluctuations. Using the speed of light
and the periodicity of the ring cavity, we can map each
round-trip time back onto its spatial position on the ring. The
rows, or round-trips, are stacked on top of each other to
create the space-time plot. Therefore, the x axis represents
the normalized spatial position around the ring cavity and the
y axis represents the number of the round-trip of the light
around the cavity. The color coding represents normalized
intensity fluctuations of the light. Changes that occur over
many tens of round-trips become obvious in this representa-
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FIG. 1. Intensity time series for approximately two round-trips
of two mutually coupled fiber ring lasers. Laser 1 is the thick line
and laser 2 is the thin line. �a�, �b� The experimental and numerical
time series, respectively, for coupling strength, �=0.114%. The
time series are not synchronized. �c�, �d� The experimental and
numerical time series, respectively, for �=1.7%. The time series are
synchronized with a 45 ns offset. The arrows represent where the
time series line up with a 45 ns offset in either direction.
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tion. A comparison between the spatiotemporal representa-
tions of the uncoupled �Figs. 2�a� and 2�b�� and strongly
coupled �Figs. 2�c� and 2�d�� lasers reveals dramatic pattern
changes between both regimes. In particular, the patterns in
Figs. 2�c� and 2�d� are synchronized with an offset to be
determined. In the rest of this paper, we describe the appli-
cation of the spatiotemporal representation of the high-
dimensional dynamics to perform quantitative analyses
of the synchronization and emergence of leader-follower
dynamics.

Our erbium-doped fiber ring lasers �EDFRLs� each con-
sist of 17 m of erbium-doped fiber, the active medium, and
29 m of a passive single mode fiber, making the total length
of both cavities 46 m, within 1 cm of each other. Though the
doping density and the lengths of the active media are the
same in both lasers, defects and imperfections in the fiber
make the lasers nonidentical. The EDFRLs are pumped with
identical 980 nm semiconductor lasers at a pump power of
120 mW, corresponding to approximately 1 mW circulating
within each ring. The lasing threshold for both lasers is ap-
proximately 20 mW. An optical isolator is inserted within
each ring cavity to ensure unidirectional propagation within
the rings.

Each laser has a Gould 70/30 fiber-optic evanescent field
coupler that inputs the light from the other laser, and another
identical coupler that outputs the light to the other laser.
They also each contain a Gould 90/10 coupler for monitor-
ing and a Gould 95/5 coupler as an extra port for message
addition. The locations of the ports are shown in Fig. 3. The
ports of the couplers not in use are angle cleaved to ensure
that there are no back reflections and were monitored to
make sure that light was only propagating in the correct di-
rection within the cavities. The length of fiber between each
component is identical for each laser.

The lasers are connected via two injection lines, which
consist of passive single mode optical fiber, one splitter, and
a variable attenuator. In this configuration, we have the abil-

ity to monitor and control the injection amplitude between
the lasers, through the splitter and variable attenuator, re-
spectively, and observe it on an oscilloscope. The coupling
strengths were varied between the lowest resolvable coupling
strength in our system, 0.01%, and 2.28%, over the region in
which the system transitions to synchrony. The coupling
strength of 0%, or uncoupled case, was also studied. The
injection lines are 9 m long, corresponding to a travel time
between the two lasers of approximately 45 ns, and again
they are matched within 1 cm. Injection line lengths of
200 m and 25 km were also tested. In the experiments pre-
sented, the coupling strengths in the two directions are al-
ways equal to each other �symmetric coupling�, though the

FIG. 2. �Color online� Spatiotemporal
representation of the experimental time series;
the color represents intensity. �a� Uncoupled laser
1; �b� uncoupled laser 2; �c� mutually coupled
laser 1, �=2.28%; �d� mutually coupled laser 2,
�=2.28%.

FIG. 3. Experimental setup.
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electric field from each laser undergoes different phase and
polarization changes due to fiber imperfections along their
separate paths. We checked the overall symmetry of the con-
figuration by exchanging the components between the two
lasers, obtaining the same results.

The electric field intensity of each laser is monitored us-
ing a 125 MHz bandwidth photodetector and a 1 G sample/s
digital oscilloscope. The optical spectrum of each laser is
also monitored.

Once above threshold, the uncoupled ring lasers have a
stable output wavelength with small amplitude fluctuations.
The wavelengths of the lasers are tuned with the polarization
controllers to be within 0.1 nm of each other around
1550 nm with a full width at half maximum of approxi-
mately 1 nm. Once the lasers are coupled, they begin to ex-
perience fluctuations in amplitude that are much higher than
those occurring without the coupling. The chaotic fluctua-
tions are repeated, slightly modified, every 220 ns corre-
sponding to one round-trip time of the laser. The amplitude
of the fluctuations as well as the mean output intensity of the
lasers are dependent on the coupling strength. Examples of
intensities corresponding to different coupling strengths are
shown in Fig. 1.

The existence of fluctuations at intracavity time scales
precludes a theoretical description of the lasers in terms of a
mean-field approximation, a usual approach in laser dynam-
ics where the dependence of the laser variables along the
propagation direction is ignored. Instead, we describe the
time evolution of the emitted light intensities by means of a
delay-differential model, which explicitly takes into account
the boundary conditions imposed by the ring cavity. Such
type of modeling has been seen to successfully describe the
experimentally observed dynamics of fiber ring lasers at time
scales smaller than the cavity round-trip time �7�. However,
this model is still a simplification of the laser system. We are
considering only a single polarization mode and do not in-
clude nearly as many degrees of freedom as are present in
the experiment, i.e., the birefringence of the fiber and relat-
edly, the phase fluctuations on both the fastest and slowest
time scales. The model reads �8�,

Et,r�t� = R exp���1 − i��Wt,r + i���Et,r
fdb�t� + �t,r�t� , �1�

dWt,r

dt
= q − 1 − Wt,r�t� − �Et,r

fdb�t��2�exp�2�Wt,r�t�� − 1� , �2�

where the feedback term Et,r
fdb�t� is given by

Et,r
fdb�t� = Et,r�t − �R� + �t,rEr,t�t − �c� . �3�

Et,r�t� is the complex envelope of the electric field, measured
at a given reference point inside the cavity, and Wt,r�t� is the
total population inversion �averaged over the length of the
fiber amplifier�, with subindices t and r denoting the trans-
mitter and receiver lasers, respectively. Time is measured in
units of the decay time of the atomic transition. The active
medium is characterized by the dimensionless detuning �
between the transition and lasing frequencies and by the di-
mensionless gain �= 1

2aLaN0, where a is the material gain, La
is the active fiber length, and N0 is the population inversion
at transparency. The ring cavity is characterized by its return
coefficient R, which represents the fraction of light that re-

mains in the cavity after one round-trip, and the average
phase change ��=2�nLp /	 due to propagation along the
passive fiber of length Lp, with n being the fiber’s refractive
index and 	 being the light wavelength. Energy input is
given by the pump parameter q. A detailed description and
derivation of the model can be found in Ref. �7�.

Spontaneous emission noise within the active medium is
taken into account in �1� by means of the Gaussian white
noise �t,r�t�, chosen to have zero mean and intensity D. A
complete description of spontaneous emission �9� also in-
volves a noise term in the population inversion equation �2�,
but its effect is negligible and has been ignored in what fol-
lows. The feedback term �3� contains two contributions, one
originating from the same laser and delayed by the cavity
round-trip time �R, and another coming from the other laser,
delayed by the flight time between the lasers �c and quanti-
fied by the coupling strength �t,r. However, phase modula-
tion and birefringence defects are not accounted for within
the simulated injection lines. The values of the parameters
common to both transmitter and receiver are �=0.0352,
a=2.03
10−23 m2, N0=1020 m−3, n=1.44, 	=1.55 �m,
La=15 m, Lp=27 m, and D=10−5. The delay times corre-
spond to their experimental values �R=220 ns and
�c=45 ns. �, defined as the ratio of the intensity of the light
in the injection line to the intensity of the light circulating
within the ring into which it is injected, was varied from
1.14
10−4 to 2.2
10−2.

The characteristics of the simulation outputs correspond
well to the experiment. As shown in Fig. 1, the simulation
displays similar short time scale fluctuations that repeat,
slightly modified, each round-trip time. They exhibit the
same ratio of the standard deviation of the fluctuations to the
mean intensity value as the experiment for all but the ex-
treme lowest levels of coupling after the appropriate band-
width filtering to simulate the photodetector. The power
spectrum of the fluctuations in the numerical model is similar
to that of the experiment �results not shown�.

The ability to experimentally resolve the intracavity dy-
namics of this system allows us to use a spatiotemporal rep-
resentation of the intensity to study the synchronization as
shown in Fig. 2. The upper two panels in that figure corre-
spond to the uncoupled case. The lasers show qualitatively
similar dynamics but they are not synchronized. The two
lower panels in the figure show the case when the lasers are
coupled with �=2.28%. There is now much more structure
in the dynamics, and the lasers are synchronized. A careful
look at the plots reveals that the structure in the synchronized
time series is periodic with approximately a 90 ns periodic-
ity, and this periodicity is out of phase for the two synchro-
nized lasers with a 45 ns offset. This periodicity and phase
relationship are seen in both the experiment and the numeri-
cal simulations. This periodicity and phase relationship are
understandable if one considers the travel time between the
two lasers. Since we can resolve the dynamics on a scale
much less than the time it takes the information to propagate
between the lasers, we are able to see the phase relationship
between the output time series. Also, since this phase rela-
tionship corresponds to half of the periodicity, we cannot a
priori determine whether one laser is leading and the other is
following.
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To understand the relationship between the two mutually
coupled lasers, we must determine if a laser leads or follows
in the dynamics. By subtracting the two space-time plots
with an offset to account for the phase relationship, we can
begin to uncover if one of the lasers is leading. This is shown
in Figs. 4�a� and 4�b�, which portray the subtracted experi-
mental space-time plots, offset so that lasers 1 and 2 are
leading, respectively. In this representation, a lack of struc-
ture indicates a good correlation. The appearance and disap-
pearance of a leader and a follower laser can be distinguished
qualitatively, and are indicated by arrows in the plots. How-
ever, this method does not allow us to quantify where leaders
appear. For this, we define the synchronization error as the
difference in intensity between the two chaotic wave
forms taking into account the phase delay, �e�x , t�	
=10
 log���IA�x , t�− IB�x , t−�c���	. The angle brackets denote
time averaging, IA�x , t� and IB�x , t−�c� are the normalized
intensities of the two lasers, and �c is the travel time, or
phase delay. The synchronization error, averaged over a
moving time window equal to half of the round-trip time, is
shown in Fig. 4�c�, where the solid �dashed� line represents
its value if laser 1 �2� is leading the dynamics. We can now
see that for the round-trips, where there is a relatively large
separation between the two synchronization errors, there is a
clear leader in the system, and where the two synchroniza-
tion errors are very close together, there is no distinguishable
leader. This becomes even clearer if we plot the derivative of
the synchronization error as a function of time, as shown in

Fig. 4�d�. We can clearly see that when the extrema of the
derivatives of the synchronization error become out of phase,
the symmetry breaking disappears and then reappears again.
These points are denoted by arrows in Fig. 4�d�. Though this
method does not explain the origin of the spontaneous sym-
metry breaking, it clearly shows where leaders appear in both
the experiment and the numerical simulations. When we av-
erage the synchronization error over the entire 1 ms experi-
mental time series, we find that there neither laser is leading
not lagging more than the other on average, as shown in Fig.
4�e�. The same results were found for the simulations, as
shown in Fig. 4�f�.

We have explored the use of spatiotemporal representa-
tions of time series to analyze the dynamics of mutually
coupled EDFRLs. We use this method to study the synchro-
nization of these lasers experimentally and numerically and
to determine the existence of a leader and a follower laser.
We have determined that neither laser dominates the dynam-
ics on a long-term basis.
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FIG. 4. �Color online� Synchronization error
analysis. �a� and �b� Subtraction of the experi-
mental space-time plots as if lasers 1 and 2 are
leading, respectively. �c� Experimental synchroni-
zation error for �=2.28% as a function of the
round-trip. �d� The derivative of the experimental
synchronization error as a function of the round-
trip. �e� and �f� The synchronization error as a
function of the coupling strength for the experi-
ment and simulations, respectively, with 9 m in-
jection lines. Ten time series are averaged at each
point. The thin line in plots �c�–�f� represents the
synchronization error if laser 1 is leading laser 2,
and the dashed �c�, �d� and thick �e�, �f� curves
are the synchronization error if laser 2 is leading
laser 1. In plots �a�, �b�, �d�, the arrows indicate
the appearance and disappearance of a leader
laser.
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