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Nervous systems under periodic stimuli display rich dynamical states including mode-locking and chaotic
responses, which have been a subject of intense studies in neurodynamics. The bifurcation structure of the
Hodgkin-Huxley neuron under sinusoidal stimulus is studied in detail. The mechanisms of the firing onset and
rich firing dynamics are studied with the help of the codimension-2 bifurcations, which play the role of the
organizing center for myriads of saddle-node, period-doubling, and inverse-flip bifurcations forming the
boundaries of the complex mode-locking structure. This study provides a useful insight into the organization of
similar bifurcation structures in excitable systems such as neurons under periodic forcing.
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I. INTRODUCTION

Dynamical systems with two competing frequencies are
ubiquitous in nature. Examples include forced mechanical
pendula, Belousov-Zhabotinski reactions, and Rayleigh-
Benard convections [1]. Rich dynamical states including
mode-locking and quasiperiodic states have been extensively
studied in these systems involving two competing frequen-
cies [2]. A neuron under periodic stimulus also serves as an
important nonlinear dynamical system with two competing
frequencies: the natural frequency of the neuron and the ex-
ternal forcing frequency. From the nonlinear interaction be-
tween these two frequencies, neurons under periodic stimu-
lus can also exhibit complex dynamical responses including
mode locking, quasiperiodicity, and chaos, which have been
analyzed with the help of well-developed techniques of non-
linear dynamics [3-6].

The bifurcation analysis of the neuron under periodic
stimuli has recently received much attention in connection
with various dynamical phenomena including stochastic
resonance [7-10] and neuroinformation processing [11-14].
The relationship between the stochastic resonance and deter-
ministic bifurcating structure of mode locking has been stud-
ied in diverse ways, and the role of onset bifurcations has
been discussed in the context of optimal noise intensity
[7-10]. In neurosignal processing, it was recently suggested
that the sensory information may also be encoded by tempo-
ral patterns of the neural activity [15]. Diverse temporal fir-
ing patterns including mode-locking dynamics have been
studied in the context of neural information coding. For ex-
ample, the relationship between bifurcations in Lyapunov ex-
ponents and the reliability of neural information has been
actively investigated in the context of neurosignal processing
[11-14].

Rich dynamical responses in the squid giant axon and the
Hodgkin-Huxley neuron model have long served as a para-
digm for the nervous system under periodic stimuli [3-5,16].
Well-controlled experiments have been performed for the
squid giant axon under external periodic stimuli [3-5]. In
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these experiments, a periodic pulse current was injected into
the squid giant axon in natural sea water [4,5] or a sinusoidal
current was injected to the squid giant axon in calcium defi-
cient water [3]. Rich dynamical states including mode-
locking, quasiperiodicity, and intermittency routes to chaos
were investigated in these systems. These dynamical states
have been investigated numerically for the Hodgkin-Huxley
neuron under periodic stimuli [6]. These studies led to the
complex mode-locking structure of firing dynamics involv-
ing various bifurcations including inverse flip, period dou-
bling, and saddle-node bifurcations.

In spite of the wealth of the studies on firing dynamics
and associated bifurcations of the neurons, it was not well
understood how myriads of bifurcations are organized to
form the complex mode-locking structure. In particular, the
bifurcation structures near the firing onset are very compli-
cated, which leads to diverse firing onset mechanisms de-
pending on the parameters of the neuron. In this paper, we
obtain the detailed picture of the organization of cluster of
bifurcation curves near the firing onset. These bifurcations
are computed numerically exactly with the help of continu-
ation algorithms [17,18]. We find that three types of
codimension-2 bifurcation points organize the cluster of bi-
furcation curves near the firing onset. A cusp singularity or-
ganizes two saddle-node bifurcation curves. Another
codimension-2 bifurcation point organizes the period-
doubling, inverse-flip, and saddle-node bifurcations. The
third codimension-2 bifurcation point organizes the period-
doubling, saddle-node, and Hopf bifurcations. These three
types of codimension-2 bifurcation points provide a funda-
mental description of common bifurcation structures near the
firing onset of the Hodgkin-Huxley neuron under sinusoidal
current.

This study is expected to provide a useful insight into
similar bifurcation structures in other excitable systems of
neurons under periodic forcing. Recent theoretical studies
such as the bifurcation analysis focused on integrate-and-fire
neurons, which is the simplest neuron model with spiking
nature, and the relaxation oscillators [19] and in the
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FIG. 1. The membrane potential responses of a Hodgkin-Huxley neuron under external sinusoidal current with A=5 uA/cm? and (a)
=50 Hz and (b) =100 Hz. The profile of the sinusoidal currents is also plotted as dotted curves in the same figure.

FitzHugh-Nagumo neuron [20]. In these studies, the mode-
locking structures in these systems construct Arnold tongue
and bifurcations of the phase boundaries are identified. Our
study of the bifurcation analysis in the Hodgkin-Huxley neu-
ron can provide a canonical bifurcation structure for these
simplified neural systems under periodic forcing.

This paper is organized as follows. The Hodgkin-Huxley
neuron under sinusoidal current is introduced in Sec. II and
order parameter analysis in Sec. III. The bifurcation analysis
of the phase boundaries is performed in Sec. IV. The detailed
analysis near selected areas in the phase diagram is done in
Sec. V. Finally, the meanings and possible applications are
discussed.

I1. HODGKIN-HUXLEY EQUATION

The Hodgkin-Huxley neuron, which was first derived as a
model of the squid giant axon [21], shows typical dynamics
of a real neuron, the spiking behavior and the refractory pe-
riod after a spike, and serves as a paradigm for the spiking
neuron models based on nonlinear conductances of ion chan-
nels. A set of four coupled nonlinear ordinary differential
equations in Hodgkin-Huxley neurons describes the dynam-
ics of action potential generation involving four fundamental
neurodynamic variables of V, m, n, and h. V is the membrane
potential which represents the electric potential across the
neural cell membrane, and m, n, and h are the gating vari-
ables for the ion channels through which ions cross and pro-
duce neural currents:

v

E =l — gNam3h(V_ Vg = gKn4(V_ Vi) —g(V-V)),

dm my(V) —m
i T,(V)
dh ho(V)=h
dt - Th(V) ’

dn n(V)—n
e 1,(V)

s

where 1,,, is the external forcing current injected into the
neuron for stimulation. The parameters gy,, g, and g; are the
maximum conductances for the sodium, potassium, and leak-
age currents, respectively, and Vy,, Vi, and V, are the corre-
sponding reversal potentials. The functions m.(V), h.(V),
and 7n.(V) and the characteristic times 7,(V), 7,(V), and
7,(V) in milliseconds are given in Refs. [21-23]. The de-
tailed parameter values for the Hodgkin-Huxley neuron can
be found in Refs. [21-23].

In the numerical experiments, the sinusoidal current
1,.,=A cos(2mwt) is applied. The range of the amplitude of
the external current, A, is chosen to be 1~5 uA/ cm?, and
the range of the frequency w, 10—200 Hz. A small amount of
the sinusoidal current with a low frequency is chosen to ex-
plore the effect of the maximal interaction between the ex-
ternal periodic forcing and the internal natural frequency.

III. ORDER PARAMETER ANALYSIS

Two membrane potential responses of a Hodgkin-Huxley
neuron under various stimuli are shown in Fig. 1. These neu-
ral responses correspond to mode-locked states, where the
periods of the firings are locked to the period of the external
stimuli in integer ratios. Figure 1(a) corresponds to the 1/1
mode-locking response and Fig. 1(b) to the 1/2 mode-
locking response. To characterize the mode-locked re-
sponses, it is useful to measure the firing rate, which is de-
fined as the average number of spikes per period of driving
stimulus. The firing rate defined here plays the same role
as the rotation number in a typical quasiperiodic problem
of the circle map [24]. The firing rate is generally used as an
important order parameter characterizing the dynamical
states of the neural responses when the periodic stimulus is
applied.

The Hodgkin-Huxley neuron is capable of showing
chaotic dynamics under periodic stimuli due to its highly
nonlinear nature of the ionic conductances. The chaotic
dynamics is characterized by the largest Lyapunov exponent,
which measures the average rate of the exponential
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FIG. 2. Phase diagram of the Hodgkin-Huxley neuron under
sinusoidal stimuli in the parameter space of the forcing amplitude A
and frequency w. The phase boundaries of 1/1, 1/2, and 1/3 mode-
locked states are represented by solid curves and those of nonfiring
state by dotted curves. The chaotic states with positive Lyapunov
exponent are denoted as diamonds. Inset: the detailed phase dia-
gram near =50 Hz and A=1.5 uA/cm?.

separation of two infinitesimally separated orbits. Chaotic
states are identified from the positiveness of the largest
Lyapunov exponent. In this study, the Wolf algorithm is
adopted for the computation of the largest Lyapunov
exponent [25].

Using the numerically computed firing rate and the largest
Lyapunov exponent, the dynamical states are labeled in the
parameter space of the periodic stimuli in an automated fash-
ion. In the automated scan in the parameter space of the
sinusoidal amplitude and the sinusoidal frequency, the last
state after numerical integration is used as an initial condi-
tion for the next integration step at the new parameter value.
This enables the exploration of the region of the hysteresis
systematically. The phase diagram in the parameter space of
the forcing frequency and the forcing amplitude is numeri-
cally explored and is shown in Fig. 2. Rich dynamical states
including various mode-locked states and chaotic responses
are observed. In the figure, solid and dotted curves represent
the phase boundaries of mode-locked states and nonfiring
states, respectively, and diamonds the parameter values for
chaotic states. The ratios n/m denote the mode-locked re-
sponses with two integers m and n.

For a fixed A, the dependence of the firing rate as a
function of the sinusoidal frequency w gives a staircaselike
structure which is similar to the devil’s staircase in the
typical quasiperiodic problem [26]. Each step in the staircase
represents the same rational firing rate associated with the
same qualitative dynamical state. For convenience, we call a
state with a rational firing rate with n/m with integers m
and n as the n/m locked state and the region in the parameter
space with the same rational firing rate as the n/m locked
region. Fundamental mode-locked regions with harmonic
firing rates of 1/m with m=1,2,3 constitute the largest part
of the mode-locked plateaus as in Fig. 2, which is qualita-
tively the same as the experimental results [5]. Nonfiring
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states without action potentials lie outside the mode-locking
structure below the U-shaped firing onset curve. A relatively
large region with hysteresis, which is enclosed by solid
curves and dotted curves in Fig. 2, is also observed due to
the bistability between the mode-locked states and the
nonfiring state [5]. Note that the Hodgkin-Huxley neuron
under the sinusoidal stimulus can start to fire at a much
smaller threshold of 1.5 wA/cm? than that under a constant
current of about 9.8 A /cm? due to the resonance between
the natural frequency and the external forcing frequency
[27].

IV. OVERALL BIFURCATION STRUCTURE

The dynamical properties of mode-locked states and cha-
otic states near phase boundaries are analyzed through the
“Poincaré section.” The Poincaré section for the flow in the
periodically stimulated system is a hypersurface in the phase
space at a specified phase of the stimulus. The Poincaré map
or the first return map is a mapping from one intersection of
the trajectory to the next on the Poincaré surface of section.
In this case, we take stroboscopic snapshots of the trajectory
x(¢) at time t=nT, n=0,1,2,..., where T=27/w. Then the
Poincaré map P is defined by x({n+1)t)=P(x(ns)) and kth

k times

return map Py, is given by Pgy=Po---oP. Mode-locked
states correspond to fixed points in the return map, whose
stability can be studied with the help of the stability analysis.
Within mode-locked regions or the nonfiring region, the dy-
namical structure of trajectories or fixed points in the
Poincaré map does not change as parameters are varied. At
the phase boundaries, the dynamical structure of the trajec-
tories changes qualitatively and the system goes through “bi-
furcations.” The bifurcations at the phase boundary are in-
vestigated through bifurcation analysis of the Poincaré return
map. This bifurcation analysis helps us to understand the
instability mechanism of the stable fixed points in the
Poincaré section and identify bifurcation types of phase
boundaries. The numerical computation of bifurcation curves
with continuation algorithms reveals detailed bifurcation
structures for the phase boundaries.

The bifurcations at the phase boundary of the nonfiring
state occur in three different types: the “inverse flip (IF)
bifurcation,” the “period-doubling (PD) bifurcation,” and
the “saddle-node (SN) bifurcation.” In the case of the SN
bifurcation, or the fold bifurcation, the stable fixed point
disappears through pair annihilation with an unstable fixed
point as the forcing amplitude is increased as in Fig. 3(a).
One of the eigenvalues in the saddle-node bifurcation
becomes +1 at the bifurcation point. In the case of the
IF bifurcation, or the subcritical flip bifurcation, the stable
fixed point changes its stability and becomes unstable when
it meets the period-doubled unstable fixed points as in
Fig. 3(b). One of the eigenvalues for this bifurcation be-
comes —1 at the bifurcation point. In this case, the bifurca-
tion diagram shows a cascade of period-doubling bifurca-
tions, eventually losing its stability at the end of the cascade
as in Fig. 3(c).
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FIG. 3. Bifurcation diagrams in the map at the phase boundary of nonfiring region. (a) Saddle-node (SN) bifurcation at w=44.5 Hz and
(b) inverse flip (IF) bifurcation at w=103 Hz and (c) the period doubling (PD) cascade at w=55 Hz. S, U, and P2 are the stable fixed point,
unstable fixed point, and period-doubled unstable fixed point, respectively.

The numerical determination of the complex bifurcations
has been done with the help of the continuation algorithms
for the three types of bifurcations found in Fig. 4. The bifur-
cation curves in Fig. 4 are found to match the phase bound-
aries obtained from the order parameter analysis in Fig. 2.
We find that in the phase diagram each phase boundary is
composed of more than two types of bifurcations. Thus, at
some points on the phase boundary the bifurcation type
should change, which correspond to the codimension-2 bi-
furcation points. We find that three types of codimension-2
bifurcation points are commonly involved in organizing clus-
ters of bifurcation curves in the phase diagram. In particular,
we focus on the vicinity of four special points near the firing
onset. The transitions from the SN bifurcation to the PD
bifurcation are denoted as diamonds, those from the SN bi-
furcation to the IF bifurcation as rectangles, and those from
the PD bifurcation to the IF bifurcation as circles in Fig. 4.
The detailed bifurcation structures around these points in the
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FIG. 4. Plot of the bifurcation types on the phase boundaries.
Solid curves represent IF bifurcations, dotted curves the PD cas-
cades, and dashed curves the SN bifurcations, respectively. The
symbols represent the special phase points where the transition of
bifurcations is at the phase boundary. Rectangles represent the tran-
sition from SN to IF bifurcations, open diamonds the transition
from PD to SN, and circles the transition from PD to IF bifurcation,
a solid diamond at f~46 Hz another type of transition from PD to
SN bifurcation. Inset: the detailed phase diagram near w=50 Hz
and A=1.5 uA/cm?.

phase diagram are investigated in detail with the bifurcation
analysis and the continuation algorithm, which reveal myri-
ads of underlying bifurcations.

V. DETAILED BIFURCATION ANALYSIS

The typical bifurcation structure around the special points
in the phase diagram denoted by open diamonds in Fig. 4 are
investigated in detail and presented in Fig. 5(a), which cor-
responds to the phase boundary of the nonfiring state
near w=50 Hz. As the forcing amplitude increases, the
nonfiring state loses its stability through the PD cascade for
®>49 Hz or the SN bifurcation for <49 Hz. This SN bi-
furcation structure is created at w=49.6 Hz through the
codimension-2 cusp singularity involving a pair creation of
two SN bifurcation curves. The bifurcation curves of the PD
cascade accumulate to one of the SN bifurcation curves. In
these cases, the bifurcation type of the phase boundary ap-
pears to change from the PD cascade to the SN bifurcation
around w~49 Hz. Detailed bifurcation diagrams are shown
in Figs. 5(b)-5(d). Here, only the stable states are described
for simplicity. The bifurcation of the phase boundary in Fig.
5(b) is of the SN type and that in Figs. 5(c) and 5(d) is of the
PD type. Interestingly, there are two SN bifurcations in Figs.
5(b) and 5(c) and they separate the stable nonfiring state into
two parts. A small stable part is labeled as S in Figs. 5(b) and
5(c).

The typical bifurcation structure around the phase points
represented by circles in Fig. 4 is shown in Fig. 6(a), in
particular close to the phase boundary of the nonfiring state
near w=66 Hz. The nonfiring state loses its stability through
the PD cascade when w<<67.8 Hz or through the IF bifurca-
tion when w>67.8 Hz. This transition occurs when the IF
bifurcation curve meet the curve of the end of PD cascade.
This IF bifurcation curve is created at w~ 65 Hz through a
codimension-2 bifurcation; a PD bifurcation curve disap-
pears, and IF and SN bifurcation curves are created instead.
The bifurcation diagrams are shown in Figs. 6(b)-6(d),
where only the stable states are seen. The bifurcations in
Figs. 6(b) and 6(c) correspond to the PD cascade; however,
that in Fig. 6(d) corresponds to the IF bifurcation.

The bifurcation structures around the phase points repre-
sented by rectangles in Fig. 4 are shown in Fig. 7(a), in
particular close to the phase boundary of the 1/2 mode-
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FIG. 7. Bifurcation structure of the phase boundary of the 1/2 mode-locked state near w=79 Hz. SN represents the saddle-node
bifurcations, IF the inverse flip bifurcation, PD the PD bifurcation, and EPD the end of the PD cascade. The bifurcation diagrams at (b)

=78 Hz, (c) ®=78.6 Hz, and (d) ®=78.8 Hz.

locked state at w=79 Hz. The 1/2 mode-locked state loses
its stability by the SN bifurcations when w>78.5 Hz and by
the PD cascade when 78.5> w>77.5 Hz and the IF bifurca-
tion when w<<77.5 Hz as the forcing amplitude is decreased.
The PD cascade is created from the cascade of bubbling
bifurcations, which correspond to a pair of PD bifurcations
connected in the middle. In Fig. 7(a), the period-4 state is
created from the stable period-2 state by the first bubbling
bifurcation when w~79.24 Hz and the period-8 state by the
second bubbling bifurcation at much smaller frequency [see
Fig. 7(d)]. The stable states with longer periods are created
successively through the sequence of bubbling bifurcations
and eventually are connected as a pair of PD cascades. This
sequence of bubbling bifurcations is shown in the bifurcation
diagrams in Figs. 7(c) and 7(d). Here, only the stable states
are presented for simplicity. The IF bifurcation curve created
near w=78.4 Hz through a codimension-2 bifurcation of the
first PD bifurcation curve disappears and IF and SN bifurca-
tion curves are created instead. The effect of the
codimension-2 bifurcation can be seen in the bifurcation dia-
grams in Figs. 7(b) and 7(c). The bifurcation type of the
phase boundary becomes the IF bifurcation when it meets the
curve of the end of the PD cascade near w~77.5 Hz.
There is another type of a special phase point represented
by a solid diamond in Fig. 4. This bifurcation structure is
found around the edge of the phase boundary of the 1/2
mode-locked state near w~ 46 Hz. This bifurcation structure
involves a “swallow tail,” a codimension-3 phenomenon
consisting of the simultaneous creations of two pairs of cusp

singularities for SN bifurcations. The PD bifurcation curves
accumulate on one of the SN bifurcation curves. Around the
swallow tail near the frequency w~46.8 Hz, the chaotic at-
tractor in the PD cascade suddenly loses its stability when it
encounters an unstable fixed point as in Fig. 8(b). Then the
dynamics jumps to the stable fixed point. This interesting
dynamical phenomenon is called the “boundary crisis.” This
chaotic attractor becomes stable again when the unstable
fixed point disappears through the inverse SN bifurcation
near A~ 1.5988 uA/cm?,

In all these bifurcation diagrams, there appear strips of
stable states, which have a PD cascade at one end and a SN
bifurcation at the other end. You can see an example of the
strips labeled by S in Figs. 5(b) and 5(c). Interestingly, the
length of the cascade becomes shorter at smaller forcing fre-
quency [compare Figs. 5(b) and 5(c)]. The instability mecha-
nisms of the strip of stable states are investigated at the suf-
ficiently small frequency of w=46.75 Hz as in Fig. 9(a). At
this frequency, the PD cascade is shortened so much that the
fixed points with higher periods are always unstable. There-
fore, the stability of the period-1 fixed point becomes most
important in the stability analysis. The occurrence of a very
short branch of the stable fixed point is observed near the
SN bifurcation as denoted by the solid line in Fig. 9(a)
(labeled as B). The other branches of the fixed point are
found to be unstable. At the end of stable fixed points, a new
dynamical state of quasiperiodic oscillations labeled as Q is
observed as in Fig. 9(a), which is created by the Hopf bifur-
cation involving a loss of the stability of the fixed point at
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FIG. 8. (a) Bifurcation structure of the phase boundary of the
1/2 mode-locked state near w=46 Hz. SN represents the saddle-
node bifurcation, PD the PD bifurcation, and EPD the end of the PD
cascade. (b) The bifurcation diagrams at w=46.84 Hz. The dashed
curve represents the unstable fixed point and the others the stable
states.

A=1.55234 uA/cm?. The quasiperiodicity of a new dy-
namical state, which has two incommensurate frequencies,
can be seen as a loop in the Poincaré section. For example,
the bifurcation structure involving the Hopf bifurcation is
shown in Fig. 9(b). The Hopf bifurcation curve meets the
saddle-node bifurcation curve at A. A systematic study of the
Hopf bifurcation will be necessary to complete the bifurca-
tion picture involving quasiperiodic oscillations.

VI. SUMMARY AND DISCUSSION

The neural responses of the Hodgkin-Huxley neuron un-
der sinusoidal forcing have been investigated with the help
of a bifurcation analysis. The order parameters of the firing
rate and the largest Lyapunov exponent give a rough sketch
of the phase diagram for diverse dynamical states, which is
qualitatively in agreement with those from neural experi-
ments [5]. The complex bifurcation structures near firing on-
sets in the parameter space of forcing are explored in detail.
In particular, the instability mechanisms of the phase bound-
aries of fundamental mode-locked states and nonfiring states
have been studied through the bifurcation analysis around
codimension-2 bifurcation points, which organize clusters of
bifurcations including inverse-flip, period-doubling, and
saddle-node bifurcations. The bifurcation types are specified
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FIG. 9. (a) The bifurcation diagram of the phase boundary of the
nonfiring state at w=46.75 Hz. The solid curve (B) represents stable
fixed points, dashed curves (A and D) the unstable fixed points,
dotted curve (C) the destabilized fixed points by Hopf bifurcation,
two thick wavy curves at A>1.5525 uA/cm®> and V
<5.88 uA/cm? the unstable period-doubled states, and Q the qua-
siperiodic state. (b) The bifurcation structure involving the Hopf
bifurcation as a solid curve. The first PD bifurcation is denoted as a
dashed curve, and the SN bifurcation is denoted as a dotted curve.

for these phase boundaries with the help of the continuation
algorithm.

In this paper, the bifurcations are studied near the phase
boundaries of the fundamental mode-locked state and the
nonfiring state. Numerical studies show that the observed
instability mechanisms are also found near phase boundaries
of higher mode-locked states and, therefore, can be quite
general. A natural question is if these instability mechanisms
can be observed in other excitable systems under periodic
forcing. A preliminary study of the FitzHugh-Nagumo neu-
ron, which is one of the simplified neuron models with
excitability, reveals the tongue-shaped mode-locking struc-
ture in the phase diagram, the hysteresis region between the
firing and nonfiring states, and three types of routes to chaos,
qualitatively similar to that of the Hodgkin-Huxley neuron
[28]. These similarities suggest that the bifurcation analysis
in this paper can be applied to a wider class of excitable
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systems under periodic stimuli, including the FitzHugh-
Nagumo neuron.

Recently, the neurons under periodic forcing have been
widely studied in the context of neuroinformation process-
ing. These studies found various mode-locked states and
quasiperiodic states which form Arnold tongues and other
bifurcation structures in the phase diagram. Theoretical stud-
ies such as the bifurcation analysis focused on the integrate-
and-fire neurons and the relaxation oscillators, which are
simplified models of neurons. In contrast with these simple
models, the Hodgkin-Huxley neuron under periodic forcing
shows richer dynamics including hysteresis regions and com-
plex bifurcation structures because of its nonlinearity in the
conduction of ion channels and the rigidity of the natural

PHYSICAL REVIEW E 73, 041924 (2006)

frequencies. The bifurcation analysis of the Hodgkin-Huxley
neuron can provide a canonical bifurcation structure for typi-
cal spiking neurons with refractory periods, which can con-
tribute to the understanding of neurosignal processing in real
neurons.
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