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Enhancement of internal-noise coherence resonance by modulation of external noise

in a circadian oscillator

Ming Yi,' Ya Jia,”"* Quan Liu,' Jiarong Li,' and Chunlian Zhu'?
lDepartment of Physics and Institute of Biophysics, Central China Normal University, Wuhan 430079, China
2CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
3Department of Physics, Jianghan University, Wuhan 430056, China
(Received 12 January 2006; published 24 April 2006)

A circadian oscillator driven by external noise and internal noise has been studied by use of the chemical
Langevin equation method. When the system is near a Hopf bifurcation and driven by internal noise only, it is
found that the coherence resonance phenomenon can be induced by the internal noise. When the system is
simultaneously driven by internal and external noise, it is found that external-noise coherence resonance can be
suppressed by internal noise, while internal-noise coherence resonance can be enhanced by modulation of the
external noise intensity in a certain range of noise intensity. Another interesting result is that the external noise

can regulate the optimal system size when the internal-noise coherence resonance occurs.
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I. INTRODUCTION

Stochastic resonance (SR) phenomena [1], which is the
name coined for the rather counterintuitive fact that the re-
sponse of a nonlinear system to an external periodic signal
may be enhanced through an optimal amount of noise, have
been intensively investigated in a large variety of physical,
chemical, and biological systems [2]. However, as was
shown recently, nonlinear systems with noise can also dis-
play SR-like behavior even without an external periodic sig-
nal [3-8]. This phenomenon has been called autonomous SR
[3] or coherence resonance (CR) [4].

In a biochemical reaction system, it is known that the
external noise and the internal noise are both unavoidable
[9]. Noise in the form of random fluctuations arises in these
systems in one of two ways. The external noise originates
from the random variation of one or more of the externally
set control parameters, such as the rate constants associated
with a given set of reactions. Many previous works have
demonstrated that the coherence resonance phenomenon can
be induced by external noise [3—6], which is called external-
noise coherence resonance (ENCR), while internal noise
comes from the random fluctuations of the stochastic chemi-
cal reaction events [10] in finite-size biochemical systems. It
is generally accepted that the strength of the internal noise is
inversely proportional to the square root of the number of
particles, an indicator of the system size V [11]. Because of
their relatively small system sizes, for cellular or subcellular
reaction systems, internal noise should be taken into account.
The internal fluctuations can be introduced by describing the
chemical reaction system as a birth-and-death stochastic pro-
cess governed by a master equation [12].

Recently, there has been increasing interest in investigat-
ing the influence of internal fluctuations on various pro-
cesses, such as neuron spiking [13], circadian rhythms
[14-17], intracellular calcium signaling [ 18—20], and genetic
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regulation [21,22]. In finite-size biochemical systems, it has
been found that internal noise can induce stochastic oscilla-
tions when the system is subthreshold or suprathreshold, the
stochastic oscillations show the best performance at an opti-
mal system size [17-22], and this phenomenon is called in-
ternal noise coherence resonance (INCR).

The largest amount of work regarding fluctuations has
been focused on the consideration of systems with just one
noise (either internal noise or external one). Recent work [8]
has shown that the ENCR phenomenon can be induced by an
external light control noise in a circadian oscillator model. It
should be pointed out that the intrinsic noise of the system
has not been considered there. However, for cellular or sub-
cellular biochemical reaction systems, internal and external
noise should be considered simultaneously. To our knowl-
edge, only a few such studies have been done so far. In this
paper, based on the reduced circadian oscillator model with
time delay in Drosophila proposed by Smolen er al. [23], we
will study the effects of both internal noise (i.e., the finite
system size) and external noise (i.e., the external light con-
trol noise) on the circadian oscillating system under the su-
prathreshold. One of our goals is to discuss how the interplay
between the externally added noise and the intrinsic noise of
the system occurs.

This paper is organized as follows. In Sec. II, a
mesoscopic stochastic model for the finite-size circadian os-
cillating system is given by virtue of the chemical Langevin
equation. The effects of internal noise on the finite-size cir-
cadian oscillator without external noise have been investi-
gated in Sec. III. In Sec. IV, taking into account the finite-
size circadian oscillating system driven by an external light
control noise, we will study the effects of the interplay be-
tween the externally added noise and the intrinsic noise on
SNR of the circadian oscillating system. We end with con-
clusions in Sec. V.

II. MODEL

The model discussed in this paper is based on a two-
variable model, which is a minimal representation of the
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transcriptional regulation essential for circadian rhythm in
Drosophila [23]. This model contains both a negative feed-
back loop, in which the protein PER binds the protein
dCLOCK and thereby deactivates transcription of the per
gene, and a positive feedback loop, in which activation of
per transcription by dCLOCK results in binding of dCLOCK
by PER and derepression of dclock. The reduced model con-
sists of two differential equations, each with a time delay.
The differential equations for PER concentration P and
dCLOCK concentration L have two terms, one for synthesis
and the other for degradation,

dP(1)
7 =vgR, — kdpP(t), (1)
dL(1)
— =v, R, — ky L(1), 2
dt Ugellse dc ( ) ( )
with
v Kl + Lfree(t - Tl) '
K
: 4)

R, ,=—
* KZ + Lfree(t - 7'2)

with Lg..=(L—P) or zero, whichever is greater. The param-
eter values are 7,=10h, 7=10h, v,=0.5nM h™!, v,
=0.25nMh7!, k,.=0.5h7!, K;=0.3 nM, and K,=0.1 nM.
Light controls the Drosophila clock by triggering PER deg-
radation; the first-order degradation rate constant for PER,
kg, in Eq. (1), increases with light, accordingly. Therefore,
kg is a light-controlled parameter. The concentration of PER
oscillates when 0 <k,,<2.8 h~!. The detailed description of
the model and parameter can be found in [23].

For cellular or subcellular reaction systems, the internal
noise must be considered due to the finite system size. There-
fore, such a deterministic description is no longer valid; a
mesoscopic stochastic model should be considered. Intu-
itively, one can describe such a reaction system as a birth-
death stochastic process governed by a chemical master
equation. Generally, there is no practical procedure to solve
the chemical master equation analytically, but it still provides
the basis for numerical simulation. A well-known method to
handle the master equation is the high precision simulation
algorithm proposed by Gillespie in 1977 [24], which mimics
the reaction dynamics by randomly determining what the
next reaction is and when it will happen. Though this simu-
lation method is high precision because it accounts exactly
for the stochastic nature of the reaction events, it is very time
consuming and hardly applicable if the system size is large.
In addition, the Gillespie algorithm takes time steps of vary-
ing length, which should be modified further in order to
simulate stochastic models with time delays.

An alternative method to study the internal noise is the
chemical Langevin equation (CLE) proposed by Gillespie in
2000 [25]. It is shown there that, whenever two explicit dy-
namical conditions are satisfied, the microphysical premise
from which the chemical master equation is derived leads
directly to an approximate time-evolution equation of the

PHYSICAL REVIEW E 73, 041923 (2006)

per gene dclock gene
~ 9 - o t
delay 1, Sy)nthesis ~ ~ . delay 7, | synthesis
~ . !

PER —l PER |dCLOCﬂ <-— |dCLOCK
protein protein

Heterodimer

@ 4
degradation degradation

FIG. 1. Schematic of model. The dCLOCK protein activates the
synthesis of PER. PER represses its own synthesis indirectly, by
binding and inactivated dCLOCK. dCLOCK also represses its own
synthesis. There are four elementary biochemical reaction processes
marked with (1)—(4) respectively.

Langevin type. The CLE is a rather good approximation for
the master equation if a macro-infinitesimal time scale exists
and can be used to describe a system’s mesoscopic dynam-
ics. The recent works of Hou and co-workers [19-21] have
shown that it is applicable to use the CLE to study the effect
of the internal noise in small biochemical reaction systems
qualitatively. Such a CLE clearly shows how the internal
noise involved in the chemical reactions is related to the
parameter values and the system size, as well as the state
variables that evolve with time.

Following Gillespie’s method [25], we introduce the num-
ber of PER protein as p and the number of dCLOCK protein
as [. Then, the relationship between the concentration and the
number of molecules is P=p/V and L=[/V, where V is the
system size. The biochemical reactions in the circadian
rhythm in Drosophila can be grouped into four elementary
processes for the current mode for a simple description of the
processes as shown in Fig. 1. The corresponding transition
rates for the four processes are described in Table I. Note that
the transition rates a;-; 4 are proportional to the system
size V. The two molecular species S; (i=1,2) considered
here are PER and dCLOCK protein, respectively. See Table I
for the four reaction channels R; (j=1,...,4). The propen-
sity function (i.e., the transition rate) a; for R; and the state-
change vector v, whose ith component v;; is the change in
the number of S; molecules produced by one R; reaction (j
=1,...,4;i=1,2), together completely specify the reaction
channel R;. For S, (i.e., PER), the values of v are v;=1,
V21=—1, V31=0, V41=0; for Sz (i.e., dCLOCK), the values of
vj; are v1,=0, 1,=0, v3,=1, v4=—1. Suppose the system’s
state at the current time ¢ is known to be (p(1),1(z)). Let a
random variable K(p(1),(¢), 7), for any 7> 0, be the number
of R; reactions that occur in the subsequent time interval
[z,t+7]. Since each of those reactions will increase the S,
population by v;;, the number of S; molecules in the system

J
at time ¢+ 7 will be

p(t+ 1) =p) + K (p(1).1(1),7) = Kr(p(1),1(1),7), (5)

I+ 7)=1(1) + K3(p(1),1(2), 1) = Ky(p(1),1(1), 7). (6)

An excellent approximation to K;(p(1),l(z),7) can be ob-
tained if the following two conditions are imposed [25].
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TABLE 1. Stochastic transition processes and corresponding rates.

Transition processes

Description

Transition rates

Vi Lfree(t_ Tl)
a\=Vog,—— . <
] SpKl +Lfree(t_ Tl)

ar= depP([)

The synthesis of dCLOCK activated K,

a=Vv,,——
’ * K2+Lfree(l_ 7-2)

(1) p—p+1 The synthesis of PER activated
directly by dCLOCK and
repressed indirectly by itself

2) p—p-1 The degradation of PER

3) I—1+1
indirectly by PER and
represented directly by itself

4) I—1-1 The degradation of dCLOCK

ag= decL(t)

Condition (i): Require 7 to be small enough that the
change in the state during [7,7+ 7] will be so slight that none
of the propensity functions changes its value appreciably.
Each K (p(1),1(),7) will be a statistically independent Pois-
son random variable, P;(a;(p(t),1(t)), ). So Egs. (5) and (6)
are approximated by

p(t+7)=p(t) + P(a,(p(1),1(1)), ) = Palar(p(2),1(1)), 7),
(7)

It +7) = U(1) + P3(az(p(1), (1)), 7) = Pylas(p(1),1(1)), 7).
(8)

Condition (ii): 7 must be large enough that the expected
number of occurrences of each reaction channel R; in [t,1
+ 7] is much larger than 1, which allows us to approximate
each Poisson random variable P;(a,(p(7),l(1)),7) by a nor-
mal random variable with the same mean and variance. That
brings Egs. (7) and (8) into the form

p(t+7) =p(t) + Ni(a,(p(1),1() 7,a,(p(2),1(1)) 7)
= Na(ay(p(1),1(1)) 7,a,(p(1),1(1)) 7), )

It + 7) = 1(t) + N3(as(p(2), (1)) 7, a3(p(2),1(1)) 7)
= Nyay(p(0),1(1)) 7,a4(p(2),1(1) 7), (10)
where NM(m,o0?) denotes the normal random variable with
mean m and variance o”. The molecular populations from
discretely changing integer variables in Egs. (7) and (8) are
converted to continuously changing real variables in Egs. (9)
and (10) in effect.

The linear combination theorem for normal random vari-
ables,

Nim,o?) =m + oN(0,1), (11)
can now be invoked to bring Egs. (9) and (10) into the form

p(t+ 1) =p(0) +a,(p(t).[(1) 7= a>(p(t),1()) 7
+[a,(p(1),1(t)) 71" N,(0,1)
—[ay(p(1),1(1) 7] N,(0, 1), (12)

It +7) = 1(1) + a3(p(1),1(1)) 7= as(p(1),1(1)) 7
+[as(p(0),1(1)) 71" N53(0,1)
~[ay(p(1), 1)) 7] N, (0, 1). (13)

First, let us regard any time interval 7 that satisfies both
conditions (i) and (ii) as a macroscopic infinitesimal, and
denote it simply by dt. Second, let us write the “unit normal”
random variable N;(0,1) as N/(). Equations (12) and (13)
become

plt+7)=p@) +a,(p(1),l(1))dt — ay(p(1),U(1))dt
+a;”(p(0),1(t))N, (1) (dr) "2

- ay?(p(1).(1))Ny(1)(d)"”, (14)

(t+ 7)=1(1) + a5 (p(2),1(2))dt — a,(p(2),1(r))dt
+ay*(p(1),1(1)) N5 () (dr) '
— ay*(p(1), (1)) Ny(1)(d)". (15)

Equations (14) and (15) imply the equivalent “white-noise
form” Langevin equation

dlji_(t[) =a,(p(0),1(1)) — a)(p(2),l(r)) + ailz(p(t),l(t))gl(t)
- a)*(p(1). 1) &:(1), (16)
%(;) = a3(p(1),1(1)) = ay(p(1),1(1)) + a3 *(p(1),1(1)) &;(1)

- a*(p(1), (0) &), (17)

where &, . 4(1) are temporally uncorrelated, statistically in-
dependent Gaussian white noises with (&(7))=0 and
(&(D)&i(5))=5;0(t~5).

By using the relationship between the concentration and
the molecular number, the chemical Langevin equations cor-
responding to the macroscopic differential equations (1) and
(2) can be obtained from Egs. (16) and (17) and read

dP(1)

1 —
dt = [UspRsp - kdpP(t)] + /__[\/vspRspgl(l)
14

— kg, P(1)&:(1)], (18)
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TABLE II. Reaction steps and corresponding reaction probabili-
ties involved in the model.

Reaction step Reaction probabilities

pﬁp-"l Lfree(l_Tl) /
Ug - . .
i KI‘Q"’Lfree(t_ Tl)
p—p-1 kgpP(t)At
—1+1 K
=1+ V2 At
K2Q+Lfree(t_ 7'2)
[—1-1 kaoL(t) At
dL(1)

1 — —
d_ = [vscRsc - kch(t)] + /__[V’vscRsc§3(t) - V’kch(t)§4(t)]-
t %

(19)

The detailed description of the CLE method can be found in
[25]. The CLEs (18) and (19) describe the effects of finite
size on circadian oscillations. It can be noted that the internal
noise item is proportional to 1/1V when the other parameters
are fixed, so the internal noise also represents a kind of sys-
tem size noise.

In fact, in order to study the intracellular biochemical re-
action of finite molecules, a fixed time step algorithm has
been introduced by Smolen et al. [23]. In contrast to the
Gillespie algorithm [24], the fixed time step algorithm only
requires a probabilistic determination of whether each type
of chemical reaction takes place at each time step and uses a
fixed time step that can be optimized to the desired accuracy.
It is convenient to use this algorithm to handle some stochas-
tic systems with time delays. Though it is an open question
which algorithms are best for simulating stochastic models
with time delays, this algorithm is shown to be an explicit
simulation of the master equation for small time steps. In
order to scale the reactions according to system size, all of
the parameters sensitive to system size, €.g., Uy, Uy, K;, and
K>, should be multiplied by a common factor (). After this
rescaling, the reaction probabilities can be computed by mul-
tiplying the time step A with the deterministic terms in Egs.
(1) and (2) that give the rates of the specific reactions. The
time step is fixed at a small enough value (5 X 107 h) so that
the probability of each biochemical reaction is never larger
than 2%. See Table II for the corresponding reaction prob-
abilities.

In the present paper, we will use the above two methods
(CLE and fixed time-step algorithm) to study the effects of
internal noise on the circadian oscillator in the next section.
Our numerical simulation will be exerted near the Hopf bi-
furcation point at about k2p=2.85 h~!. It is a suprathreshold
value at which the system is a stable steady state in the
absence of noise.

II1. EFFECTS OF INTERNAL NOISE
ON A CIRCADIAN OSCILLATOR

In the circadian oscillator, it was already known that the
external noise can induce coherence resonance and play con-
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FIG. 2. Time series of PER concentration [(a)—(c)] via CLE and
[(d)—(f)] from fixed time-step algorithm for different system size:
from top to bottom V=(=5000, 1000, and 10.

structive roles near the Hopf bifurcation point [8]. In this
section only the internal noise is considered near the bifur-
cation point. Equations (18) and (19), which describe the
system’s dynamics with only the internal noise, can be inte-
grated by a simple forward Euler algorithm with a time step
of 0.01 h. The detailed algorithm for numerical simulation of
multiplicative white noise in stochastic differential equations
was given in [26].

The temporal courses of PER concentration obtained from
the CLE method [Figs. 2(a)-2(c)] and the fixed time-step
algorithm [Figs. 2(d)-2(f)] are plotted in Fig. 2. For the large
and small system size (i.e., the internal noise), the rhythmic-
ity of suprathreshold circadian oscillations induced by the
internal noise is inconspicuous. For the moderate system size
(e.g., V=0=1000), however, the circadian oscillations (pe-
riod close to 24 h) are clearly observed. The above result
shows that internal noise also can play a constructive role in
such a circadian oscillator. These figures also illustrate that
oscillation amplitude and variability as well as the size of
fluctuations are qualitatively the same for two different simu-
lation methods for V=(), thus the common factor ) in the
fixed time-step algorithm corresponds to the system size V in
CLE in this sense.

The effects of internal noise on the circadian oscillations
can be investigated by utilizing the power spectral density
PSD of proteins concentration. Figures 3(a)-3(c) plot the
PSD of PER concentration for different system size, respec-
tively. Clear peaks appear in the PSD. For an intermediate
system size (e.g., V=0=1000), the peak is the most pro-
nounced among the three [see Fig. 3(b)]. The PSD curves
obtained from the CLE method are almost consistent with
that obtained from the fixed time-step algorithm for V=Q
=50000 and 1000. From the inset of Fig. 3(c), a slight dif-
ference between two simulation methods can be seen for V
= =10, which corresponds reasonably to the difference be-
tween Fig. 2(c) and Fig. 2(f).

To measure the relative performance of the stochastic os-
cillations quantitatively, we have calculated an appropriate
measure B. See [3] for details about the definition and algo-
rithm. In fact, B represents the degree of CR and is actually
the signal-to-noise ratio (SNR). The dependence of B on V is
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FIG. 3. The power spectral density [(a)—(c)] of PER concentra-
tion for different system size: from top to bottom V==5000,
1000, and 10. Solid lines: data from CLE; dotted lines: data from
fixed time step algorithm.

plotted in Fig. 4. A clear maximum is present for system size
V=500; an optimal system size implies an optimal level of
internal noise, which demonstrates the existence of internal
noise coherence resonance. Since the magnitude of the inter-
nal noise is changed via the variation of the system size, the
INCR also represents a kind of system size resonance
[19,22,27]. Because the PSD curves obtained from two dif-
ferent simulation methods are nearly the same for large sys-
tem size, we will use the fixed time-step algorithm only for
V<1000. Excellent quantitative agreement among the CLE
method and the fixed time-step algorithm is apparent in the
region of about V>50, which shows our simulation results
from the CLE method are reliable in a wide range of the
system size. Therefore, it is convenient to use the CLE
method to study the quantitative effects of internal noise on
such a mesoscopic stochastic model.

IV. EFFECTS OF BOTH INTERNAL AND EXTERNAL
NOISE ON A CIRCADIAN OSCILLATOR

The effects of only external noise on the circadian oscil-
lator have been investigated in Ref. [8], where the external

3

10
—8&— chemical Langevin equation

2 —0O— fixed time step algorithm

107
D}’D
10" DE\
@ N\

FIG. 4. Dependence of the measure of coherence () on the
system size for k0p=2.85 h~!. Solid squres: results obtained via
CLE; open squares: results from fixed time-step algorithm for V
<1000.
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noise is introduced through the light-controlled parameter &,
in Eq. (1). The effects of both internal and external noise on
a circadian oscillator will be investigated in this section.

Consider that (i) the internal noise and the external noise
are independent of each other. The last two noise terms in
CLEs (18) and (19) are multiplicative, which only describe
the intrinsic noise of the finite-size system due to the random
biochemical reaction processes. (ii) Although the external
light-controlled parameter k,, appeared in both the second
term and the last term in Eq. (18), respectively, the second
term, kg,P(t), determines the kinetic properties of the bio-
chemical system, while the role of the last term,
\ykdpP(t)gz(t)/\V, in the evolution of the system is much
more smaller than that of the second term, especially in the
case of large system size (i.e., V> 1). For simplicity, here the
external noise is only introduced through the light-controlled
parameter k,, in the second term in CLE (18), and takes the
form of

=k%,[1 + (1)), (20)

where #(¢) is Gaussian white noise with zero mean, and its
autocorrelation function is {(7(t) n(t'))=2D&(t—1"); D is the
light noise intensity. The light-controlled parameter kgp in the
last term in CLE (18) is taken by the constant kd , and its
fluctuation is neglected in the present paper. Therefore the
CLEs (18) and (19) become

d
P o =K1+ 0P 5 —[\ug,,Rg,,a(r)
— VK P(t)§2(t)] 21
d 1 — —~
ﬂ - [vsc‘Rsc kch(t)] + \/_‘_/[VUXCRSC§3(t) - \kch(t)§4(t)]

(22)

Equations (21) and (22) describe the circadian oscillator
driven by both the internal noise and the external noise under
the approximation that the coupling between them is ignored.

In order to give a simple and clear analysis about the
interplay between the external noise and the intrinsic noise of
the system near the bifurcation point, we have investigated
how the coherence resonance phenomenon induced by one
noise is affected by the other noise.

First, we have investigated how the external-noise coher-
ence resonance is affected by the internal noise. The depen-
dence of B on the external-noise intensity for different
choices of system size is plotted in Fig. 5. When the system
size is large (e.g., V=100 000), the dependence is obviously
close to our previous result without the internal noise, show-
ing the occurrence of the external-noise coherence reso-
nance. With the decrease of system size, the ENCR curve
becomes lower. Once the system size drops to V=250, it is
found that 8 monotonically decreases slightly with the incre-
ment of D and the peak disappears. Now, because the system
size becomes very small, the internal noise becomes strong
enough to make the total noise only play a destructive role.
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FIG. 5. The external-noise coherence resonance for different
system size. Inset: B,x of ENCR vs 1/ V.

Furthermore, the internal noise strongly dominates the sto-
chastic behavior at V=100, which causes /3 nearly to remain
unchange with D.

In [28], a quantity of SNR,,,, was used to study the role of
spatially correlated stochastic perturbations on a neural net-
work. In order to grasp the most important information pro-
vided in Fig. 5, we also choose the maximum SNR value
(Bmay) from each ENCR curve and plot the dependence of
Brax ON 1/\v (see the inset graph in Fig. 5). Since 1V
measures the internal-noise intensity, it is shown that 5.,
decreases with the increase of the internal noise. This result
implies that internal noise can suppress ENCR in the circa-
dian oscillator.

Secondly, we have investigated how the internal noise co-
herence resonance is affected by the external-noise. The de-
pendence of B on the system size for different choices of
external-noise intensity is shown in Fig. 6. At V=10, the
internal noise is so large that the system is insensitive to the
change of external noise. Therefore, these values of S for
different D are almost the same. While the internal noise is
very small at V=100 000, B increases at first and then de-
clines with increasing of D, which reasonably illustrates the
occurrence of external-noise coherence resonance. After V
=100 000, the internal noise can nearly be neglected and a
plateau will form on each curve naturally.

When the external noise is very small (e.g., D=0.001), the
dependence of 3 is close to the result shown in Fig. 4. The
internal-noise coherence resonance occurs only for D
<0.04; in such a region of D, the INCR curve becomes

3
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é1’21;1
2 | B
10%4,, /Cg\
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FIG. 6. The internal noise coherence resonance of different
external-noise intensity. Inset: B, of INCR vs D.

PHYSICAL REVIEW E 73, 041923 (2006)

higher as the external noise increases. If D=0.04, 8 mono-
tonically increases at first, and then reaches a plateau di-
rectly; the peak disappears. It is because the external noise
becomes so large that the total noise can only play a destruc-
tive role. When D increases further, the plateau on the curve
becomes lower. We choose B, only from each INCR curve.
From the inset graph in Fig. 6, B, raises with the increment
of external noise, which shows the external noise can en-
hance INCR in the range of 0 <D <0.04. Since SNR is the
ratio of the amplitude of the desired signal to the amplitude
of noise signals, the phenomenon of external-noise-enhanced
INCR also reveals that the internal noise is suppressed by the
external noise through increasing the maximum SNR of
INCR, which displays another constructive role of external
noise [29]. In studying CR, different clues to enhance the
strength of it have been found, such as noise delay [30], the
couplings of elements [31], and the distance to the bifurca-
tion point [32]. Here, a clue to enhance the strength of INCR
is the modulation of the external-noise intensity in a certain
range. Though it is not easy for us to directly control the
external noise intensity to obtain the maximum SNR, we
expect that biological systems may use the above regulatory
mechanism to play functional roles in cellular process.

In addition, an interesting result is that the optimal system
size is controlled by the external noise when the INCR oc-
curs. It is found that the optimal system size changes from
about 500 to 1000 in Fig. 6. In the above region of system
size, our simulation result via CLE is rather reliable (see Fig.
4). Tt is also interesting to note that the optimal system size is
comparable to that obtained in [19]. The biological organism
may adapt to adjust the optimal size according to the external
noise. As a useful extension of the previous work about sys-
tem size resonance [17,20], this result will help us to under-
stand the activity of biological systems better.

In order to understand the above effects of the interplay
between the externally added noise and the intrinsic noise on
SNR of the circadian oscillating system, we will analyze the
mechanisms of noise control in the stochastic dynamics of
coherence resonance. It is known that different noise sources
may affect the system’s stochastic dynamics in different
ways [32,33]. Here, the external noise term is added directly
to the deterministic equation multiplicatively, while the inter-
nal noise introduced in the chemical reactions is related to
the parameter values and the system size, as well as the state
variables that evolve with time. Therefore, the mechanisms
of the coherence resonance phenomenon induced by internal
and external noise, respectively, may be different. The maxi-
mum of SNR is about 50 when only internal noise exists (see
Fig. 4), but about 700 when only external noise exists [8].
Thus, the optimizing performance of stochastic oscillations
by the external noise is much more than that by the internal
noise. When the internal noise coherence resonance occurs,
the added external noise can enhance the performance of
stochastic oscillations by introducing extra dynamics. The
extra dynamics may play a crucial role as an energy source,
which makes S, increase with increasing D, until the total
noise loses its constructive role (see Fig. 6). On the contrary,
when the external-noise coherence resonance occurs, the
added internal noise only can reduce the performance of sto-
chastic oscillations, which makes B, decrease with de-
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creasing V (see Fig. 5). In [33], the generation of doubly
stochastic coherence due to two noise sources in bistable
neural models is investigated analytically, which will moti-
vate us to make a clearer study about the present results in
the future.

V. CONCLUSIONS

In conclusion, we have constructed a mesoscopic stochas-
tic model for a circadian oscillator. When the system is near
a Hopf bifurcation and driven by the internal noise only, the
existence of internal-noise coherence resonance is found. In
contrast to the analysis done previously, we have taken into
account a combination of internal and external noise. It is
found that external-noise coherence resonance can be sup-
pressed by internal noise, while internal-noise coherence
resonance can be enhanced by modulation of the external-
noise intensity in a certain range of noise intensity. The
external-noise-enhanced INCR also reveals that the external
noise can suppress the internal noise through increasing the
SNR of INCR. A preliminary analysis about the interplay
between the externally added noise and the intrinsic noise on
SNR of the circadian oscillating system is given. Another
interesting result is that the optimal system size can be regu-
lated by the external noise when the internal-noise coherence
resonance occurs.

The above results would be helpful to understand how the
interplay between the internal and external noises in the cir-
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cadian oscillator is involved in the mechanisms for coher-
ence resonance, although it is not still clear whether biologi-
cal systems use the above regulatory mechanism to play
functional roles in cellular process.

It should be pointed out that the above results about the
effects of external noise and internal noise together on the
circadian oscillator are just obtained from Egs. (21) and (22),
that is, the external noise and the intrinsic noise considered
here are independently introduced in the mesoscopic stochas-
tic model after our approximate treatment. Indeed, when the
system size or the number of reactant molecules is very
small, the interaction between the internal and external noise
would be very strong and important. The study of the cou-
pling effects of internal and external noise [i.e., the interac-
tion between the internal and external noise appearing in the
last term of Eq. (21)] on stochastic dynamics is our further
work. We expect that more novel and richer physical phe-
nomena will be observed when the system size is small
enough and the coupling between two kinds of noise should
be considered.
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