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The dynamic properties of the regulatory network governing the choice between lytic and lysogenic growths
of coliphage lambda is studied using a Markov chain stochastic model. Our computer simulation confirms the
finding by Li et al. �Proc. Natl. Acad. Sci. USA 101, 4781 �2004�� on the dynamics of budding yeast: that the
biological stationary states are global attractors; the biological pathways of lytic and lysogenic growths are
attracting trajectories; and the network functions are robustly designed against structural perturbations. In
addition, our model shows the stochastic switch from lysogen to lytic growth, which has been observed in
experiments. A definition of pseudoenergy is introduced in the network dynamics to reveal a transitionlike
behavior in the system.
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I. INTRODUCTION

Current biological network studies cover from macro-
scopic food webs, in which the nodes are species and the
edges represent predator-prey relationships between them, to
microscopic metabolism networks, in which the nodes are
proteins and substrates, and the edges represent chemical re-
actions �1�. Studies have shown that biological networks
have many special topological characteristics that are not
seen in random networks of the same size �i.e., with the same
numbers of nodes and edges�, such as stability, high cluster-
ing coefficient, and tolerance for errors and attacks �1�. Re-
cently, Li et al. �2� reported that the biological network of the
budding yeast cell-cycle process possesses special dynamic
properties: The biological stationary state is a global attrac-
tor; the biological pathway is an attracting trajectory; and the
network functions are robustly designed against structural
perturbations. In this report we study the dynamics of an-
other biological network, the growth modes of bacteriophage
lambda, in order to verify the universality of the dynamical
properties mentioned above.

Bacteriophage lambda is a well-studied temperate phage,
and has long been used as a model system among biologists.
Different dynamic models have been established to analyze
the stability of its genetic switch �3–15�, which help us to
quantitatively understand the dynamic process of bacterioph-
age lambda’s growth. However, most previous studies omit
fluctuations in the system, which might play an important
role in a living cell. From the biological point of view, one
realizes that there are relatively few copies of each protein
and RNA in a single cell, and each molecule evolves stochas-
tically. To characterize such a system, it is more reasonable
to apply a stochastic model rather than a deterministic one.
In order to give a microscopic statistical understanding of the
system, the recent trend in lambda phage simulation is to
involve stochastic analysis �12–15�. Three kinds of ap-

proaches have been documented: Ref. �15� offers fluctuation
to the degradation of protein CI in the standard ordinary
differential equation �ODE� model in order to reveal the de-
velopmental pathway bifurcation; Ref. �14� studies a two-
variable ODE model consisting of CI and Cro, and adds two
independent Gaussian and white noise sources to the equa-
tions in order to generate a potential landscape with a com-
plicated mathematical transformation; Ref. �12� uses the sto-
chastic simulation algorithms developed from a master
equation, which is generally considered to be the most real-
istic method of coupled chemical reaction simulation. All
these succeed in providing the correct time sequence of the
developmental pathways, as well as the probabilities of
lysogeny and the genetic switch.

Following recent trends, here we study a different sto-
chastic model to describe the dynamics of the network that
regulate the lysis-or-lysogeny choice of coliphage lambda. In
this work, we use a Markov chain stochastic model to simu-
late the behavior of the bacteriophage, according to which all
the possible protein states are visited and tracked along their
temporal evolutionary paths. Compared to former stochastic
models, the disadvantage of the Markov chain model lies in
its logiclike dynamics, which makes it impossible to describe
the developmental pathway on a real time scale. But this
simplicity also leads to advantages. Many global character-
istics of the system in phase space can be studied, and it may
become possible to define a pseudoenergy for the system.
One of the purposes of this paper is to show these advan-
tages. Our results show that all the attractors in the system
represent biological ending states that really exist in the life
period of coliphage lambda; the biological paths of lytic and
lysogenic growths attract many protein states, making them-
selves attracting trajectories; and the functions of the net-
work tolerate mutational perturbations, showing the robust-
ness of the network. All these features are consistent with the
findings of Li et al. in their study of the budding yeast cell-
cycle network �2�. In addition, the stochastic switch from
lysogenic to lytic growth is also revealed in the model. In the
analysis, we show a pseudoenergy to the network in order to
describe this stochastic process. We found that the energy*Electronic address: qi@pku.edu.cn
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distribution of the network has a transitionlike behavior as
randomness increases.

In the next section, we describe the behavior of coliphage
lambda and the mechanism that controls its lytic and
lysogenic growths. In Sec. III, we build our Markov chain
model and describe the method of our numerical simulation.
In Sec. IV, we present our simulation results and analysis. In
Sec. V, we conclude our report with a brief discussion.

II. COLIPHAGE LAMBDA

Coliphage lambda is a typical species of temperate bacte-
riophage. It is described as “temperate” because its life circle
involves two different routes, known as lytic and lysogenic
growths. The former can be commonly seen in other phages,
characterized by lysing of the infected cell after the phage
DNA is wildly replicated and assembled with newly ex-
pressed protein shells. Usually more than 100 phages come
from a single host cell. The latter type of growth is special,
because in this route the phage avoids lysing the cell. In-
stead, it integrates its DNA into the genome DNA of its host.
In this case, the phage DNA is called a prophage and the
strain has entered a lysogenic state. The prophage can repli-
cate only when the host DNA is replicated. Under certain
stimuli, the prophage can be released from the host DNA and
start lytic growth again �5,16,17�.

The control network of lytic and lysogenic growths of
coliphage lambda is shown in Fig. 1 �proteins that do not
affect others have been deleted�. It can be generalized as
follows: First, protein N and Cro are expressed from the
phage DNA �RNA polymerase�. N can contribute to the ex-
pression of protein CII, CIII, O, P, and Q. The Hfl gene of the
host produces Hfl proteinase that hydrolyzes CII. In this
case, the phage DNA will go through lytic growth. Under
certain conditions, such as lack of nutrition or high value of
multiplicity of infection �MOI�, there is insufficient Hfl pro-
teinase or its activity is restrained. As a result, CII and CIII
can work together to start transcription promoter PE of the

phage DNA and establish the expression of protein CI, which
prohibits the expression of N and Cro. Specifically, the func-
tion of CIII is to protect CII, which activates PE. CII has
almost no activity without CIII, so they can be regarded as
cooperators. Highly strengthened transcription of PE is an
obstruction to the expression of Cro, because the RNA poly-
merase moves in the opposite direction and a mRNA with
the antisequence of Cro mRNA occurs. As a result, CII and
CIII cooperate to inhibit Cro expression. Cro can close the
production of CI when normally expressed in lytic growth.
Hence Cro and CI act as competitors. The function of CII is
not only to help express CI, but also to block the yield of Q
and to activate the production of integrase, which inserts the
phage DNA into the host DNA, making it a prophage. In this
state, all transcription is stopped except for those of CI, as it
has a special maintenance mechanism. This is the end of
lysogenic growth �17–20�.

III. THE MARKOV CHAIN MODEL

In order to understand the global behavior of the control
network, we use a discrete model to study the dynamics of
the system. In our model, a node j has only two states: Sj
=1 or Sj =0, representing the active or inactive state of the
gene �or the protein�. The six nodes in the network shown in
Fig. 1, namely, Cro, CI, CII, CIII, N, and Hfl, are represented
by variables �S1 ,S2 , . . . ,S6�, respectively. Dynamic rules are
defined as follows: Define an input function for the ith in-
coming arrow of node j to be Iij�t� �i=1,2 , . . . ,nj� �node j
has nj incoming arrows�: If it is a white arrow deriving from
node p, then Iij�t�=kwSp�t�; if it is a black arrow deriving
from node p, then Iij�t�=−kbSp�t�; for a white arrow deriving
from nodes p and q,Iij�t�=kwSp�t�Sq�t�; for a black arrow
deriving from nodes p and q, Iij�t�=−kbSp�t�Sq�t�; if it is a
self-pointed gray arrow, Iij�t�=−kgSj�t�. The k values here are
positive input parameters. The probability that a protein has a
certain state in the next time step is determined by the equa-
tions below:

Prob�„S1�t + 1�, . . . ,S6�t + 1�… = �̃�„S1�t�, . . . ,S6�t�…�

=�
j=1

6

Prob�Sj�t + 1��„S1�t�, . . . ,S6�t�…� , �3.1�

where

Prob�Sj�t + 1� = ��„S1�t�, . . . ,S6�t�…�

=

exp���2� − 1��
i

Iij�t�	
exp���

i

Iij�t�	 + exp�− ��
i

Iij�t�	 ,

�3.2�

if �
i

Iij�t��0, �� 
0,1�;

FIG. 1. The network governing the choice between lytic and
lysogenic growths of coliphage lambda. Each black node represents
a protein; a white arrow presents “activation,” a black arrow means
“inhibition.” The arrows with two shafts sharing the same pointed
head stand for “collaborative activation/inhibition.” The self-
pointed gray ones signify “degradation.” The empirical functions
represented by the arrows include gene regulations and protein
interactions.
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Prob�Sj�t + 1� = Sj�t��„S1�t�, . . . ,S6�t�…� =
1

1 + e−� ,

�3.3�

if �
i

Iij�t�=0. The positive numbers � and � are parameters

characterizing randomness. Notice that when �=0,�=0, the
network dynamics is a random process; when � ,�→�, it
recovers to the deterministic model of Li et al. �2�. Equation
�3.2� has a number of forerunners in the literature on neural
networks �21�.

In the simulation, the state of RNA polymerase is fixed at
1 to ensure an everlasting positive input to N and Cro. Hence
the system has a total of 64 �26� possible states. When nei-
ther � nor � approaches +�, any of the 64 states has a
positive probability to become any other state in the next
time step. According to theories of the Markov chain, if the
above condition is satisfied, there exists a stable probability
distribution:

� = �	0,	1, . . . ,	63� ,

	s = lim
r→+�

p�s�r�, �,s � 
0,1, . . . ,63� . �3.4�

p�s�r� here is the r-step transition probability from the initial
state � to the target state s. In other words, when r is big
enough, the probability that the system stays at s is almost
independent of the start position �.

In the simulations, we assume the values of kw, kb, and kg
are the same for all arrows, and keep them fixed at kw=1,
kb=1, and kg=0.1. Our simulations show that these control
parameters do not qualitatively influence the dynamic behav-
ior of the system. The only control parameters important to
the behavior of the system are the “temperature” of the
network � and �, which reflect randomness of the dynamics.
In each simulation, we start the system at every possible
initial state and let it evolve 100 000 time steps to attain a
stable probability distribution of each state. We then let the
system evolve another 100 000 time steps to calculate the
stable distribution.

IV. SIMULATION RESULTS

The simulation resulting from different sets of parameters
� and � are shown in Fig. 2. Defining the pure probability
flux from state i to j to be 	ipij −	 jpj i, we use the biggest
outgoing pure flux to represent the trajectories or state flows
of the system. Actually, since the system is ergodic, there are
fluxes between any two states, but only the biggest outgoing
pure flux of each state is displayed in Fig. 2 to show the main
trend of the temporal evolution. In the figure, each node
stands for a system state, and the directed edges represent
state flows. In Fig. 2�a�, the size of the nodes and the thick-
ness of the edges are proportional to the logarithm of the
total traffic flow passing through them; in Fig. 2�b�, they are
proportional to the square root of the total flow. The dark
trajectories are the biological trajectories of lytic �2� and
lysogenic �3� growths. The three dark nodes represent bio-
logical stationary states �1: lysogeny with Hfl=1; 2: lysis; 3:

lysogeny with Hfl=0�. The out-going arrow from dark node
2 is not drawn because that point is the end of the lytic
choice. The phage lambda DNA will soon express a series of
proteins that are not included in the regulatory network used
here.

As shown in Fig. 2, when the control parameters � and
� are beyond certain values, the biological state pathways
and biological stationary states experience great attractions,
i.e., all the states converge to a few fixed points correspond-
ing to biological steady states; and the biological trajectories,
which are the real pathways of the genetic growths, absorb
many state nodes before they flow to the fixed points.
Compare Fig. 2�a�, where �=4,�=3, with Fig. 2�b�, where
�=�=�, one notices that the stochastic model reflects not
only the attractions of the biological states and pathways, but
also both the possibilities that the lysogenic ending state with
Hfl=0 �dark node 3� can flow to the start point of lysogenic
growth, and that lysogen with Hfl=1 �dark node 1� can flow
to the start point of lytic growth. These are consistent with
the fact that lysogen can stochastically switch to the very
beginning of the growth choice.

To test the robustness of this lambda regulatory network,
the effects of two types of perturbations on the network are
considered: mutations and noisy environments. For muta-
tional perturbation, three types of perturbations are intro-
duced in the deterministic model ��→ � ,�→ � �: arrow ad-
ditions, arrow deletions, and arrow-color switches �white to
black or black to white�. For arrow additions, the two host

FIG. 2. The protein state temporal evolution trajectories,
which is represented by the biggest outgoing pure flux. Parameters:
�a� �=4,�=3; �b� �= � ,�=�.
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proteins �RNA polymerase and Hfl� are allowed to be added
only with out-pointed arrows. Shared-arrow additions are not
considered, and only one perturbation is conducted each
time.

The three pictures in Fig. 3 show the average flow of the
temporal state evolutions in perturbed networks starting from
the biological beginning states of descended lysogeny �1�,
lytic growth �2�, and lysogenic growth �3�, respectively. To
make the figures clearer, only the greatest incoming flux of
each node is displayed. One observes that, on average, the
perturbed networks are less stable than the original one: The
attractors �dark nodes� become leaky; the probability of leav-
ing these states increases. Most of the states in the system,
however, still converge to these attractors. For the descended
lysogeny process �1�, we conducted 14 arrow deletions, 36
arrow additions, and 10 color switches. The percentages of
the perturbed networks that still evolve to the biological end
are 86, 75, and 70 %, respectively. For the lytic growth pro-
cess �2�, we conducted 14 arrow deletions, 35 arrow addi-
tions, and 10 color switches. The function-preserved percent-
ages are 71, 69, and 50 %, respectively. For the lysogenic

growth process �3�, we conducted 13 arrow deletions, 35
arrow additions, and 9 color switches. The function-
preserved percentages are 23, 60, and 33 % respectively. The
difference in the numbers of possible perturbations derives
from the fact that a few perturbations may lead to the occur-
rence of circulated state pathways or limit cycles, which are
not included in the analysis. These results show that the net-
work functions are largely preserved, because in most cases,
the states still evolve to the biological fixed points �dark
nodes� through the biological pathways �dark trajectories�.

To investigate the effect of the environmental fluctuations,
we study the dynamical behavior of the network as a func-
tion of parameters � and �, which reflect the randomness of
the network dynamics. As � and � are parameters character-
izing randomness of different parts of the system, they
should increase or decrease simultaneously with environ-
mental changes. In this study, the relation between � and � is
set to be �=K�, where K is a positive constant. We define a
pseudoenergy of each system state as follows:

Es =
− ln�	s�

�
, s � 
0,1, . . . ,63� . �4.1�

Here, the concept of pseudoenergy is borrowed from equilib-
rium statistical physics. We hypothesize that the biological
stationary states, i.e., the big attractors, will be at the minima
in the energy landscape when the level of randomness of the
system is not very high, so that the three stationary states act
as potential traps. The reason the system could escape from
the traps and switch to other kinds of growths is the stochas-
tic force or the intrinsic noise.

Our simulation shows that the energy distribution of all
the states change as a function of �, as shown in Fig. 4
�white poles�. One observes that with the increase of �, the
energy distribution goes through a fast change, similar to a
phase transition in statistical physics. Before the critical
point ��c=6�, the energy distribution is Gaussian-like, which

FIG. 3. Perturbation analysis. The sizes of the nodes and the
thickness of the edges are proportional to the square root of the
traffic flows passing through them.

FIG. 4. Energy distributions
with different levels of random-
ness. Parameters: kw=kb=1,kg

=0.1,K=0.75,�=0.4,4 ,8 ,32.
The white poles �or bars� signify
all the 64 states, while the black
poles �or bars� stand for the 10
states on the biological attracting
trajectories.
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indicates that the energy is more or less evenly distributed in
the phase space; the system visits each state with equal prob-
ability. After the critical point, the number of nodes with high
energy suddenly increases, which means that most states
tend to be unstable, and the system will rapidly converge to
a few states with low energy, including the three stationary
states and states on the attracting trajectories. The black
poles �or bars� in Fig. 4 display the energy distribution of the
states on the biological attracting trajectories. It is shown that
when the level of randomness is high, this distribution is
even; as the level of randomness decreases, the states on the
biological trajectories gain lower potentials than most of the
other states, symbolizing the formation of the attracting tra-
jectories. It can be derived from Eqs. �3.2� and �3.3� that if
�=0, all the protein states will share the same energy level
as the network becomes a sheer random one.

An interesting question is whether such a transitionlike
behavior is unique to biological networks; could it also be
observed in structure-random networks, in which the activa-
tion and prohibition relations between proteins are randomly
generated? Our simulations with random networks show that
the structure-random networks also give this transitionlike
behavior.

V. DISCUSSION

This work demonstrates the stability and robustness of the
lysis-or-lysogeny regulatory network, which plays a critical
role in the life cycle of coliphage lambda. The results show
that the biological stationary states are big attractors and the
paths of lysogenic and lytic growths are attracting trajecto-
ries. The network functions are mostly preserved when the
network is perturbed. Similar dynamic properties were seen
in the cell-cycle network of budding yeast, fission yeast, and
frog egg �2�.

The Markov chain method based on a Boolean model has
certain advantages. It ensures that many global characteris-

tics of the system in phase space can be studied, unlike gen-
eral methods in nonlinear analysis which are valid only
around the fixed points in phase space, providing only local
information. It is possible that a pseudoenergy can be defined
for more complex system, works on this line of thinking is
underway in our group.

The pseudoenergy distribution of the system states seems
to have a transitionlike behavior as randomness in the model
is increased. It is reasonable to suppose that these properties
may be common for most regulatory networks governing
important genetic processes of organisms. It should be no-
ticed that the results of our simulation and the simulation of
cell-cycle network dynamics �22� show that the pseudoen-
ergy behaves similar to “free-energy” in equilibrium statisti-
cal physics, meaning in the steady state, the system is at the
minimum pseudoenergy; if there are more than one minima,
a control parameter change can switch the system from one
state to the other. However, whether this concept can be ap-
plied to more general network dynamics is still an open
question. For example, if the system has a limit cycle, this
method will be invalid. How to construct a more general
pseudoenergy to translate a general network dynamic system
to a potential system is a subject of study in our group.

Future research will surely provide us with more insight
into how the topology of regulatory networks can affect ge-
netic functions. With the help of a more detailed and ex-
tended regulatory network model, there may be better meth-
ods to analyze the probability and stability of mutations and
to predict the trend of evolutions.
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