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Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at
multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroen-
cephalograms �EEGs� is crucial for understanding epileptic processes. In this paper, we show that the global
relationship within multichannel EEGs provides us with more useful information in classifying two different
epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the
global network structure within channels of the scalp EEG based on the minimum spanning tree method. The
topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described
in the form of the divergence rate and is computed for 11 patients with left �LTLE� and right temporal lobe
epilepsy �RTLE�. We find that patients with LTLE and RTLE exhibit different large scale network structures,
which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results
suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with
characteristic epileptic network structures.
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I. INTRODUCTION

Until now, the relationships between multichannel sites of
the electroencephalogram �EEG� have been one of the most
interesting subjects of research. To understand their complex
and dynamic relationships, various methods such as interde-
pendence, synchronization and information flow between
multichannels have been investigated �1–6�. In the previous
works it was reported that an epileptogenic site, a site having
the capacity to induce epilepsy, or a hemisphere that contains
a seizure focus, show different characteristics for various
nonlinear measures. Based on findings in animal models of
epilepsy, Lehnertz et al. hypothesized that neuronal networks
involved in the epileptic process exhibit a decreased level of
complexity even during the interictal state. In the EEG the
recording during an actual seizure is said to be ictal and
interictal refers to the state between ictal events. The mea-
sure of the neuronal complexity loss unequivocally lateral-
izes and often localizes the primary epileptogenic area even
without recording transients such as seizures or spikes �1,2�.
In the investigation of the degree of interdependence be-
tween EEG channels, the transient patterns of nonlinear in-
terdependency emerge at the initial spread of the seizure dur-
ing the essential phase of its development and at the end of
the seizure. However, the maintenance of these interactions
has not been observed throughout the seizure activity. From
the investigation of the interdependency, it is proposed that

nonlinear associations play an important role in epileptoge-
nics, and that the process of the neuronal entrainment during
the seizure onset involves a transient interaction between a
distributed network of neuronal aggregates �3�. The hemi-
sphere containing the epileptogenic focus is characterized by
the increase of phase synchronization during the interictal
period and the onset of epileptic seizures is preceded by the
decrease in phase synchronization during the preictal period
�5,6�. These works suggest that epilepsy is a dynamic disease
in which the neural activity and the interrelationship between
neurons or the local neuronal networks in the brain changes
transiently from the interictal to the ictal state through the
preictal state. Moreover, such characteristic changes are di-
rectly associated with the epileptogenic site and the hemi-
sphere containing the focal site.

Recently, in cognitive sciences, the large scale integration
network has been the subject of great interest. At the moment
of perception, large-scale integration occurs between differ-
ent areas on the scalp such as frontal, parietal, and occipital
areas, with a significant increase in the � wave. Neural phase
synchrony is an important candidate for such a large-scale
integration that is mediated by neural groups oscillating in
specific bands and entering into precise phase locking over a
transient period of time. Such synchronous patterns are con-
tinuously created, destroyed, and subsequently recreated on
multiple spatial and temporal scales in the nervous system
�7–9�. These phenomena of the emergent large-scale integra-
tion of the scalp EEG are related primarily to various brain
functions such as perception, consciousness, and visual or
auditory sensation.

These clinical manifestations of seizures are connected to
the area of the cortex in which the seizures start, and how
widely they propagate and how long they last. A local epi-
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leptic activity often creates experiential events in the mind of
the patient. Typically, experiential phenomena occur at the
beginning of the seizure and are a part of the patient’s aura.
Based on the these facts, Le Van Quyen et al. assumed that
there may exist a large-scale epilepsy network �10�. In fact,
the survey data from recent research on seizures and behav-
ior shows that 63–92 % of people with epilepsy identify
situational precipitants �11�. Furthermore, in one study, it
was found that the mood changes significantly in the days
before and after seizures �12�. The identification of an im-
pending seizure and the change of the mood of patients a few
days ahead correspond to the preictal state, which has been
found in some nonlinear studies. These results suggest that
the procedure of epileptic seizure is connected to the experi-
ence of the patients and the experience constructs a large-
scale epilepsy network in the brain.

We assume that in the impending epoch before the seizure
onset, a certain type of network connected to the seizure is
activated within the cortex, whose dynamical structure might
be different in various epilepsy types with different focal
sites. In order to investigate the network structure of epilep-
tic EEGs, we choose two representative types of epilepsy, the
left �LTLE� and the right temporal lobe epilepsy �RTLE�
with the epileptogenic focus on the opposite sides of the
brain. First, we investigate the pairwise relationship with the
correlation between multichannels and its time evolution. In
the next section, for more detailed investigation of the net-
work structure of EEGs, we construct a hierarchical network
structure for multichannel scalp EEGs which may be useful
to understand how the channels form a global network.
Therefore, we define the channel network of the scalp EEG
based on the minimum spanning tree �MST�, which provides
a unique network structure for the scalp EEG data and en-
ables us to define a global channel relationship for EEGs
from a patient. From the constructed channel networks, the
dissimilarities between the channel networks are computed
for 11 epilepsy patients �six LTLE and five RTLE patients�.

To quantify the similarity between two network struc-
tures, we define a nonlinear measure, called the divergence
rate of the MST, D�X,Y�, which is associated with the normal-
ized tree length and the survival ratio, originally introduced
by Onnela et al. �13–15� to investigate the dynamic change
of the asset tree for S&P 500 companies. The measure D�X,Y�
quantifies how similar two network structures are. We com-
puted D�X,Y� for the channel networks for all patients, whose
similarities are classified into two different epilepsy types
with the help of the dendrogram method. Furthermore, the
time evolution of D�X,Y� is studied for an EEG time series
40 min long and with one end at the seizure onset that is
segmented into five epochs with 8 min time intervals.

The dendrogram for each segmented EEG epoch shows
that the network structures for LTLE and RTLE groups,
which cannot be distinguished in the beginning epoch, can
be distinguished during the epoch preceding the seizure on-
set. These two groups can be classified quite well around the
1 min epoch, just before the seizure onset, suggesting the
appearance of two classes of network structures for two dif-
ferent epilepsy types. In particular, the network structures of
the LTLE group show stronger similarities, indicating the

emergence of a characteristic large-scale epilepsy network
for the LTLE patients before the seizure onset which may
help to facilitate the ensuing seizure onset.

II. METHOD AND APPLICATION

A. Pairwise relationship of multichannel EEGs

In this section, we study the pairwise relationship of mul-
tichannel EEGs with the help of cross correlation. We ac-
quired the scalp EEGs from 11 patients, who are clinically
well classified into two epilepsy types, left and right tempo-
ral lobe epilepsy. Scalp EEG data were obtained during
video-EEG monitoring from the patients with medically in-
tractable temporal lobe epilepsy who were candidates for
surgical treatment. The epileptogenic focus was determined
by presurgical evaluation including long-term video-EEG
monitoring, interictal and ictal SPECT, volumetric magnetic
resonance imaging MRI, neuropsychological tests, and
18F-fluorodeoxyglucose �FDG� PET, if necessary. The epi-
leptogenic focuses are located on left lateral �four subjects�,
left mesial �two subjects�, and right mesial �five subjects�. A
digital EEG machine �Vanguard system, Cleveland Clinic
Foundation Healthcare Ventures, Inc., Ohio� was used to
record the EEGs from 43 electrodes of the 10-20 system with
sphenoidal electrodes referenced to Pz. The electrode imped-
ance was maintained at less than 5 k�. Filter settings were
0.5–70 Hz, with a sampling rate of 200 Hz and 12-bit
analog-to-digital precision.

The total recording time is about 40 min before the sei-
zure onset. In order to investigate the time evolution of cor-
relations between channels and the difference between two
hemispheres, the 40-min-long EEG data was segmented into
five windows of 8 min, and a 1 min noise-free EEG epoch is
extracted from each window. We can extract the noise-free
EEG epochs from all EEG channels during 1 min before the
seizure onset and during at least 1 min at each segmented
window from only 11 out of 50 patients. Since the EEG
could be unexpectedly contaminated by severe artifacts, we
choose the clean EEG epochs from the EEG data to avoid
any ambiguity of the result, albeit with fewer statistics. One
minute in EEG recording is sufficiently long for representing
the other 7 min in the window and it could reflect the pa-
tient’s state at the EEG epoch. The minimal statistics are
obtained by dividing the 1 min interval into six 10 s sub-
intervals.

First, we calculate the cross correlation between the 43
channels of the EEG in order to study the pairwise relation-
ship of multichannel EEGs for 11 epilepsy patients. We ac-
quire the time series of a channel i, ri=x1 ,x2 , . . . ,xM, where
M is the total length of a sequence. The cross correlation
between channel i and j is defined as follows:

Cij =
�rirj� − �ri��rj�

���ri
2� − �rj�2���ri

2� − �rj�2�
�1�

where �¯� indicates a time average over the 1 min epoch.
The 1 min EEG epochs selected from 11 patients are used to
calculate the mean cross correlation at each window for each
patient. The mean cross correlation is defined by C�i , j�
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= �2/n�n−1���i
n� j�j�i�

n Cij, i , j=1, . . . ,n, where the number of
channels n is 43.

We separate the EEG data set into two epilepsy types �six
LTLE and five RTLE� for which the mean cross correlation
is computed as in Fig. 1. In order to study the difference
between both types of epilepsy and the time variation within
a group, we used a repeated measures analysis of variance
�ANOVA� using the generalized linear model �GLM�. The
criterion for statistical significance is p�0.05. The test
shows that the interaction between the type of epilepsy and
the time window is not significant �F�4,36�=1.86; P
=0.139�0.05� and no significant effect on the type of epi-
lepsy exists �F�1,9�=0.05; P=0.8212�0.05�. But the time
window within a group has a significant effect �F�4,36�
=3.16; P=0.025�0.05�. All data were analyzed with SAS
statistical tools.

The global features of the pairwise channel relationships
are shown in Figs. 1�b� and 1�c�. Roughly, the two epilepsy
groups exhibit different global features of the channel rela-
tionship. In particular, the left frontal channels �LFs� of the
LTLE group have a relatively strong correlation with the
channels of the other areas. From this, we could estimate that
there exists a characteristic global network structure depend-
ing on the epilepsy types. Instead of the pairwise channel
relationship, a more detailed investigation of the global chan-
nel relationship may provide additional insight into the two
epilepsy groups. In order to investigate the differences in the
channel relationship between two different types of epilepsy,
we construct a hierarchical network structure for multichan-
nel scalp EEGs which may be useful for providing us with
information about the spatial or functional clustering of EEG
channels and understanding how a channel and a subcluster
of local channels are linked to other channels or subclusters
and how such subclusters form a global network. In the next
section, we will introduce the method for constructing a hi-
erarchical network structure of EEG channels and comparing
such structures reliably in classifying different epilepsy
types.

B. Global relationship of multichannel EEG (minimum
spanning tree)

As a simple method to define the multichannel relation-
ship, we use the minimum spanning tree, which is a well
known method for finding the shortest path between nodes in
the graph theory. Since the EEGs of different channels are
distinct and highly nonstationary, the MST produces a dis-
tinct network structure for a given multi-channel EEG data.
In this paper, we construct a network structure based on the
MST from 43 channel EEG data and define the relationship
between all channels of a patient based on this network struc-
ture. In most previous works, the relationship between chan-
nels of a patient was not uniquely determined because it
depends significantly on the subjective parameters such as
the cutoff threshold. The MST method has an advantage be-
cause it allows us to construct a unique network without any
subjective parameters and compare two different network
structures systematically.

FIG. 1. �Color online� The mean cross correlations between
channels, C�i , j�, and their standard deviations are calculated for
two types of epilepsy patients �six with LTLE and five with RTLE�,
which are averaged over the five segmented EEG periods. �a� The
time evolution of the mean cross correlations in two epilepsy
groups �six with LTLE and five with RTLE� with the standard de-
viation bar. �b�, �c� The average difference of C�i , j� between win-
dow 4 and window 5, in LTLE and RTLE groups, respectively. The
white indicates the pair of channels above the upper 10%, while the
black indicates those below the lower 10%. �LF �left frontal�:
FP1,F7,F3,AF7,F5,FC5,FT7,F9,FT9. RF �right frontal�:
Fp2,F8,F4,AF8,F6,FC6,FT8,F10,FT10. LT �left temporal�:
T7,TP7,T9,TP9. RT �right temporal�: T7,TP8,T10,TP10. LC �left
central�: C3,C5,CP5. RC �right central�: C4,C6,CP6. LP �left pari-
etal�: P7,P3,P9. RP �right parietal�: P4,P8,P10. O �occipital�:
O1,O2. Z�zero line�: Cz,Pz�.
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In order to construct the MST, first we define a distance
matrix based on the correlation coefficients in Eq. �1�. From
N channels used to construct the MST, we compute an N
�N matrix of correlation coefficients −1�Cij �1, which
can be transformed into an N�N distance matrix with ele-
ments dij =�2�1−Cij�, such that �2	dij 	0, respectively.
The elements dij satisfy the axioms for the metric distance,
�i� dij =0 if and only if i= j, �ii� dij =dji, �iii� dij �dik+dkj, and
those for ultrametricity. The distance matrix can be used to
determine the minimum spanning tree based on the dis-
tances, which is a simply connected graph that connects all
the N nodes of the graph with N−1 edges such that the sum
of all edge weights, ��i,j��rdij is a minimum. Note that in this
connection a loop is not allowed.

The MST effectively reduces the information space from
N�N−1� /2 correlation coefficients to N−1 tree edges. Such a
construction of the MST has proven to be useful in diverse
applications due to its simplicity and uniqueness �16–18�. It
also allows us to easily visualize the relationship between all
channels in the form of the tree. Based on this construction,
we can easily track the change in the tree structure, in par-
ticular, the evolution of a specific channel in the interrela-
tionship during the dynamical change from an interictal state
to an ictal state. To quantify how much two network struc-
tures are similar, we define a modification of the measure,
the survival ratio 
�a ,b�, which was originally introduced by
Onnela et al. �13�. The survival ratio quantifies how many
directly linked nodes in a MST remain in comparison, which
has been previously applied to the investigation of the dy-
namic change of the asset tree of S&P 500 companies:


�a,b� =
1

N − 1
	Ea � Eb	 , �2�

where Ea and Eb refer to the set of edges of two MSTs a and
b, respectively, � is the intersection operator, and 	¯ 	 gives
the number of elements in the set. In other words, the sur-
vival ratio is the fraction of edges found in common in both
graphs, which was originally used to study the time evolu-
tion of tree structures. Note that the survival ratio just com-
pares the linkage of nodes in two graphs. In dynamically
changing graphs such as ones for an epileptic process, the
distance between edges can expand or shrink due to the en-
hancement or the reduction in correlation between channels
on a local scalp area. This leads us to define a measure which
can take into account of the change in both distance and the
linkage of nodes in a graph at the same time.

C. Dissimilarity measure for minimum spanning trees

To quantify the similarity or the dissimilarity between two
MSTs, we define a measure based on the information theory.
In order to compare and classify the MSTs constructed, the
measure should be a metric which satisfies the metric prop-
erties. Crutchfield developed the information metric d�X ,Y�
between two information sources X and Y in the information
space I �19�,

d�X,Y� 
 H�X	Y� + H�Y	X� �3�

where H�X 	Y� and H�Y 	X� are the conditional entropies be-
tween information sources X and Y. This information metric
d�X ,Y� satisfies three axioms: d�X ,Y�=d�Y ,X� ,d�X ,Y�=0 if
and only if X�Y ,d�X ,Z��d�X ,Y�+d�Y ,Z�, and it is a mea-
sure of the noncommonality or the difference between X and
Y. Therefore, to apply this information metric concept to our
case, the distance matrix T of a MST is considered as the
information source, which contains the information about the
linkage and the size of edges of all N nodes. To determine
the distance between two MSTs X and Y we calculate
H�X 	Y�+H�Y 	X�. The conditional entropy H�X 	Y� specifies
the amount of information that is gained by measuring an
information source Y with the knowledge of another X,
which can be approximated by the information change be-
tween two different information sources, X and Y.

The information source X is transformed into the informa-
tion source Y by f :X→Y. Suppose that the information
source X is contaminated with the uncorrelated noise, so that
there is some uncertainty �xi. The uncertainty after the trans-
formation f is given by 	f��xi�=�f�xi�	. Thus, the informa-

tion change by the transformation f is ln 	
�f�xi�

�xi
	. The ratio

	
�f�xi�

�xi
	 is the amplification of an initial uncertainty after the

transformation. The average information change is defined as

�H =
1

N
�
i=1

N

ln��f�xi�
�xi

� , �4�

where N is the number of elements of an information source.
The average information change also quantifies the amount
of information gain by the transformation of the information
source, Y = f�X�, given an information source X. This average
information change between two information sources corre-
sponds to the conditional entropy, H�X 	Y�=H�X ,Y�−H�X�.
In practice, in order to apply the average information change
between two MSTs, we calculate the divergence rate of two
MSTs, D�Y	X�, as an approximation,

D�Y	X� =
1

N
�
i=1

N

log10�D�Y	X��i�

DX�i�
� , �5�

where DX�i� is the sum of all distances taken from a reference
node i to the neighborhood nodes inn in the XMST, and
D�Y	X��i� is the sum of all distances taken from the node i to
the nodes inn in the YMST. Given the distances between a
node i and its neighbor nodes in the XMST, D�Y	X��i� evaluates
how much their distance change in the YMST. Each distance is
defined as DZ�i�=�inn=1

Nn�i� dinn
, dinn

=dist�Nodei ,Nodeinn
�, where

the function dist�¯� gets the sum of all distances on the path
traversed from node i to node inn. Hence, Nn�i� is the number
of neighbors of the node i, which varies for each reference
node, depending on its location on the tree structure. There-
fore, D�Y	X� approximates the conditional entropy of two dis-
tance matrices of two MSTs, quantifying how much informa-
tion is needed on average to explain YMST, given XMST. Since
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D�Y	X� and D�X	Y� are asymmetric, we define the metric dis-
tance between two MSTs as follows:

D�X,Y� = D�Y	X� + D�X	Y�. �6�

The distance D�X,Y� quantifies the dissimilarity between two
MST structures. If two network structures are exactly the
same, D�X,Y� is 0. Otherwise, D�X,Y� is larger than 0. Since the
information sources, XMST and YMST contain the information
about the linkage and the size of the edge of nodes, the
dissimilarity between two information sources can reflect the
difference between two configurations of MST’s in a more
general way.

Figure 2 shows where neighboring channels �TP7, FT7,
FC5, FT9� of the channel T7 in the network of a LTLE
patient �Fig. 2�a�� are located in the network of a RTLE
patient �Fig. 2�b��. We quantify how far these neighborhood

channels are located from a reference channel T7 in a RTLE
network. In this example, TP7, FT7, FC5, and FT9, are 1, 5,
4, and 6 steps apart from the reference channel T7, respec-
tively. The sum of all distances from the reference channel
T7 for all neighboring channels is computed and then com-
pared by summing all distances in the LTLE network. This
process is repeated for all channels �nodes� to compute
D�X,Y�.

D. Classification of two different epilepsy groups based on
D

„X,Y…

We apply D�X,Y� to MSTs constructed from the scalp EEGs
of 11 epilepsy patients for the classification of two epilepsy
types. In this work, by comparing the similarities of their tree
structure, we attempt to find whether there exists any typical

FIG. 2. �a� MST of a LTLE pa-
tient. �b� MST of a RTLE patient.
D�X,Y� quantifies how far the
neighborhood channels TP7, FT7,
FC5, and FT9 of the T7 in the
MST of a LTLE are located in the
MST of a RTLE patient. The sub-
plots are the dendrograms of the
43 EEG channels. The bold lines
indicate the distance between the
neighborhood channels and the
reference channel. The MST gives
information on the linkage of
channels, while the dendrogram
gives information on the distances
between the channels.
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tree structure for two epilepsy types and when such typical
tree structures appear during the epileptic transition process.
In order to do this, we calculate D�X,Y� for all pairs of 11
MSTs constructed from a segmented EEG period, calculating
the 11�11 D�X,Y� matrices from the five segmented EEG
periods. Since D�X,Y� measures the dissimilarity of MSTs, we
use the dendrogram for a simple hierarchical clustering of
MSTs. From this, dendrograms for five segmented EEG pe-
riods can be computed and compared during the epileptic
process. In order to construct a dendrogram, we need to iden-
tify two MSTs with the most similarity, that is, the smallest
D�X,Y�. This pair builds the first cluster. In the next step, a pair
can be formed by joining either two MSTs, or a MST and the
cluster of MST. The process is then repeated iteratively, by
forming a cluster from the pair of closest MSTs or clusters of
MSTs, until all of them are connected to form a rooted tree
�20�. Figure 3 presents the result of clustering of MSTs by
the dendrogram method. From the dendrogram constructed
in each segmented EEG epochs, we found that in the preced-
ing epochs �a�, �b�, �c�, and �d�, the two types of epilepsy
cannot be classified well. In the epoch �e�, corresponding to
1 min before the seizure onset, however, the two groups are
classified quite well. In particular, by setting an appropriate
threshold, we can classify these two groups, except for only
one patient who is falsely classified into the RTLE group.
This emergence of the clear classification suggests that the
network structures involved in either group become similar
before the seizure onset, that is, typical network structures
emerge for these two types of epilepsy. The time evolution of
the network shows that such tendency in classification al-
ready appears in the epochs �c� and �d�, in which a few
network structures in LTLE or RTLE groups become clus-
tered as a subgroup. The similarity in network structures be-
gins to occur even in the preceding epoch during two epochs
before the onset of the seizure. We find that the occurrence of
a similar network structure is strongly correlated with the
occurrence of the preictal state, which has been reported in
the previous work on seizure anticipation. The duration and
strength of the epileptic state of a patient depends much on
the individuals. In particular, the duration varies widely from
a few minutes to a few hours �21–24�. These individual dif-
ferences in the epileptic processes make it difficult to ex-
trapolate the classification of two epilepsy groups in the ear-
lier epochs. However, at one minute before the seizure onset,
most patients would be faced with the preictal state, so that
we could estimate the classification of two epilepsy types at
the EEG period.

As expected, the LTLE epilepsy group is well clustered by
D�X,Y� in Fig. 3�e�, except for one patient, during the EEG
period before the seizure onset. In comparison, the classifi-
cation attempt by the survival ratio in Fig. 3�f� is not so
successful. The significant difference in the clustering perfor-
mance for two methods is due to the fact that the survival
ratio considers only the linkage of nodes of two graphs in
comparison, while D�X,Y� considers both the linkage of nodes
and the distance of edges, simultaneously. Therefore, D�X,Y�
reflects the shrink or expansion of edges in a local subtree of
the EEG channel networks quite well, which result from the
change in correlation between some channels on the left or

the right hemispheres of an epilepsy patient. We showed that
the mean cross correlation of channels can vary depending
on hemispheres and EEG epochs. Note that under the weak
noisy environment the linkage of some nodes in a graph
could be distorted and misplaced, which can be better
handled by D�X,Y� with the distance metric. To investigate the
robustness of the classification in Fig. 3�e�, we segment the
fifth EEG epoch into six EEG intervals of 10 s long and
construct the dendrograms in the EEG segments. We find
that the all six dendrograms have the same hierarchical clus-
tering structure. In Figs. 4�a�–4�f�, five LTLE patients and
four RTLE patients are classified as LTLE and RTLE groups,
respectively, and the two patients, one LTLE and one RTLE
patient, are classified as another group and those hierarchical
clustering structures are sustained during the six segmented
EEG intervals. This implies that the classification of the two
types of epilepsy based on the global network of the scalp
EEG channels is also robust even in the 10 s EEG time scale.
The difference between the dendrograms constructed in the
different EEG time scales could occur due to the lower fre-
quency or higher frequency dominance in the different EEG
time scales. Further investigation on the dependence of the
global network structure on the EEG time scale is needed.

There are some common channel connections in each type
of patients but those channel connections do not provide any
information about lateralization because they are globally
distributed on both hemispheres. Therefore, the pairwise re-
lationship of specific scalp EEG channels is not appropriate
for obtaining any meaningful information because the local
brain functions and their functional relationship changes all
the time due to their perpetual internal and external activi-
ties. Instead, the global feature of the channel relationship
provides us with relatively robust and meaningful informa-
tion on the brain state of the epilepsy patient, in spite of
frequent local fluctuations in its network structure. Our re-
sults suggest that a seizure focus located on one hemisphere
recruits the channels around it, constructing a latent charac-
teristic network. With a trigger turned on, this latent network
surfaces, facilitating a seizure onset. This assumption for the
existence of a latent network might be useful for explaining
the dynamic characteristic of the brain of the epilepsy pa-
tient.

In order to test the robustness of the classification of two
types of epilepsy, we applied a perturbation test with
weighted average discrepancy pairs �WADP� �25�. The
WADP method evaluates the robustness of the clustering re-
sult by comparing the clustering of the original data set and
the perturbed data set. The perturbed EEG of a channel i�yi�
is defined as yi=xi+R�k�s�xt�gi, where xi is the normalized
EEG of a channel i, Rk is the noise ratio �R1=5% , . . . ,R20

=100% �, s�xt� is the mean value of the standard deviations
of all normalized channel EEGs at time t, and gi is the nor-
malized Gaussian random noise. In constructing the dendro-
grams from the perturbed EEG data set of all patients, we
investigate how much elements of the dendrograms remain
with the same clustering structure at the different perturba-
tion levels. For each cluster �one cluster consists of five
LTLE patients separated by the threshold in Fig. 3�e�, the
other cluster consists of the other six patients�, a cluster-
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specific discrepancy rate is calculated as D /M, where D is
the number of patient pairs that do not remain together in the
clustering of the perturbed data and M is the number of
patient pairs in the original cluster. We found that D /M at all
perturbation levels is zero, that is, two clusters remain with-
out exchanging their elements in all perturbation levels. In
Fig. 5, we present the discriminative weight �DW� of two
types of epilepsy for the divergence rate and the survival

ratio. Theoretically, if DW is less than 1, it indicates the two
types of epilepsy have no discriminative capability �26,27�.
In comparison of two dissimilarity measures, the divergence
rate is more discriminative than the survival ratio at all per-
turbation levels, and the DW is not so sensitive to the per-
turbation of random noise. Therefore, from this perturbation
test, we can show that the hierarchical clustering of two
types of epilepsy in Fig. 3�e� is robust and the divergence

FIG. 3. Dendrograms of the 40 min scalp EEGs are segmented into five EEG periods of 8 min. The dendrograms are constructed with
11 MSTs of all epilepsy patients at each segmented EEG period, respectively. �a�–�e� are dendrograms constructed with D�X,Y� as a measure
of dissimilarity. �a� The first EEG epoch �from 32 to 40 min�, �b� the second EEG epoch �from 24 to 32 min�, �c� the third EEG epoch �from
16 to 24 min�, �d� the fourth EEG epoch �from 8 to 16 min�, �e� the fifth EEG epoch �from 0 to 8 min before seizure onset�, and �f� the
dendrogram constructed with the survival ratio as a measure of dissimilarity, at the fifth EEG epoch.

CLASSIFICATION OF EPILEPSY TYPES THROUGH¼ PHYSICAL REVIEW E 73, 041920 �2006�

041920-7



rate is appropriate as a dissimilarity measure of the hierar-
chical networks.

III. CONCLUSION

In this paper, we hypothesized that different types of epi-
lepsy have different encephalographic network structures. To
test the difference between both types of epilepsy, we used a
repeated measures ANOVA test with the mean cross correla-
tions of all epilepsy patients. This test showed that the dif-

ference in both types of epilepsy is not significant. We also
investigated the global feature of the channel relationship in
multichannel EEGs. We used the MST to construct the hier-
archical network of multichannel EEGs, reducing the size of
the correlation matrix, while maintaining the skeleton of the
interrelationship. The dissimilarity of two network structures
is quantified by defining D�X,Y�, which measures both the
linkage of nodes and the distance of edges. We found that in
comparison with the survival ratio D�X,Y� can serve as a good
measure for clustering the network structures constructed

FIG. 4. �a�–�f� Dendrograms of the fifth EEG epoch segmented into six EEG periods of 10 s. Each dendrogram is constructed on the
segmented EEG duration which begins at �a� 60, �b� 50, �c� 40, �d� 30, �e� 20, and �f� 10 s before the seizure onset.
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from the scalp EEGs of epilepsy patients, reflecting the con-
traction or expansion of local subtrees occurring in the epi-
leptic process.

The dendrogram technique based on the D�X,Y� as a dis-
similarity measure is found to classify two types of epilepsy,
LTLE and RTLE, which exhibit different network structures.
In particular, as the seizure onset is approached the network
structures of epilepsy patients are found to become more and
more distinct. Such an emergence of similar network struc-

tures within a group could be understood as evidence of the
presence of latent networks, which may be associated with
facilitation of the seizure onset. To test the robustness of the
classification result, we segmented the 1 min EEG period
into 10 s EEG intervals. We found that the two types of
epilepsy are also well classified in the 10 s EEG time scales.
We also applied the perturbation test with the WADP
method, adding a Gaussian random noise. We found that the
classification result and the hierarchical network structure of
multichannel EEGs are not sensitive to the perturbation of
random noise, ensuring the robustness of this methodology
based on the divergence rate.

Our results suggest that the global features of the channel
relationship based on MST and their time evolution provide
meaningful information on the transient brain state of an
epilepsy patient. Our approach could be used for classifying
other epilepsy types or monitoring the change of the dynami-
cal state of the epilepsy patient. Further work on the global
network on a specific spectral band, which uses phase syn-
chronization instead of cross correlation, and the dependence
of the global network structure on the EEG time scale is
needed.
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