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Membrane inclusions such as membrane-embedded peptides or proteins exhibit a curvature-dependent in-
teraction with the surrounding lipid matrix due to the mismatch between their intrinsic curvature and the local
membrane curvature. This interaction causes an inhomogeneous lateral distribution of the inclusions and a
corresponding adjustment of the vesicle shape. We have studied theoretically the axisymmetric equilibrium
shapes of lipid vesicles with mobile inclusions, taking into account that the membrane free energy includes the
elastic energy of the lipid bilayer and a contribution due to an inclusion-membrane interaction. Equations
describing the shape are derived by minimizing the total free energy at fixed membrane area, enclosed volume,
and number of inclusions and are then solved numerically. It is shown that vesicle shape may assume a
symmetry that differs from that of the vesicle with no inclusions. If the inclusion-membrane interaction
exceeds a certain value, there is no axisymmetric solution of the equations with a continuous and derivable
lateral density of inclusions over the whole area of the vesicle. When approaching the critical vesicle shape, the
shapes obtained differ qualitatively from those described by the area difference elasticity model of the elastic
properties of lipid membranes. In general, vesicle shapes adjust to the presence of inclusions by increasing
regions with favorable curvature and decreasing regions of unfavorable curvature in a way such that the lateral
distribution of inclusions becomes inhomogeneous.
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I. INTRODUCTION

Biological membranes are multicomponent entities com-
prising a lipid matrix decorated by embedded and attached
proteins and protein complexes. The essential element of
many cellular processes such as intracellular protein trans-
port �1�, vesicle formation �2�, and the establishment of cel-
lular polarity �3� is the compositional variation over the
membrane area. Most of such processes are also accompa-
nied by changes of membrane conformation, which implies a
coupling between cellular or organelle shapes and membrane
lateral organization �4,5�. The physicochemical basis of these
phenomena can be understood by studying simpler mem-
brane systems. Studies of vesicles whose membranes are
composed of a single lipid species, for instance, helped in
understanding the essential aspects of the elasticity of liquid
membranes that determine lipid vesicle shape �reviewed in
�6��. Theoretical and experimental studies of membranes at
the next higher level of complexity—i.e., membranes com-
posed of binary mixtures—already showed the coupling be-
tween vesicle shapes and lateral distribution of membrane
components and the complexity of the problem. This subject
has been reviewed in a recent work of Harden et al. �7�.

An example of a relatively simple binary membrane sys-
tem that allows for a strict theoretical approach is the single
lipid membrane with embedded, laterally mobile, membrane
inclusions �8�. Such inclusions can be any membrane consti-
tuting molecule or any assembly of molecules distinct from
the surrounding lipid matrix. In such a simplified binary sys-
tem the lipid molecules that are not forming the inclusion

can be treated as a continuum and the effect of inclusions on
the state of a lipid vesicle as a modification of its behavior in
their absence. Studies of membrane inclusions have focused
on the strength of the interaction between an inclusion and
its lipid environment �8,9�, the effect of the inclusion-lipid
matrix interaction on the membrane curvature �10�, and the
consequent indirect interaction between two inclusions �11�.
Here we are interested in the influence of the inclusion-lipid
interaction on the collective effect of all vesicle membrane
inclusions on its shape. The idea is followed �12� that the
equilibrium vesicle shape corresponds to the minimum of the
sum of the energy contributions to the membrane energy that
include elastic energy of the lipid matrix and free energy of
inclusions, allowing for the lateral distribution of inclusions
to be inhomogeneous due to the curvature dependent
inclusion-lipid matrix interaction. Namely, laterally mobile
inclusions are expected to move from regions of unfavorable
curvature and to accumulate in regions of favorable curva-
ture. By employing a parametric model of the vesicle shape
it has been demonstrated �5,13� that the inclusion-curvature
interaction causes a modification of the shape involving en-
hanced regions of favorable curvature and diminished re-
gions of unfavorable curvature, thereby showing the cou-
pling between the lateral density of the membrane inclusions
and the vesicle shape.

The use of parametric models for vesicle shape determi-
nations may lead to the omission of some important details
and even qualitative features in the behavior of the system.
In view of this, it is our purpose here to develop a rigorous,
self-consistent variational approach to determine vesicle
shape and the corresponding lateral distribution of inclu-
sions, based on two contributions to the system free energy:
the energy of the membrane bending and the free energy of
the inclusions. The variational approach will be a generali-*Electronic address: bojan.bozic@biofiz.mf.uni-lj.si
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zation of the theoretical work on shapes of lipid vesicles with
no inclusions. In the absence of inclusions the shapes are
usually described by the area difference elasticity �ADE�
model, in which the membrane bending energy consists of
the local and nonlocal bending energy terms �14�. Methods
for determining of equilibrium axisymmetric shapes based
on minimization of the bending energy of a thin membrane
under the constraints imposed by vesicle geometry are well
developed �15�. In order to apply them to the membrane with
inclusions, we generate an analytical expression for the free
energy of this membrane by including an expression based
on a membrane-curvature-dependent, single-inclusion energy
and by applying methods of statistical physics considering
the lateral distribution of inclusions �13,16,17�.

The outline of the paper is as follows. In the section on
theory �Sec. II� we shall first define the inclusion-membrane
interaction for isotropic inclusions and the corresponding
free energy of inclusions. Then we shall state the variational
problem of minimization of the free energy of the membrane
by a system of Euler-Lagrange differential equations. The
problem will be solved numerically for few typical examples
presented in the Results section �Sec. III�. Previous work
indicated that it is possible, by suitable expansions, to reduce
the free energy of the membrane with inclusions to the ADE
model with effective values of model parameters. Because
there are indications that, in the attained equilibrium shape,
the inclusions distribute in vesicle regions with membrane
curvatures that are favorable for the inclusions in a manner
different from that predicted by the ADE model �13�, part of
the Results section will be devoted to analysis of the validity
of the ADE approximation. In the Discussion �Sec. IV� we
concentrate on the specific results obtained by the rigorous
approach to the solution of the problem.

II. THEORY

A. Basic properties of the model

The components of the model are bending elastic energies
of the lipid bilayer and a term describing the free energy of
inclusions. We shall first define the latter and then present the
consequent expression of the membrane free energy. While
the derivation of the free energy of the inclusions is given in
detail elsewhere �17,18�, only a brief description is given
here: the free energy of inclusions derives from the single-
inclusion energy that is based on the mismatch between the
local curvature preferred by an inclusion and the actual local
curvature of the membrane at the site of the inclusion.

Local membrane curvature is described by two principal
curvatures that we denote as C1 and C2. The intrinsic shape
of the inclusion can be described by its characteristic princi-
pal curvatures C1m and C2m. The inclusions are defined as
point inclusions, meaning that their contribution to the mem-
brane area is negligible. The single-inclusion energy has
been derived previously �16,18�. In this work we shall re-
strict ourselves to isotropic inclusions for which their princi-
pal curvatures are equal to the mean inclusion curvature
�Hm�, C1m=C2m=Hm. In this approximation the expression
for the single-inclusion energy reads

E =
�

2
�H − Hm�2 +

� + �*

16
�C1 − C2�2, �1�

where � and �* are the interaction constants that express the
strength of interaction and

H =
1

2
�C1 + C2� �2�

is the mean curvature.
For any shape of a vesicle that differs from a sphere,

principal curvatures vary over the vesicle surface. Conse-
quently, due to the interaction term �Eq. �1�� and according to
statistical physics, inclusions distribute over the membrane
in a laterally inhomogeneous manner as �13�

m =
mue−E/kBT

1

A
� e−E/kBTdA

, �3�

where m is the lateral density and mu is the mean lateral
density of inclusions, kB is the Boltzmann constant, and T is
the temperature. The integration is over the whole membrane
area A. The corresponding free energy, expressed as a devia-
tion from the free energy for a laterally homogeneous case, is
�13�

Fm =� m�E + kBT ln
m

mu
�dA . �4�

The total free energy of the phospholipid membrane with
inclusions �F� then consists of two respective contributions,

F = Fm + FPC, �5�

where Fm is the contribution of the inclusions and FPC is the
free energy of the deformation of the phospholipid con-
tinuum which, in the ADE model, is expressed as �14�

FPC =
kc

2
� �2H − C0�2dA + kG� C1C2dA

+
kr

2D2A
��A − �A0�2, �6�

where kc is the bending constant, kG the Gaussian bending
constant, kr the nonlocal bending constant, C0 the spontane-
ous curvature of the membrane, D the distance between the
neutral surfaces of the two membrane leaflets,

�A = 2D� HdA �7�

the difference between the areas of the two membrane leaf-
lets, and �A0 the difference between their equilibrium areas.
As we will consider only closed shapes, we will omit the
Gaussian term in Eq. �6�, since it is constant for closed
shapes.

B. Minimization of the membrane free energy

The equilibrium configuration of the system is given by
the membrane shape and the density of the inclusions, which
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give minimal free energy under relevant constraints. We re-
quire the membrane area �A�, the enclosed volume �V�, and
the number of inclusions in the membrane �NT=muA� to be
constant.

For clarity, the above problem is expressed in dimension-
less form. We introduce dimensionless quantities

c1 = RsC1, c2 = RsC2, c0 = RsC0, hm = RsHm �8�

and

da =
dA

4�Rs
2 , �9�

where the normalization unit Rs is the radius of the sphere of
the membrane area A �Rs=�A /4��. For simplicity, we take
�=�* and, for clarity, we introduce a relative lateral density
of the inclusions � ��=m /mu�, a dimensionless interaction
constant � ��=� /kBTRs

2�, and a dimensionless constant p
measuring the total number of inclusions �p=NTkBT /8�kc�.
Dividing the free energy �F� by the bending energy of a
sphere �8�kc� yields the relative free energy

f = p� ���

8
�c1 + c2 − 2hm�2 +

�

8
�c1 − c2�2 + ln ��da

+
1

4
� �c1 + c2 − c0�2da +

kr

kc
��a − �a0�2, �10�

where �a=�A /8�RsD and �a0=�A0 /8�RsD, with 8�RsD
the difference between the areas of the two membrane leaf-
lets of a sphere of radius Rs. The first term in Eq. �10� rep-
resents the relative free energy of inclusions �fm� whereas the
second and third represent the relative bending �wb� and the
relative nonlocal bending energy �wRE�, respectively.

The extremes of f correspond to the stationary points of
the functional

g = f − �a�a − a0� − �v�v − v0� − ���n − n0� , �11�

where the relative membrane area �a=A /4�Rs
2�, the relative

volume �v=3V /4�Rs
3�, and the relative number of inclusions

in the membrane �n=NT/NT0� are fixed. From the definitions
of the relative membrane area and the relative number of
inclusions it follows that a0=1 and n0=1. The constraints
regarding the volume, the membrane area, and the number of
inclusions are incorporated in free energy minimization by
introducing the Lagrange multipliers �v, �a, and ��. In the
stationary point, the variation of the functional �Eq. �11��
with respect to arbitrary configuration deviation is zero.
Written out, the variation of g is

�g = �fm + �wb + �wRE − �a�a − �v�v − ���n , �12�

where the variation of the nonlocal bending energy ��wRE�
can be expressed by ��a��a where

��a = 2
kr

kc
��a − �a0� . �13�

We restrict ourselves to the axisymmetric shapes. There-
fore, the principal curvatures—the relative parallel curvature
�cp� and the relative meridian curvature �cm�—can be written

in the form cp=sin � /	, cm= �̇, where � is the angle between
the symmetry axis and the normal to the membrane contour,
	 is the distance between the symmetry axis and a certain
point on the contour normalized to Rs, and the overdot de-
notes the derivative with respect to the arclength �l� that is
normalized to Rs. Using the expressions for the relative
membrane area a= 1

2 		dl, the relative volume v
= 3

4 		2sin �dl, the relative difference between the monolayer

areas �a= 1
4 	�sin �+	�̇�dl, and the relative number of in-

clusions n= 1
2 	�	dl, we can express the variation of the

functional g as

�g = �� Ldl , �14�

where the Lagrangian function is written as

L = �p
	�

16

� sin �

	
+ �̇ − 2hm�2

+ � sin �

	
− �̇�2�

+ p
	

2
� ln � +

	

8
� sin �

	
+ �̇ − c0�2

− �a
	

2
− �v

3

4
	2sin �

− ��a
1

4
�	�̇ + sin �� − ��

	�

2
+ ��	̇ − cos �� . �15�

The restriction of the geometrical relation between the vari-
ables 	 and � �	̇=cos �� is taken into consideration by the
local Lagrange multiplier ��=��l��.

The variation of the functional with respect to the shape is
zero ��g=0� if the Euler-Lagrange equations

�L
�	

−
d

dl
� �L

� 	̇
� = 0, �16�

�L
��

−
d

dl� �L

��̇
� = 0 �17�

and

�L
��

= 0 �18�

are fulfilled. Using expression �15� and the definition 


=	�̇, the Euler-Lagrange equations give system of equations

in the form �̇= �̇�	 ,� ,
 ,��, 
̇= 
̇�	 ,� ,
 ,� ,� , �̇�, and

ln � = − 1 +
��

p
−

�

8

� sin �

	
+




	
− 2hm�2

+ � sin �

	
−




	
�2� .

�19�

For solving this system of equations, it is convenient to
eliminate �̇ in the expression for 
̇. This is done by first
differentiating Eq. �19� with respect to l,
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d�

dl
= −

��

2
�d


dl

1

	2 �
 − hm	�

+
cos �

	3 �
 sin � + hm	 sin � − sin2 � − 
2�� �20�

and then inserting expression �20� into the expression for 
̇,
which gives the equation

d


dl
�1 + �p� −

�2p�

2	2 �
 − hm	�2�
=

sin � cos �

	
�1 + �p� +

�2p�

2	2 �
2 − hm
2 	2��

− 3�vcos �	2

+ 4� sin � −
�2p� cos �

2	3 �
 − hm	��sin2 � + 
2� .

�21�

Written out, the equation for �̇ is

d�

dl
=

1

8

�
 − c0	�2 − sin2 �

	2

+
�p�

8
�
2 − sin2 �

	2 − 2hm



	
+ 2hm

2 �
+

p

2
� ln � −

�a

2
−

3�v

2
	 sin � −

��a

4




	
−

��

2
� . �22�

The system of differential equations �Eqs. �21� and �22��
is solved numerically by considering the expression for the
density of inclusions �Eq. �19��. In the procedure, the initial
values of the curvatures of both poles and of the Lagrange
coefficients ��v, �a, ��a, and ��� are chosen. At the poles, the
parallel and meridian curvatures are equal, and � equals zero
because the shape of the membrane has to be smooth. The
integration over the arclength l is performed from both poles.
The position along the symmetry axis �z� is obtained by us-
ing the geometrical relation between z and � �ż=−sin ��.
Both integrations are stopped at the relative area 0.5 so that
the relative area of the whole calculated shape is equal to 1.
Then, the validity of the constraints given by the volume, the
difference between the equilibrium areas of the monolayers1

and the number of the inclusions, and the continuity of 	, cp
and cm at the joining point are tested, and new initial values
of the above six quantities are set. The procedure is iterated
until the constraints and continuity of the variables are ful-
filled up to a prescribed accuracy. It can be seen from Eq.
�19� that the requirement for the continuity of � at the joining
point is automatically fulfilled by taking into consideration
the continuity of 	, cp, and cm.

C. Limit of small single-inclusion energy

Since for many shapes the principal curvatures are small
all over the membrane, it is convenient to study the shape
configurations in the limit of small, single-inclusion energy.
At equilibrium the free energy of the inclusions �Eq. �4�� can
be expressed also as �13�

Fm,equ = − kBTNTln� 1

A
� e−E/kBTdA� . �23�

If the single-inclusion energy �E� is small in comparison
to kBT all over the surface, we can expand the exponential
and logarithmic function of the expression �23� into a series.
Up to the second order in E /kBT we obtain the equilibrium
free energy of the inclusions �13� in the form

Fm,equ � kBTNT� 
 E

kBT
−

1

2
� E

kBT
�2�dA

+
kBTNT

2
�� E

kBT
dA�2

. �24�

Though the single-inclusion energy is small, Fm,equ can be
large since it is proportional to the number of inclusions.

By inserting expression �1� into expression �24�, we ob-
tain the free energy Fm,equ expressed explicitly by the prin-
cipal curvatures and the intrinsic inclusion curvature. At
large inclusion curvatures the single-inclusion energy can
also be small in comparison to kBT in some regions of the
vesicle surface if large principal curvatures are fit for the
inclusion curvature. However, the single-inclusion energy
can be small all over the vesicle surface only at small prin-
cipal curvatures and at small intrinsic inclusion curvatures.
By taking into consideration the assumption of small single-
inclusion energy all over the vesicle surface, from expression
�1� we obtain the condition for the inclusion curvature Hm

2

�2kBT /� and for the principal curvatures

C1
2 �

8kBT

�
, C2

2 �
8kBT

�
. �25�

According to Eqs. �25�, in the expression for the equilibrium
free energy we can retain only terms up to the second order
in the principal curvatures. By incorporating the inclusion
energy terms in the expression of the ADE model, the free
energy is

Fequ =
1

2
kc,eff� �C1 + C2 − C0,eff�2dA +

kr,eff

2D2A
��A − �A0,eff�2,

�26�

where we have omitted terms that are constant for closed
shapes. The effective coefficients of the ADE model are

kc,eff = kc�1 + �mu/2kc − Hm
2 �2mu/4kBTkc� ,

C0,eff = �C0 + Hm�mu/2kc�/�1 + �mu/2kc − Hm
2 �2mu/4kBTkc� ,

kr,eff = kr + Hm
2 �2mu/4kBT ,

and

1Numerically calculated difference between the equilibrium areas
of the monolayers ��a0,num� is obtained from numerically calcu-
lated difference between the areas of the monolayers ��anum� by
using Eq. �13�, �a0,num=�anum−kc��a /2kr.
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�A0,eff = �A0/�1 + Hm
2 �2mu/4kBTkr� .

Within the limit of small single-inclusion energy the set of
possible vesicle shapes is the same as for the ADE model.

D. Estimation of model constants

The membrane free energy and the corresponding Euler-
Lagrange differential equations are subject to constants that
express the characteristics of the inclusions and of the mem-
brane. It can be estimated that � is roughly no greater than
10−30 J m2 �16,19�, and we have taken into consideration that
the intrinsic curvature of inclusions �Hm� does not exceed
107 m−1 �19�. For a phospholipid vesicle with radius Rs of
10 �m, we take the number of inclusions �NT� to be no
greater than 106. The membrane bending constant �kc� is
taken to be 10−19 J �20� and the ratio between the local and
the nonlocal bending constants �kr /kc� to be 3 �21�.

For Hm�0, the criterion of small single-inclusion energy
coincides with Eqs. �25�. For Rs=10 �m, it follows that
8 /��104 so that the criterion of small single-inclusion en-
ergy is fulfilled all over the vesicle surface, other than for
shapes that exhibit a neck radius smaller than 1 �m.

III. RESULTS

A. Effects of inclusions on the shape symmetry

The equilibrium shape and the corresponding lateral den-
sity of inclusions were calculated numerically. The calcula-
tions show that the inclusions can significantly change the
shape of the vesicles. Here, we focus on the mutual effect
between the shape of the membrane and the lateral density
distribution of inclusions. The fact that the inclusions may
cause transitions between different shape classes �13� has
also been considered. We present the result for a typical case
of shape transition caused by increasing the number of inclu-
sions when the initial shape corresponds to the minimal free
energy of the phospholipid continuum �Eq. �6��.

In Fig. 1 the vesicle characteristics are presented as a
function of the number of inclusions for the oblate shape that
is asymmetric with respect to the equatorial plane. The in-
clusions were chosen to prefer positive mean curvature
�Hm0� of the membrane �Eq. �2��. In Fig. 1�a� we can see
how the number of inclusions affects the vesicle shape and
the relative lateral density of inclusions. The variation of the
latter is relatively small all over the membrane for all shapes.
At smaller number of inclusions �shapes A and B�, two re-
gions of practically constant density are seen. In the region
of the invaginated part of the vesicle the density is lower
than in the region where the mean curvature is positive,
which is the consequence of the chosen positive Hm. At a
higher number of inclusions the effect on the shape is more
pronounced. The difference between the areas of the bilayer
leaflets �Eq. �7�� increases with increasing inclusion number
until a discontinuous shape transition to the symmetric
shape, with respect to the equatorial plane, takes place �Fig.
1�b��. Near the vesicle equator these symmetric shapes have
a slightly higher density of inclusions than the mean density.

One can pose the question as to why the inclusions prefer
symmetric shapes with respect to the equator. The vesicle
assumes a shape that involves preferentially those parts of
the membrane with larger mean curvature, which is energeti-
cally more favorable. The symmetric shapes �cf. case D in
Fig. 1� have regions of relatively large mean membrane cur-
vature in the vicinity of the equator and do not have regions
of large negative membrane curvature in the vicinity of a
single pole as do asymmetric shapes.

B. Occurrence of a critical shape

It can be seen from Eq. �21� that the expression inside the
parentheses on the left-hand-side of the equation takes the
value 0 if the values of the constants � and p are sufficiently
high. Consequently, there is a singularity in the equation for
d
 /dl which is also reflected in the singularity in d� /dl as
can be seen from Eq. �20�. Caution was therefore needed in
numerically solving the system of differential equations. It

FIG. 1. The dependences of the vesicle shape, the inclusion
lateral density, and the difference between the areas of membrane
monolayers on the number of inclusions �NT� for a relative volume
�v� equal to 0.6, � to 10−4, hm to 30, c0 to 0, �a0 to 0.5022, and
kr /kc equal to 3. The number of inclusions is expressed by the
parameter p, where p=kBTNT/8�kc. The initial shape at NT=0 cor-
responds to the minimal elastic energy where �a=�a0. �a� The
axial cross sections of the shapes for values of p equal to 1 for
shape A, 395 for shape B, and 790.5 for the shapes C and D. The
relative inclusion density ��� is also presented above the shape con-
tours. �b� The relative difference between the areas of membrane
monolayers ��a� as a function of p. Solid parts of the lines denote
stable configurations, and dashed parts denote unstable configura-
tions. The dotted vertical line shows the occurrence of the discon-
tinuous shape transitions. The points marked by A, B, C and D
show the locations of shapes presented. The inset shows an enlarged
marked region of the discontinuous shape transition.
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cannot be known in advance where along the contour the
singularity will appear. By increasing the constants � and p
or varying geometrical constraints, we can approach the
shape in which the singularity first appears at one point along
the contour �representing a ring on the axisymmetric shape�.
We call such a shape a critical shape.

Convenient shapes for the study of the singularity are the
pear shapes �4,22� in which the singularity is attained in the
region of negative meridian curvature where the principal
curvatures change significantly. Figure 2 illustrates how the
critical shape is approached as �a is increased.2 A sequence
of shapes for three different values of the area difference �a
is shown where the last shape �Fig. 2�c�� corresponds to the
critical shape. The lateral density of the inclusions ��� and
the derivative d
 /dl are also shown. It can be seen in Fig.
2�a� that the density � varies smoothly over the contour.
There is an increase of the lateral density of the inclusions
towards the pole that exhibits larger principal curvatures,
since the intrinsic mean curvature of the inclusions is larger
than any mean curvature attained on the equilibrium shape.
In Fig. 2�b�, the increase in density � is more pronounced
towards the left pole than in the shape shown in Fig. 2�a�. In
Fig. 2�c�, this effect is still stronger. Correspondingly, the
derivative d
 /dl varies smoothly and attains lower minimum
values in Fig. 2�b� than in Fig. 2�a�, while in Fig. 2�c� there
is a discontinuous change in d
 /dl and the difference be-
tween the maximum and minimum values of d
 /dl is the
largest. At first sight, all three shapes appear to be almost the
same. However, a closer look reveals that, closer to the criti-
cal shape, a dip on the contour, corresponding to the strong
changing of �, becomes more pronounced when the critical

shape is approached. Also the principal curvatures vary
smoothly until the critical shape is reached. Figure 3 further
illustrates the behavior of the system for the critical shape.
Additional functions are shown: both principal curvatures,
the derivative of the density d� /dl, and the numerator and
denominator of the differential equation for d
 /dl �Eq. �21��.
Figure 3 shows that both the numerator and denominator of
the critical shape approach zero linearly in the vicinity of the
singularity.

To solve the system of differential equations for the criti-
cal shape, it is necessary to demonstrate the shape behavior
in the vicinity of the singularity point for the critical shape.
Extrapolation of the results towards the critical shape indi-
cated that the numerator and denominator of the expression
for d
 /dl �see Eq. �21�� attain zero values at the same point.
Otherwise, for all the shapes considered, the denominator
was always positive. In the vicinity of the singularity point
the system of equations is solved in the form of an expansion

	 = 	0 + 	1l, � = �0 + �1l, 
 = 
0 + 
1l ,

2The calculation of shapes for given �a is similar to the calcula-
tion of shapes for given �a0. In the first case the constraint in �a is
taken into consideration by additional Lagrange multiplicator. The
variation of the corresponding free energy leads to the equal system
of differential equations as in the latter case.

FIG. 2. Vesicle configurations at the approach to the critical shape. The lateral density of the inclusions ���, the derivative d
 /dl, and the
corresponding shape are shown for three different values of the relative area difference ��a�: 1.02837 �a�, 1.03037 �b�, and 1.032375 �c�. The
values of other model parameters are v=0.95, c0=0, hm=15, p=150, and �=0.012. The configurations were obtained by solving Eqs. �19�,
�21�, and �22�.

FIG. 3. The principal curvatures cp and cm, the derivative of the
inclusion density d� /dl, and the numerator and denominator of the
expression for d
 /dl �Eq. �21�� for the critical shape whose param-
eters correspond to the shape �c� in Fig. 2.
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� = �0 + �1l, � = �0 + �1l , �27�

where 	0, �0, 
0, �0, and �0 correspond to the singularity
point and 	1, �1, 
1, �1, and �1 denote the derivatives. Sub-
stituting Eqs. �27� into Eqs. �20�–�22� and neglecting nonlin-
ear terms, we obtain the system of equations

�1 = C�,

1 + C�,0, �28�


1 =
Cnum,		1 + Cnum,��1 + Cnum,

1 + Cnum,��1 + Cnum,��1

Cde,		1 + Cde,

1 + Cde,��1
,

�29�

�1 = C�,0, �30�

where coefficients �Ci� depend only on 	0, �0, 
0, �0, and �0.
Additionally, using the geometrical relation between 	 and �
and the definition for 
, we obtain

	1 = cos �0, �31�

�1 =

0

	0
. �32�

The derivatives of 	, �, and � with respect to arclength are
the same on both sides of the singularity point, which is
demonstrated by Eqs. �30�–�32�. However, the combination
of Eqs. �28�–�32� demonstrates that there are two different
solutions for the derivatives of 
 and �. The singularity thus
consists in the discontinuity of these two derivatives. Fur-
thermore, the abrupt changes of the functions d
 /dl and
d� /dl at the singularity point are proportional to each other
because of the linear relationship between 
1 and �1 �cf. Eq.
�28��.

C. Deviation from the expansion

The purpose of this subsection is to illustrate that under
some conditions the expansion of the membrane free energy
yielding the ADE model �Eq. �26�� is satisfactory, but that
there are conditions where the system behavior that this
model predicts differs from that obtained exactly in a quali-
tatively different manner. We shall present different ex-
amples. In the case presented in Fig. 1 the ADE model with
effective coefficients �Eq. �26�� approximates well the exact
expression �Eq. �10��, because the value of dimensionless
interaction constant is small. The two vesicle shapes pertain-
ing to the approximate expression and to the exact expres-
sion of the free energy are almost indistinguishable.

The second example presents a comparison between the
critical shape �Fig. 2�c�� which was obtained exactly and the
shape obtained by the ADE model in which the parameters
are the same as for the critical shape. The shape obtained by
the ADE model is slightly elongated and the dip on the con-
tour is smaller �Fig. 4�. However, these two shapes look quite
similar, in spite of the fact that in the treated case, due to the
relatively large intrinsic inclusion curvature, the single-
inclusion energy is actually not small in comparison to kBT.
The difference between the two solutions is even more ap-
parent when we compare the corresponding inclusion densi-

ties. In Fig. 4 the inclusion densities correspond to the mini-
mum of the free energy of inclusions �Eq. �4�� for each
shape. It can be seen that the two inclusion lateral densities
differ qualitatively, in that the lateral density of the approxi-
mate solution is smooth throughout the membrane surface,
whereas the exact solution exhibits a discontinuity in the
derivative of the inclusion density. Because the principal cur-
vatures in the ADE model �Eq. �26�� are always smooth
throughout the vesicle surface, this model can never predict
the occurrence of the critical shape.

Another example of the qualitative difference between the
exact solution and the one obtained by the ADE model will
be demonstrated by considering the effect of the dimension-
less interaction constant ��� on the prolate �Fig. 5� and oblate
�Fig. 6� vesicle shapes involving narrow necks. In both cases
shapes are chosen for the analysis for which the nonlocal
bending energy is zero at �=0. For such shapes �a equals
�a0. The characteristic of these shapes is the particularly
large principal curvatures at their neck and mouth regions,
respectively. As a consequence, the single-inclusion energy
can become very large in these regions, particularly at larger
values of �. The ADE model with effective coefficients pre-
dicts the behavior correctly only for small values of the in-
teraction constant �, in that the dependence of �a on � and
the corresponding shapes are almost the same for the exact
and approximative solutions �Figs. 5 and 6�. For prolate
shape and positive intrinsic curvature of the inclusions �Fig.
5�, the difference between the areas of the membrane mono-
layers ��a� increases at smaller � values and the width of the
neck decreases. Similarly, for oblate shape and negative in-
trinsic curvature �Fig. 6�, �a and the width of the mouth
decrease at smaller �. Further, at smaller values of � the
lateral density of inclusions is almost homogeneous over the
whole surface, whereas at larger values the density in the
vicinity of the neck �Fig. 5� and the mouth �Fig. 6� drasti-
cally decreases. The difference between the predictions of
the exact and approximative solution appears when the en-
ergy of the single inclusion is no longer small all over the
surface and, therefore, the membrane elastic energy cannot
be well described by the ADE model with effective coeffi-
cients. The increase of �a obtained by the exact solution is
more steep than for the approximate one because vesicle
shapes obtained by the exact solution are better adjusted to

FIG. 4. Comparison between the configuration of the exact so-
lution �solid lines� and the approximate one �dashed lines� by pre-
senting the relative lateral densities of the inclusions ��� and the
corresponding shapes. The lateral densities are obtained using Eq.
�3�. The values of the parameters ��a, v, c0, hm, p, and �� for both
configurations are the same as for the shape �c� in Fig. 2.
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the effect of the inclusions. In Fig. 5 the thinness of the neck
can be explained by considering that the inclusions favor
large positive curvature. The total free energy of inclusions
�Eq. �4�� is smaller for the shape of smaller neck width that
thus exhibits larger regions of positive mean curvature.
Analogously, for the oblate shape �Fig. 6�, the mouth is thin
because of the negative intrinsic curvature of the inclusions.

For large values of � there are two branches of shapes
representing the exact solution. In the dependences of �a on
� �Figs. 5 and 6�, the dotted lines correspond to larger values
and the solid lines to lower values of the free energy �f�. On

the other hand, by the ADE model with effective coefficients,
only one branch of shapes is predicted. The discrepancies in
the vesicle shapes and in the lateral density of inclusions are
more pronounced as the shapes with very narrow neck are
approached.

Our calculations show that, at a given �a, the difference
between the respective shapes is negligible in the range
where the corresponding values of � significantly deviate. At
larger values of �, the lateral density in the vicinity of the
neck and mouth drastically decreases, as does the lateral den-
sity pertaining to the exact shape. One can ask why there is
so little difference in vesicle shape at a given �a between the
exact and approximate methods, even for large �. This can
be explained by the fact that the single-inclusion energy is
large only in the small area in the neck or mouth region,
where the density � drops, and therefore the respective
shapes at given �a are almost the same.

IV. DISCUSSION

We have analyzed the effects of vesicle shape and lateral
distribution of laterally mobile membrane inclusions on each
other. Membrane inclusions—e.g., single species of peptides
or proteins—were considered as embedded in the lipid ma-
trix. Polymers attached at one side of the membrane could
constitute an analogous system, with the same expected be-
havior �23�. These systems provide a relatively simple ex-
ample of membranes composed of two components. Studies
of the behavior of membranes with mixed composition are
relevant because biological membranes are multicomponent
membranes and because many biological processes depend
on how these components distribute or even segregate later-
ally. Whereas the general treatment of binary mixtures usu-
ally requires the application of different approximations, the
advantage of the model treated here, which is a special lim-
iting case of binary mixture systems, is that its behavior can
be studied in a rigorous manner, allowing for a detailed in-
vestigation of the model properties. On the other hand, this
model does not contain features of binary mixtures such as
the possible dependence of membrane mechanical constants
on the local fractions of membrane components. In the fol-
lowing we shall, after discussing the model and methods of
analysis, evaluate, on the basis of exact calculations, the ap-
plicability of the two approximate methods—i.e., the expan-
sion of the free energy up to second order and the use of the
parametric models. We shall then pay special attention to the
features revealed by the rigorous approach and, in particular,
discuss the reasons causing the occurrence of the critical
shape.

The single-inclusion energy is defined as the consequence
of the mismatch between local membrane curvature and the
intrinsic shape of the inclusion. Due to the corresponding
energy term, mobile inclusions distribute over the membrane
according to Boltzmann statistics. As discussed earlier �13�
this approach differs from models where a phenomenological
coupling between the membrane curvature and the area den-
sities of membrane constituents was applied according to a
Ginzburg-Landau expansion method �10�. Essentially, it is
based on the energy of the interaction of an individual em-

FIG. 5. The dependences of the difference between the areas of
membrane monolayers ��a� on the dimensionless interaction con-
stant ��� for the prolate shape of the relative volume �v� equal to
0.85, the constant p �kBTNT/8�kc� equal to 150, the relative intrin-
sic curvature of inclusions �hm� equal to 30, the relative spontane-
ous curvature of membrane �c0� equal to 3, the relative equilibrium
difference between the areas of membrane monolayers ��a0� equal
to 1.2833, and the ratio between the nonlocal and local bending
constants �kr /kc� equal to 3. The line composed of the solid and
dotted parts denotes �a of shapes obtained by solving Eqs. �19�,
�21�, and �22�. It ends where we encountered numerical problems.
The dashed line denotes �a of shapes obtained within the ADE
model. The axial cross sections of shapes at the indicated positions
are given. For the shape with narrower neck the density � is also
presented.

FIG. 6. The same as in Fig. 5 except the shape presented is
oblate. Also values of the constants are the same as in Fig. 5 except
v=0.6, hm=−30, c0=0, and �a0=0.5022.
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bedded molecule with the membrane curvature at the site of
the molecule. The interaction term in this model is propor-
tional to the square of the mean curvature whereas the
Ginzburg-Landau expansion leads to the corresponding en-
ergy term that is proportional to the mean curvature.

We neglect the effects arising from direct interactions be-
tween inclusions. The effect that is associated with the sol-
vent entropy density of the phospholipid molecules �24� is
also not included. It can be estimated and compared to the
effect that is associated with the inclusion entropy density
given in our model by the second term in Eq. �4�. The evalu-
ation of the two entropy densities for the examples presented
in the Results section gives the result that the solvent entropy
is 10 times smaller than the inclusion entropy. In addition,
the variation of the solvent entropy density over the mem-
brane area is smaller than the corresponding variation of the
inclusion entropy. The ratio between these entropy terms es-
sentially depends on the density of inclusions. In our ex-
amples the largest values of this density are achieved in Fig.
1. We consider that the omission of the solvent entropy is
acceptable.

We used the expression of the free energy for isotropic
inclusions, added it to the membrane bending energies
�12,13�, and looked for the vesicle shape that corresponds to
the minimum of the total free energy of the system. The
system was restricted to the case of axially symmetric inclu-
sions because, for simplicity, we decided not to include in-
clusion orientation as an additional degree of freedom �25�.
Even with this simplification the inclusion-lipid matrix inter-
action still involves two independent energy terms measuring
the deviation of the mean curvature from the intrinsic curva-
ture of the inclusion and the effect due to the difference
between the values of the two principal curvatures. The
analysis was only performed for one value of the ratio be-
tween the two respective interaction constants �� /�*=1� and
therefore does not provide information about the relative in-
fluences of these two interaction terms. The focus of the
analysis was rather on formulating the variational problem of
minimization of the vesicle free energy. This problem was
stated at relevant constraints, and the corresponding system
of Euler-Lagrange differential equations was derived. The
system of equations obtained �Eqs. �19�, �21�, and �22�� is a
generalization of the Euler-Lagrange differential equations
which have been used in vesicle shape determinations �15� in
that, in addition to the variables defining vesicle shape, they
involve as an additional variable the lateral density of the
inclusion.

It has been shown for the free energy of the two compo-
nent vesicles �26�, and also for the system with inclusions
�13�, that under certain conditions it can be expressed in
terms of the ADE model with effective model constants. We
rederived this expansion for an arbitrary value of intrinsic
inclusion curvature �Hm�. Within a reasonable range of
model parameters, the numerical solutions obtained for the
shape and inclusion density differ only little from the predic-
tions obtained on the basis of the ADE model with effective
model constants �Eq. �26��. The effects of the inclusions can
therefore be exactly described in this range of model param-
eters by the usual methods for treating the ADE model. If we
calculate �a and the corresponding shape within the limit of

small single-inclusion energy for the values of parameters
given in Fig. 1, we find that the results are almost identical to
those obtained without expansion. However, the validity of
the ADE approximation at a small total number of inclusions
is guaranteed only provided that the principal curvatures are
small over the whole membrane area and that Hm is small.
From the expressions of the effective coefficients we can
also estimate the importance of the value of inclusion curva-
ture on the shape configuration. Thus, if we assume that
Hm�2kBT /�, then the configurations obtained are almost in-
dependent of the inclusion curvature, as we can deduce from
the effective coefficients. Otherwise, if we assume that Hm
2kBT /�, then the effect of Hm becomes significant since
the corrections to the effective coefficients are proportional
to the square of Hm.

In this work the effect of inclusions on vesicle shapes was
analyzed only for a few specific examples. However, the
obtained results can be extrapolated also to some other re-
gions in the space of system parameters. For instance, in
order to deduce the behavior of the oblate vesicle containing
inclusions with negative intrinsic curvature as a function of
the inclusion number, the behavior of the oblate vesicle at
increasing the number of inclusions �Fig. 1� can be related to
its behavior at increasing interaction constant �Fig. 6�. Thus,
if the inclusion curvature for the case presented in Fig. 1
were negative instead of positive, by increasing the inclusion
number the corresponding configurations would involve nar-
row necks where the inclusion density significantly drops,
similar to those presented in Fig. 6. Analogously, if the in-
clusion curvature for the case presented in Fig. 6 were posi-
tive instead of negative, configurations would be similar to
those presented in Fig. 1 and at large interaction constants
the shapes would be symmetric with respect to the equatorial
plane.

It has to be borne in mind that it is the inclusions that
induce the transition between different shape classes, as was
shown here for the transition from a stomatocyte to a disco-
cyte shape class �Fig. 1�. It is reasonable to expect similar
behavior also for other shape classes—e.g., that similar tran-
sitions occur between prolate shapes with and without equa-
torial mirror symmetry. The interdependence between the lat-
eral distribution of the membrane constituents and the
membrane shape plays an important role also in the undu-
lated tubular shapes that are a subject of increasing interest
�27,28�. It can be seen from the single-inclusion energy �Eq.
�1�� that the inclusion which is characterized by its intrinsic
principal curvatures is sensitive also to the Gaussian curva-
ture �C1C2� which differs over the undulations and therefore
modulates the single-inclusion energy and the free energy of
inclusions even if the mean curvature of the membrane �H�
were constant over the membrane. Thus, in our model the
inclusions can induce a transformation of a cylindrical shape
to the undulated shape. The transformation of the cylindrical
shape to the undulated shape can also be understood on the
basis of the expression for the effective coefficient of spon-
taneous curvature �C0,eff� from which it is evident that posi-
tive inclusion curvature causes the increase of C0,eff. It has
been previously demonstrated that the increase of the spon-
taneous curvature induces the transformation into the undu-
lated shapes �29�.
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Minimization of the total free energy �Eq. �5�� has been
studied by parametric models which could predict the
inclusion-initiated shape transitions from axially symmetric
to nonaxisymmetric shapes �13�. It should nevertheless be
stressed that the shapes obtained by using parametric models
are in general restricted to a class of shapes defined by the
chosen ansatz function. If the guessed ansatz is relevant, in
that it is supported by the experimentally observed shapes,
the parametric and rigorously obtained shapes differ prima-
rily in that the exact solution yields a lower total energy than
the parametric one. However, the parametric models, as our
analysis shows, cannot predict the singular behavior of the
system depicted in Figs. 2 and 3.

Our analysis revealed a singularity in the Euler-Lagrange
system of equations, reflecting a possible discontinuity in the
derivative of the lateral density of the inclusions and the
derivative of the meridian principal curvature of an axisym-
metric shape on the arclength �Fig. 3�. The example pre-
sented in Fig. 2 showing the buildup of the singularity on
increasing the relative area difference �a illustrates the rea-
sons for its occurrence based on the closeness of the vesicle
membrane. The solution of the variational problem obtained
in the vicinity of the �a value at which the singularity occurs
shows large variations of cm and � within a short region of
the vesicle area. In our case of large hm this behavior can be
understood by the tendency of inclusions to accumulate in
the regions of both poles where the mean curvatures are
higher than in the vesicle middle. The inclusion lateral den-
sity is the highest at the pole with larger mean curvature.
However, it is locally maximal also at the other pole and thus
it decreases away from each pole of the vesicle to attain a
minimum in the vesicle central region. There is also the ten-
dency in the system to have the membrane area with curva-
tures favorable to inclusions as large as possible with the
consequence that, at a given value of �a, membrane curva-
tures around poles vary much less than in the case of a
vesicle without inclusions �see Fig. 4�. In accordance with
this behavior, the lateral density of inclusions is decreasing
towards the vesicle central region from both poles in a con-
vex manner which makes it such that the matching can only
occur within a small vesicle region. By increasing �a, the
increased mean principal curvatures at vesicle poles attract
more and more inclusions to the pole regions, which makes
the matching region in the vesicle middle narrower and nar-
rower. The critical point occurs when this region becomes
infinitely thin. A still further increase of �a would lead to
even larger mean curvatures at vesicle poles and more accu-
mulated inclusions there, with the consequence that the in-
clusion lateral density could not be matched anymore in a
derivable manner. Altogether, at given spontaneous curvature
of the membrane and equilibrium area difference and a suf-
ficiently strong interaction strength ��� together with the
large number of inclusions �NT�, the lateral distribution of
inclusions governed by the inclusion density in the vesicle
pole cannot match anymore the lateral distribution governed
by the inclusion density in the other vesicle pole. However,

there is no phase separation up to the critical shape since the
inclusion density is continuous. The discontinuity in d� /dl is
related to the discontinuity in the derivative of the meridian
curvature �cf. Eq. �20��. These effects, at a given interaction
strength, are more pronounced in shapes that involve large
values of principal curvatures at some vesicle locations. On
the other hand, our calculations show �unpublished� that at
increasing interaction strengths the singularity appears in
shapes that do not involve large values of principal curva-
tures. It has to be pointed out that the generalization of the
present model taking into account the direct interactions be-
tween the inclusions may smooth out the discontinuity in the
derivative of the inclusion density in the critical shape.

The occurrence of the singular behavior described may
have parallels in other related systems. Recently it was pro-
posed, on the basis of theoretical study, that singular behav-
ior exists also in one-component membrane vesicles in
which the membrane constituents exhibit in-plane orienta-
tional ordering according to the local difference between the
two principal membrane curvatures �25�. The same method
of minimization of the membrane free energy that is used in
this work was applied to the relevant free energy including
the contribution of the orientational ordering and direct in-
teractions between the membrane constituents. A critical
shape occurred for some values of model parameters
whereby the orientational distribution exhibited a sharp peak
�25�. Both systems, membrane with inclusions and mem-
brane consisting of building blocks that may undergo orien-
tational ordering, involve energy contributions that are al-
ways negative, due to an additional “internal” degree of
freedom. The singularity appears to occur when the effects
due to this additional degree of freedom counterbalance the
local isotropic bending �25�.

The results presented in Figs. 1 and 2 show how the shape
and lateral distribution of inclusions are coupled. Due to
curvature-inclusion interaction the inclusions redistribute in
an inhomogeneous manner which is against the entropy ef-
fect. The adjustments of the shape and lateral distribution of
inclusions are such that the shape is changed in the direction
to allow for a larger part of the vesicle membrane to have
mean curvatures more favorable to inclusions and less mem-
brane to have unfavorable mean curvatures, whereas the de-
viation of the lateral distribution of inclusions deviates less
from the homogeneous distribution than in the case of an
unadjusted shape �12,13�. The variational principle applied
in our analysis assures us that the deviation of the lateral
distribution of mobile membrane inclusions from the homo-
geneous distribution corresponds to the minimal free energy.

In conclusion, a rigorous treatment of the coupling of
vesicle shape and lateral distribution of inclusions caused
by a curvature-dependent membrane-inclusion interaction
shows a nonlinear behavior expressed in specific shape
modifications. It also shows the occurrence of a critical axi-
symmetric shape up to which the lateral density of mem-
brane inclusions is continuous and derivable over the whole
vesicle area.
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