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Experiments reported by Blake et al. �Phys. Fluids., 11, 1995 �1999�� suggest that the dynamic contact angle
formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends
on the flow field and geometry near the moving contact line. We examine quantitatively whether or not it is
possible to attribute this effect to the bending of the free surface due to hydrodynamic stresses acting upon it
and hence interpret the results in terms of the so-called “apparent” contact angle. It is shown that this is not the
case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments,
the variations of the “apparent” contact angle �defined in two different ways� caused by variations in the flow
field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate
that the actual �macroscopic� dynamic contact angle—i.e., the one used in fluid mechanics as a boundary
condition for the equation determining the free surface shape—must be regarded as dependent not only on the
contact-line speed but also on the flow field and geometry in the vicinity of the moving contact line.
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I. INTRODUCTION

Experiments reported by Blake et al. �1� pose a funda-
mental question for the mathematical modeling of dynamic
wetting. The essence of the results is that at a fixed contact-
line speed the dynamic contact angle—the angle at which the
free surface meets the moving solid boundary—depends on
the flow field and geometry in the vicinity of the moving
three-phase-contact line. Specifically, it was demonstrated in
curtain coating �Fig. 1�, where a liquid sheet falls vertically
onto a moving solid substrate, for a given gas/liquid/solid
system and a given contact-line speed, the measured dy-
namic contact angle can be varied by varying the flow rate
and/or the curtain height—that is, the other parameters deter-
mining the flow field. A typical dependence of the measured
dynamic contact angle on the flow rate for different contact-
line speeds is given in Fig. 2. This result extended the one
reported earlier �2�, where critical conditions for the onset of
air entrainment were found to be dependent on the flow field
and a term “hydrodynamic assist of dynamic wetting” was
coined to describe this effect.

The onset of air entrainment is by no means an artifact of
observations, and the effect of “hydrodynamic assist” is used
in applications of curtain coating—for example, in manufac-
turing photographic papers. However, the situation with the
contact-angle behavior in regular wetting is more subtle. A

question which naturally arises is whether the observed ef-
fect of the contact-angle dependence on the flow field and
geometry can be attributed to a bending of the free surface
due to the hydrodynamic stresses acting upon it, as suggested
previously for a number of low-resolution measurements
�see, e.g., Ref. �3��. In the experiments by Blake et al. �1� the
spatial resolution of the contact-angle measurements was
sufficiently high for the associated length scale to be small
compared with the characteristic length scale of the flow
field variations due to changes in the flow conditions, and
because of that, the authors had to question such an expla-
nation.

The goal of the present work is to check this argument
quantitatively—that is, to try to describe the experimental
data presented in Ref. �1�, in particular those given in Fig. 2,
within the framework of a conventional approach to the
moving contact-line problem, which is based on �i� relaxing
the no-slip boundary condition at the solid surface to remove
the shear-stress singularity at the contact line and �ii� pre-
scribing the actual contact angle to be a function of the
contact-line speed and parameters characterizing the material
properties of the contacting media. The models that use this
approach are known collectively as “slip models.”

In the experiments we will be trying to describe, the cap-
illary and Reynolds numbers are of O�1� so that we will have
to consider slip models without any simplifications. Our ob-
jective is to find numerical solutions to the mathematical
problem describing curtain coating in the framework of dif-
ferent slip models with all conditions and parameters coin-
ciding with what was measured in experiments and to use
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free parameters of the models �such as the slip length� to-
gether with the actual contact angle �d �see Fig. 1� as adjust-
able, trying to fit the theory to the experiments.

II. PROBLEM FORMULATION

To model the spreading of a Newtonian liquid over a solid
surface, one has to overcome the well-known “moving
contact-line problem.” Mathematically, this comprises the
following two components: �i� the problem of removing the
stress singularity at the moving contact line by formulating
appropriate boundary conditions on the interfaces, instead of
the classical ones, to account for the specific physics of the
liquid-fluid displacement, and �ii� the problem of describing
the dependence of the dynamic contact angle �d �Fig. 1�,
which is a boundary condition for the equation determining
the free-surface shape, on the material properties of the con-
tacting media, the contact-line speed, and, possibly, other
factors affecting the flow field.

These two aspects of the moving contact-line problem
have been addressed in a number of works in the past three

decades �see Sec. 9 in Ref. �4� for a review�. The conven-
tional approach to problem �i� is to preserve the classical
boundary conditions on the free surface and relax the no-slip
condition on the solid boundary. In the literature, one can
find two ways of imposing slip as a boundary condition at
the solid surface. The first is to prescribe explicitly the ve-
locity distribution near the moving contact line in the form

u = F�x;U,s1,s2, . . . � , �1�

where u is the tangential velocity of the liquid on the solid
surface in the coordinate frame moving with the contact line,
U is the �tangential� velocity of the solid in the same coor-
dinate frame, x is the distance from the contact line, and
si �i=1,2 , . . . � are constants specific to the gas/liquid/solid
system. To remove the singularity at the contact line and
satisfy the no-slip condition far away from it, one must have
F�0; . . . �=0 and F�x ; . . . �→U as x→�. Particular forms of
�1� known in the literature are the exponential distribution
�5–7�

u = U�1 − exp�−
x

s1
�� �2�

and the algebraical ones �8�

u = U
�x/s1�s2

1 + �x/s1�s2
, s2 =

1

2
,1,2. �3�

It is worth pointing out, however, that the general condition
�1� and its particular forms �2� and �3� are motivated more by
their mathematical convenience than by physical arguments.

The second way of removing the stress singularity is to
replace the no-slip condition by the Navier condition �9�,
which assumes the slip velocity on the solid surface to be
proportional to the tangential stress acting between liquid
and solid:

FIG. 1. A definition sketch for curtain coating. �d is the actual
�macroscopic� contact angle; �app1 and �app2 are the “apparent”
angles defined in different ways. In comparing continuum theories
with experiments, the length L becomes associated with the spatial
resolution of the measurements.

FIG. 2. Map of dynamic contact angle versus flow rate showing
coating speed contours from Ref. �1� for curtain coating with a
3-cm-high curtain of 25 mPas aqueous glycerol solution on PET
tape. The spatial resolution of the measurements was less than
20 �m for all curves.
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�
�u

�y
= ��u − U� . �4�

Here � is the viscosity of the liquid; u and U are, as before,
the tangential components of the velocities of the liquid and
solid surface, respectively, in a Cartesian coordinate frame
moving with the contact line; y is the Cartesian coordinate
normal to the solid surface; and � is the so-called “coeffi-
cient of sliding friction” �10�. Particular expressions for �
depend on the physical mechanisms assumed to be respon-
sible for slip in the vicinity of the contact line, and are dif-
ferent for different models.

The conventional way of resolving problem �ii�, common
to all works in the area apart from that described in Ref. �11�,
is to assume that the actual dynamic contact angle �d �Fig. 1�
is a function of the contact-line speed with respect to the
solid surface, U, and a number of constants �i �i=1,2 , . . . �,
which characterize the material properties of the contacting
media:

�d = f�U,�1,�2,�3, . . . � . �5�

The parameters �i �i=1,2 , . . . � may include the static contact
angle �s and the known physical characteristics of the liquid
and liquid-gas interface, such as � and the surface tension �,
some “specific” material constants proposed to reflect the
specific physics of the liquid-gas displacement, as well as
empirical constants. In particular, if f is assumed to be
independent of U, then �d becomes a “material property” of
the gas/liquid/solid system and Eq. �5� turns into �d	�s.
This assumption has been made in a number of works and its
validity is discussed in Sec. IV. The functional form of Eq.
�5� also includes all empirical correlations �or “master
curves”� proposed by different authors and reviewed by
Hayes and Ralston �12�.

The Navier-Stokes equations in the bulk, together with the
classical boundary conditions on the free surface, condition
�1� or �4� at the solid boundary, and a particular form of Eq.
�5� to specify the dynamic contact angle, provide a well-
posed mathematical problem, which is conventionally used
to model coating flows. We will examine this approach to
find out whether or not it allows one to describe the data
given in Fig. 2.

It is necessary to emphasize that a number of so-called
“asymptotic models” advanced and intensively studied in the
last decade all have the above formulation at their core. They
concentrate on how one can obtain approximate results in the
situation where some parameters �usually the capillary and
Reynolds numbers� are asymptotically small. Our goal is to
test the conventional approach itself by considering the cor-
responding models without any simplifications resulting
from any approximate �asymptotic� treatment of the problem
and use precisely the same �finite� values of all parameters as
in the experiments of Blake et al. �1�.

III. CONTACT ANGLE

One can see immediately that for a given gas/liquid/solid
system and a given contact-line speed, all the arguments on

the right-hand side of Eq. �5� become fixed, so that �d
	const independently of the flow field near the contact line.
This conclusion is clearly in conflict with the results of Blake
et al. �1�, in particular with the data in Fig. 2, and we will
examine whether one can get around this contradiction by
considering hydrodynamic effects. The idea, which goes
back to the early 1970s �3�, is to account for the fact that in
experiments the spatial resolution in determining the free-
surface location is always finite, so that within the length
scale corresponding to this resolution the free surface can
bend under the action of hydrodynamic stresses, thus leading
to the deviation of the measured contact angle from �d. This
idea resulted in the concept of the so-called “apparent” con-
tact angle, an ad hoc quantity used to describe or interpret
the experimental results. If in experiments the contact angle
is extracted by indirect measurements �13,14�, then the spa-
tial resolution of the measurements is in fact an extra un-
known which, being scaled with the slip length, becomes an
adjustable parameter used in fitting the theory to the data
�15–17�.

In the case of the data given in Fig. 2, the contact angle
has been measured directly and the accuracy of measure-
ments was known �less than 20 �m for all curves�, so that
we can test the very idea of the apparent contact angle
against the experiments.

First, we have to consider what is seen and measured in
experiments and how the finite resolution of the measure-
ments could be accounted for in a theoretical model. In ex-
periments, the locations of both interfaces, the free surface
and the solid boundary, are determined imprecisely so that
effectively the interfaces are seen as “layers” of a finite
thickness rather than geometrical surfaces. The location of
the contact line is determined with the same accuracy, and
instead of the “contact line” one can see a region where the
above-mentioned layers overlap. It is the thickness of the
layers representing the interfaces that is referred to as the
nominal “resolution” of the measurements. The contact angle
is determined by fitting approximating curves to the experi-
mentally observed shapes of interfaces �typically by eye or
by computer-assisted image processing� and then measuring
the angle between the tangents to these approximating curves
at the point of their intersection. Thus, the procedure implic-
itly involves averaging and extrapolation, which are likely to
increase considerably the accuracy of the contact-angle mea-
surements, making the “effective” resolution significantly
higher �and hence the associated length scale considerably
smaller� than the nominal one. However, in what follows we
will neglect this effect and use the nominal resolution as the
characteristic length scale associated with the measurements,
since our approach is to interpret everything in favor of the
idea of the apparent contact angle. It is clear that the free
surface can bend more within a larger length scale corre-
sponding to the “nominal” resolution than within a much
smaller “effective” one.

Now, when we have an extra length scale—i.e., one asso-
ciated with the accuracy of measurements—we can define
the apparent contact angle in a theoretical �macroscopic�
model, where, of course, the interfaces are described as geo-
metrical surfaces of zero thickness and their locations are
known precisely. For a given length scale L associated with
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the finite spatial resolution of the measurements �OA, Fig. 1�
one can define the apparent contact angles in the theoretical
model in the following two ways. First, it could be the angle
between the solid surface and a chord connecting the contact
line and a point on the free surface at distance L from the
contact line, �app1 �Fig. 1�. This definition reflects the idea
that in experiments we always deal with chords rather than
tangents, and the resolution is simply the length of the cor-
responding chord. The second way to define the apparent
contact angle is to consider the angle between the solid sur-
face and the tangent to the free surface drawn at distance L
from the contact line, �app2 �Fig. 1�. This definition is sup-
posed to account for the difficulties in approaching the con-
tact line experimentally. Just this definition has been used in
a number of theoretical works �18,15,16�. Obviously, both
�app1 and �app2 tend to �d as the accuracy of the contact-angle
measurements increases. For sufficiently high resolutions,
�app1 is always between �app2 and �d so that, strictly speak-
ing, we could consider �app2 only. However, we will look at
the behavior of �app1 as well since it is �app1 that mimics the
experimental procedure of determining the contact angle �1�.
The question we will try to answer in the following section is
whether for the given spatial resolution the variation of �app1
or �app2 with flow rate is sufficient to account for the ob-
served effect.

IV. METHODOLOGY

The procedure of comparing the numerical solutions ob-
tained in the framework of the models sketched in Sec. II
with the data given in Fig. 2 is as follows. First, we choose

one of the conditions �2� and �3�, or �4� to remove the stress
singularity and set its parameters. Those parameters are sup-
posed to be material constants and hence independent of the
flow rate. Then we choose the definition of the apparent con-
tact angle �app1 or �app2; the spatial resolution OA �Fig. 1� is
known from the experiments �for the data given in Fig. 2 a
conservative estimate for the spatial resolution gives
L=20 �m�. After that we can specify the value of �d, which,
according to Eq. �5�, must be independent of the flow rate as
well. We will set the value of �d to make the chosen apparent
contact angle equal to the measured one at one point of the
angle-versus-flow rate experimental curve �Fig. 2�. It is con-
venient to choose a point corresponding to a high flow rate,
where the experimentally measured contact angle approaches
the one measured in the standard plunging-tape experiment
for the same contact-line speed �1�. Now, all the parameters
of the model are set and we can vary the flow rate and follow
the evolution of the theoretically calculated apparent contact
angle. This will give us a theoretical curve to compare with
the corresponding experimental one from Fig. 2. Then the
procedure can be repeated for other values of parameters in
the slip model, for another slip model, and for the other way
of defining the apparent contact angle. We emphasize that for
a given model after setting the values of all parameters in the
way described above we vary only the flow rate while keep-
ing the contact-line speed fixed.

The above-described procedure has been carried out using
a numerical code based on the finite-element method. The
essential numerical details are given in the Appendix.

FIG. 3. Variation of �app1 with flow rate for the model using a
prescribed �exponential� slip-velocity distribution �2� with various
slip lengths. Curves 1, 2, 3, 4, and 5 correspond to s1=0.01, 0.1, 1,
10, and 100 �m, respectively. The experimental data �++ + � are
taken from Fig. 2, U=70 cm s−1.

FIG. 4. Variation of �app1 with flow rate for the model using the
Navier condition �4� with various coefficients of sliding friction.
Curves 1, 2, 3, 4, and 5 correspond to �=1000, 100, 10, 1, and
0.1 kg/ �cm2 s�, respectively. The experimental data �++ + � are
taken from Fig. 2, U=70 cm s−1.
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V. RESULTS

The results of the calculations are shown in Figs. 3–6,
where we compare theoretical curves with the experimental
data from Fig. 2 corresponding to U=70 cm s−1. For these
results, the capillary number NCa	�U /� is 0.273 and the
Reynolds number, NRe	Q /� varies from 7.11 to 23.7 �here
� is the surface tension, � the kinematic viscosity, and Q the
flow rate�. The values of �d prescribed in each case for the
apparent contact angle to match the experimental one at high
flow rates are given in Tables I and II for the slip models �2�
and �4�, respectively. Comparison with the other experimen-
tal curves from Fig. 2 gives results similar to those shown in
Figs. 3–6.

As is clear from the figures, in all cases the changes in the
apparent contact angle are too small to account for the ex-
perimentally observed effect of the flow field variation on the
contact angle. The discrepancy cannot be attributed to ex-
perimental errors given that, as reported in Ref. �1�, even in
a single measurement the typical accuracy of determining the
contact angle was about ±5�, whereas the data in Fig. 2 ob-
tained after averaging over multiple measurements were sig-
nificantly less than that.

The boundary conditions �3� lead to results similar to
those given in Figs. 3–6. One can also see from Figs. 3–6
that in all cases the magnitude of the apparent contact-angle
variation saturates as the slip length decreases and the theo-
retical curves become practically undistinguishable from one
another at smaller slip lengths. Further reduction of the slip
length reverses the trend, and the curves become more
shallow. Thus, for a given distance OA �Fig. 1�, which

TABLE I. The values of �d required to match the “apparent”
contact angles �app1 and �app2 to the experimentally measured con-
tact angle �175.5°, flow rate: 5 cm2 s−1� for a slip model with the
exponential velocity distribution �2� and various slip lengths s1.

s1 ��m� �d for �app1 �d for �app2

0.01 166.80 169.18

0.1 170.55 172.15

1.0 173.25 174.15

10.0 174.93 175.37

100.0 175.81 176.31

TABLE II. The values of �d required to match the “apparent”
contact angles �app1 and �app2 to the experimentally measured con-
tact angle �175.5°, flow rate: 5 cm2 s−1� for a slip model with the
Navier condition �4� with various values of the coefficient of sliding
friction, �.

� �kg cm−2 s−1� �d for �app1 �d for �app2

1000.0 165.33 167.90

100.0 167.03 169.30

10.0 168.98 170.77

1.0 170.95 172.24

0.1 173.05 173.92

FIG. 5. Variation of �app2 with flow rate for the model using a
prescribed �exponential� slip-velocity distribution �2� with various
slip lengths. Curves 1, 2, 3, 4, and 5 correspond to s1=0.01, 0.1, 1,
10, and 100 �m, respectively. The experimental data �++ + � are
taken from Fig. 2, U=70 cm s−1.

FIG. 6. Variation of �app2 with flow rate for the model using the
Navier condition �4� with various coefficients of sliding friction.
Curves 1, 2, 3, 4, and 5 correspond to �=1000, 100, 10, 1, and
0.1 kg/ �cm2 s�, respectively. The experimental data �++ + � are
taken from Fig. 2, U=70 cm s−1. The black circles are data obtained
in a repetition of the curve 3 calculation made using a mesh ap-
proximately twice as dense as the original.
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corresponds to the �known� spatial resolution of the
measurements �1�, in the whole range of slip lengths s1 or the
values of the coefficient of sliding friction, �, neither “appar-
ent” contact angle describes the behavior of the experimental
data. It should be noted that there are no more parameters in
the slip models that would allow one to improve the fit.

The same conclusions also follow from an attempt to fit a
theoretical curve to the data using the resolution �the distance
OA, Fig. 1� as an adjustable parameter. Our calculations
show that to make the “apparent” contact-angle variation
close to that of the observed contact angle the resolution has
to be about 150 �m—i.e., about half the curtain thickness.
This requirement is clearly beyond any reasonable interpre-
tation of the measurements, as one can conclude simply by
looking at the photograph of the curtain coating experiment,
Fig. 4 in Ref. �1�.

Thus, the simple arguments based on the order-of-
magnitude analysis advanced by Blake et al. �1� are con-
firmed quantitatively, and one can assert that the influence of
the flow field and geometry on the dynamic contact angle
cannot be attributed entirely to a bending of the free surface
under changing hydrodynamic stresses. At a fixed contact-
line speed, the flow-field variations caused by other factors
do affect the actual contact angle.

This has serious implications for modeling. Indeed, the
flow field is described by a set of partial differential equa-
tions whose solutions are fully determined by the boundary
conditions formulated on all interfaces—in other words, by a
continuous set of data. Therefore, the description of the flow
field cannot in principle be reduced to a finite �or even count-
ably infinite� number of hydrodynamic factors, which could
be put as arguments on the right-hand side of Eq. �5�. Thus,
the very functional form of Eq. �5� appears to be inadequate
for modeling flows associated with moving contact lines in a
general flow geometry. For a given liquid-solid system, the
contact angle is not merely a function of the contact-line
speed �and a number of other hydrodynamic factors�; it is a
functional of the flow field. In other words, the contact angle
�d must be part of the solution. We will briefly discuss this
issue in the next section.

A conclusion to be drawn from the tables is that in all
cases �d is far from the static contact angle, �s: in the experi-
ments �s=67�. Thus, our results do not support the assump-
tion that �d	�s when the contact line is moving, which is
used in a number of works �8,16,18–23�. This assumption
needed the ad hoc concept of an “apparent” contact angle to
describe the behavior of the experimentally observed contact
angle with the ratio of the resolution to the slip length as an
adjustable parameter to fit the theory to the data. This ap-
proach was widely used for almost two decades, but gradu-
ally it became clear �5,17� that even in treating the velocity
dependence of the observed contact angle in standard pipe-
flow experiments the assumption that �d	�s must be aban-
doned. The experiments of Blake et al. �1� and our calcula-
tions in the present paper provide a more general
understanding of the reasons for that. Indeed, it was shown
that �d depends on the flow field and, since the contact-line
speed is the main factor influencing the flow field near the
moving contact line, it will make �d deviate from �s even for
what are, in other respects, similar flow conditions.

VI. CONCLUSIONS

Our results show the following.
�i� Bending of the free surface in the vicinity of the con-

tact line and the resulting deviation of the so-called “appar-
ent” contact angle from the actual one do not describe the
effect observed in the experiments �1�.

�ii� Therefore one has to conclude that, for a fixed contact-
line speed, variations of the flow field in the vicinity of the
moving contact line caused, for example, by other closely
located boundaries do influence the actual dynamic contact
angle—that is, the angle that has to be used as a boundary
condition in the fluid dynamical modeling of dynamic wet-
ting. This effect cannot be described in the framework of the
conventional approach to the moving contact-line problem
summarized in Sec. II.

�iii� The actual dynamic contact angle is equal neither to
the static �equilibrium� contact angle �s, as suggested, for
example, in �22�, nor, as is sometimes assumed �24,25�, to
180°.

Thus, it has been shown that the conventional approach to
the moving contact-line problem, which uses the functional
form of Eq. �5� to determine the actual contact angle, is
irreparably flawed and a different one is required.

At present, the only known theory that makes �d part of
the solution and hence dependent on the bulk flow is the one
developed in �11� and briefly recapitulated in �1�. This theory
considers dynamic wetting as a particular case of a more
general physical phenomenon—i.e., the fluid motion with
formation and disappearance of interfaces. Since dynamic
wetting is, by its very name, the process of creating a new—
“wetted”—solid surface—i.e., a fresh liquid-solid
interface—it is clear that the surface properties of this inter-
face, such as the surface tension, have to relax from some
dynamic values at the contact line to their equilibrium values
away from it. The surface-tension-relaxation process de-
pends on the rate at which the bulk flow creates the free
interface and, due to the resulting surface-tension gradient,
has a reverse influence on the bulk flow. The dynamic sur-
face tensions at the contact line “negotiate” the appropriate
value of �d to satisfy the �dynamic� Young equation, which
represents the balance of forces acting on the contact line and
replaces Eq. �5� one has in the slip models. The contact angle
provides the boundary condition needed to determine the
shape of the free surface and hence has a reverse influence
on the bulk flow. As a result, the bulk flow, distributions of
the surface tensions along the interfaces in the vicinity of the
moving contact line, and the value of the contact angle all
become interdependent, and they all have to be found simul-
taneously as a solution to the corresponding mathematical
problem. This problem is much more challenging mathemati-
cally than the one considered in the present paper, and it will
be addressed in a future work. The main question remains
the same: is it possible to describe the data from �1� quanti-
tatively with realistic values of the parameters involved? Pre-
liminary estimates show that the key parameter determining
the effect is the ratio of the length scale over which the
surface tension relaxes to its equilibrium value and the length
scale associated with the Stokes regime near the moving con-
tact line. However, these qualitative conclusions are yet to be
verified quantitatively.

WILSON et al. PHYSICAL REVIEW E 73, 041606 �2006�

041606-6



It should also be mentioned that the experimental obser-
vations reported by Blake et al. �1� have recently been cor-
roborated independently �26� using an improved apparatus.
The key qualitative features that seem to have led to the
observed dependence of the contact angle on the flow geom-
etry are �a� a relatively high wetting speed and �b� a suffi-
ciently small length scale characterizing the variation of the
flow field allowed by the curtain coating setup. Recently, it
has been shown experimentally �27� that in another flow
configuration—namely, that of an impacting drop—the ob-
served contact angle also depends, besides the contact-line
speed, on the flow field in the vicinity of the contact line.
Together with the results of Refs. �1,26� this suggests that the
nonlocal hydrodynamic influence on the contact angle is a
generic phenomenon and more research into it is required to
investigate the effect of different fluid and solid combina-
tions as well as various flow configurations.

APPENDIX: COMPUTATIONAL DETAILS

The governing equations for the simulations presented
here are the dimensionless Navier-Stokes equations appropri-
ate for an isothermal incompressible Newtonian liquid of
density 	, viscosity �, and surface tension � experiencing a
gravitational acceleration of g:

Re�u · �u� = � · T + �NBo/NCa�ĝ , �A1�

� · u = 0, �A2�

where u= �u ,v� is velocity, ĝ is a unit vector indicating the
direction of gravity, and T is the stress tensor with compo-
nents T
�=−p�
�+�u
 /�x�+�u� /�x
 �p being the pressure�.
The velocity is scaled by the substrate speed U, while lengths
are scaled by the coated film thickness Q /U �where Q is the
flow rate� and stresses are scaled by �U2 /Q. The Reynolds,
capillary, and Bond numbers are therefore given by
NRe=	Q /�, NCa=�U /�, and NBo=	gQ2 /�U2, respectively.
The numerical values of NRe and NCa are given in Sec. V; the
Bond number varies from 8.34�10−3 to 0.093.

We solved Eqs. �A1� and �A2� numerically using a Galer-
kin, weighted residual finite-element formulation in which
the domain is tessellated using Taylor-Hood triangular ele-
ments featuring six velocity nodes and three pressure nodes.
Such elements satisfy the Ladyzhenskaya-Babuška-Brezzi
�LBB� stability condition �28� and, with the pressure inter-
polation one order lower than that of velocity, no “locking”
occurs �29�. The general approach is well established in the
field of coating flow simulation �30�, so only a brief descrip-
tion is given here.

The algebraic finite-element equations are derived in
terms of a right-angled “master” element, which has local
coordinates �
 ,�� as shown in Fig. 7�a�. Within this element
the velocity and pressure are expressed in terms of their
nodal values ui and pj by means of biquadratic �Qi� and
bilinear �Lj� interpolation functions:

u�
,�� = 

i=1

6

uiQi�
,��, p�
,�� = 

j=1

3

pjLj�
,�� . �A3�

With reference to Fig. 7�a� it is easy to see that the three
linear functions are given by

L1 = 1 − 
 − �, L2 = 
, L3 = �

and that each function is equal to unity when evaluated at the
vertex to which it belongs and zero at the other vertices. The
six quadratic functions Qi have the same property with re-
spect to the six velocity nodes. The Qi are also used to map
the master element in local space into each general curved
element in global �x ,y�=x space �Fig. 7�b�� via the transfor-
mation

x�
,�� = 

i=1

6

xiQi�
,�� , �A4�

where xi= �xi ,yi� are the global coordinates of the element’s
nodes. The formulation of the weighted residual equations is
completed by substituting Eqs. �A3� into Eqs. �A1� and �A2�,
weighting these by Qi and Lj, respectively, integrating over
the entire domain �, and requiring the resulting expressions
to vanish. After some manipulation using vector identities
and the divergence theorem, the equations to be solved be-
come

�
�

�QiRe�u · �u� + �Qi · T − Qi�NBo/NCa�ĝ�d�

− �
��

Qin̂ · Tds = 0 �A5�

and

�
�

Lj � · ud� = 0, �A6�

where d�=dx dy, n̂ is a unit normal to the boundary �� of
the domain, and s is the arclength along the boundary.

FIG. 7. �a� The “master” element, with local coordinates �
 ,��,
which is used to derive the finite-element equations. The numbered
black circles represent nodes at which velocity and pressure values
are to be found, while the white circles are velocity-only nodes. The
areas of the subtriangles formed by connecting point A to the ver-
tices give, when divided by the total area of the element, the values
of the linear interpolation functions Lj at point A. �b� A general
element in physical space; the master element is mapped into each
physical element by means of the quadratic transformation �A4�.
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The boundary conditions for the problem are as follows.
On the �stationary� walls of the slot feeding the curtain �Fig.
1�, the no-slip condition is applied. On the substrate being
coated, either the Navier condition, Eq. �4�, or an exponential
velocity distribution, Eq. �2�, is applied �see Sec. II� along
with the impermeability condition v=0. On the free surfaces
we have the kinematic condition,

n̂ · u = 0, �A7�

together with �a� the condition of zero tangential stress �the
viscosity of the ambient gas being negligible� and �b� the
balance of normal stress with capillary pressure. Mathemati-
cally, conditions �a� and �b� are encapsulated in the form �31�

n̂ · T =
1

NCa

dt̂

ds
, �A8�

where t̂ is the unit tangent to the free surface. This can be
inserted directly into Eq. �A5�, and after integrating by parts,
the boundary integral becomes

Qi

NCa
�t̂E − t̂B� −

1

NCa
�

��FS

t̂
dQi

ds
ds , �A9�

where t̂B and t̂E are the unit tangents to the beginning and end
of the free surface, respectively, and ��FS represents the free
surface part of the domain boundary. The remaining bound-
ary conditions are a parabolic velocity profile imposed at the
top of the feed slot, a uniform velocity profile imposed where
the film leaves the domain, and the condition that the up-
stream free surface meet the substrate at an angle equal to �d.

The free surface parametrization is based on the “spine”
approach developed by Kistler and Scriven �31,32�. The es-
sence of the method is that each node on a free surface is
constrained to lie along one of a set of conveniently defined
lines or curves �known as “spines”� which intersect the free
surface. For example, a simple linear spine �numbered i, say�
is defined by its base point bi, which may be fixed or may lie
on another spine, and its unit direction vector êi. The
free-surface node lying on this spine is then located at
x=bi+hiêi—i.e., a distance hi along the spine from its base
point. Between the free-surface nodes the shape of the free
surface is given via the curved edges of the elements that lie
along the surface—i.e., by Eq. �A4�. Hence the free surface
is represented by a piecewise quadratic curve. Nodes in the
interior of the domain are positioned along the spines accord-
ing to some suitable �often uniform� distribution—e.g.,
x j =bi+wjhiêi. The set of all hi then forms a set of parameters
that completely describes the free surfaces and allows the
interior mesh to deform in response to deformations of the
free surfaces. The unknown hi are determined by forming a
weighted residual from Eq. �A7�—i.e., by solving

�
��FS

Qin̂ · uds = 0. �A10�

In the mesh used here, linear spines are used to parametrize
the falling curtain part of the free surfaces, but in order to
achieve a convenient means of refining the mesh towards the
contact line it was more appropriate to use circular spines in

the “heel” region of the domain. The complete spine system
is illustrated in Fig. 8. The circular spines are defined by a
center point �in most cases the contact line�, a radius, and a
base point; the parameter hi for these spines is then the angle
subtended at the center point by the base point and the rel-
evant free-surface node. The most important spine in Fig. 8
is h0, which tethers the contact line �and indeed the entire
free-surface mesh� to the fixed wall of the feed slot by de-
fining the location of the vertical base line shown in the
diagram. The value of h0 �i.e., the length of the spine� is
determined from the condition that the upstream free surface
must meet the solid substrate at an angle of �d. Other impor-
tant quantities upon which mesh regions A, B, and D depend
are the angle of the circular spine h1 and the associated radial
distance Rm, which together locate the point on the down-

FIG. 8. The system of linear and circular spines used to param-
etrize the free surfaces. Spine base points are shown as circles.
Regions A and D feature circular spines centered on the contact
line; region B is represented in terms of linear spines based at two
polar origins Ou and Od, with circular arcs constructed between the
free surfaces; region C’s spines are linear and horizontal; and region
E is the feed slot, where the mesh is fixed.

FIG. 9. Part of the computational mesh showing the node dis-
tribution for �a� the low-flow-rate limit, �b� a typical medium flow
rate, and �c� the high-flow-rate limit. Note that the meshes are not
shown on the same scale.
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stream free surface that is closest to the contact line. The
radii of the circular spines in regions A and D are given as
fractions or multiples of Rm.

The spine system in Fig. 8 enabled the same mesh struc-
ture to be used under both low and high flow rate conditions;
see Fig. 9. For high flow rates, additional strips of elements
were simply inserted to maintain mesh quality. Close to the
dynamic contact line, the density of the mesh was chosen so
that the large velocity gradients on the solid surface were
sufficiently well represented. Hence the size of the elements
in the slip region was at least an order of magnitude smaller
than the slip length scale. Near the contact line the mesh
must also be suitably fine in the azimuthal direction in order
to capture the velocity field with sufficient accuracy. A
close-up of the mesh near the contact line is given in Fig. 10.
The density of the rest of the mesh was adequate for further
refinements to produce only negligible changes to the solu-
tion. As an illustration of the effect of mesh density, Fig. 6
includes �as black circles� the results from a repeat of the
�=10 kg cm−2 s−1 �curve 3� calculations made using meshes
with approximately twice the node density of those used to
generate curve 3. The results are indistinguishable on the
scale of the graph.

In the slip models that we consider, the pressure becomes
logarithmically singular as one approaches the contact line.
For example, for Eq. �4�, to leading order as the �dimension-
less� distance r from the contact line goes to zero, one has

p =
�U

�d
ln r + ¯ , �A11�

whereas the stream function in local polar coordinates has
the form �=Ur2F���, where

F��� = B1 + B2� + B3 sin 2� + B4 cos 2� ,

with

B1 = − B4 = −
�l

4�
, B2 = −

1

�d
B1, B3 = B1 cot�2�d� ,

and this generates a regular flow field. �Here r is scaled as
above by Q /U.� Since the pressure singularity in Eq. �A11�

is integrable, it has been ignored in the computations re-
ported in the literature, and the pressure over the elements
comprising the contact line was approximated in the same
way as in the bulk �described above�. However, the compu-
tational mesh necessarily includes a pressure node located at
the contact line. Since the solution cannot return the correct
�i.e., negatively infinite� value of pressure at this node, it is
desirable to redefine the pressure interpolation on the ele-
ments touching the contact line so as to avoid having a finite
pressure at this point and hence to obtain a uniformly valid
solution.

Following Suckling �33�, to cope with the singular pres-
sure field at the contact line, the linear pressure interpolation
functions in the elements adjacent to the contact line were
augmented with logarithmic functions corresponding to Eq.
�A11�. Consider Fig. 7�a� in the context of an element adja-
cent to the contact line. The numbering system employed in
the computational mesh is chosen so that local node 1 corre-
sponds to the contact line. Using Eq. �A4�, we therefore have

r�
,�� = �x − x1� = ��

i=1

6


xiQi�
,��� − x1�2

− �

i=1

6


yiQi�
,��� − y1�2�1/2

�A12�

and the logarithmic singularity can be incorporated by re-
placing interpolation function L1 by

L1
* = L1 ln r = �1 − 
 − ��ln r . �A13�

The pressure is then given by

p�
,�� = p1L1
* + p2L2 + p3L3.

Note that L1
* vanishes along the element edge opposite the

contact line �between nodes 2 and 3�, and therefore the aug-
mented elements are completely compatible with the regular
elements used in the bulk of the domain. As node 1 is
approached—i.e., as 
 ,�→0 and hence r→0—however, L1

*

provides the correct functional form to match Eq. �A11�.
Importantly, using this approach, p1 no longer represents a
finite �and therefore incorrect� value of pressure at the con-
tact line, but instead provides the coefficient multiplying ln r.

The integration of the residual equations �A5�, �A6�, and
�A10� is achieved on an element-by-element basis using the
master element and transformation �A4�, and the pressure
gradient terms in the Navier-Stokes equations give rise to
integrals over the master element of the form

� � pjLj�
,��� �Qi

�


�y

��
−

�Qi

��

�y

�

�d
d� �A14�

and

� � pjLj�
,��� �Qi

��

�x

�

−

�Qi

�


�x

��
�d
d� , �A15�

where �y /��, etc., are found from Eq. �A4�. Away from the
contact line, the integrands are polynomials in 
 and � �as
are those arising from the other terms in the Navier-Stokes
equations� and the integration of all terms is performed nu-

FIG. 10. A close-up view of the mesh near the contact line,
formed by magnifying Fig. 9�b� by a factor of 105. The coordinates
on the axes are in units of coating film thickness, which in this case
is 428 �m.
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merically by means of Gaussian quadrature. However, inser-
tion of Eq. �A13� into integrals �A14� and �A15�—and in-
deed the continuity equation, where it also appears—
produces integrands that are not regular polynomials, and
therefore standard Gaussian quadrature is not appropriate for
calculating these integrals. Another issue is that Eq. �A13� of
course cannot be evaluated at the contact line itself. To en-
able the calculation of these integrals, a small region of ra-
dius � around node 1 is excluded from the master element

and a recursive adaptive Simpson’s rule quadrature is used to
integrate over the remainder of the element. Suckling �33�
showed that the error in excluding the contact line region is
O��2 ln �� as �→0 and tested the quadrature procedure
against similar integrals for which exact solutions are known.
We tested our implementation of the method in the same way
and used the value �=10−12 in generating the results pre-
sented in this paper. A plot of the pressure field close to the
contact line is given in Fig. 11.

Note that the singularity in the pressure field also gives
rise to a corresponding integrable singularity in the free-
surface curvature at the contact line, though the contact angle
remains well defined. Unlike the pressure field, however, the
singularity in curvature does not require any special treat-
ment since the normal and tangential stress conditions are
imposed in integral form �see Eq. �A8��, and therefore the
only requirement for a uniformly convergent solution is that
the curvature should be integrable, which it is. The fact that
the free-surface discretization is sufficient is demonstrated by
the mesh independence of the results �see Fig. 6�.

Finally, the residual equations were solved using Newton
iteration in which the Jacobian at each iteration was inverted
by the frontal method �34�. The iterative process was termi-
nated when the L2 norm of the residuals fell below 10−8;
typically 4-8 iterations were needed to satisfy this criterion.
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FIG. 11. Typical dimensionless pressure contours in the vicinity
of the dynamic contact line. The field of view covers the same area
as Fig. 10. In this case Q=3 cm s−1 and �d=169°. Note that the
contour labels show multiples of 1000.
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