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We study the fundamental vibration mode of supported submillimeter-size droplets. Using an analogy with
a simple oscillator we derive a semianalytical expression for the eigenfrequency and the scaling law of the
energy dissipation within the droplet. The experimental results obtained for mercury drops deposited on glass
are compared with the model. The agreement is satisfactory for the eigenfrequencies on the whole range of size
we considered �from 0.04 to 0.9 mm�. The scaling law for the dissipation is recovered for radii larger than
0.1 mm but fails for smaller droplets. We finally discuss possible applications related to the use of vibrations
to effectively reduce the hysteresis of the wetting angle and therefore increase the mobility of the supported
droplets.
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I. INTRODUCTION

The vibrations of free liquid drops were first investigated
more than a century ago by Kelvin �1� and Rayleigh �2�.
Later, Lamb �3� found a general expression for the different
vibration modes of a free liquid drop surrounded by an outer
fluid:

�n
2 =

n�n − 1��n + 1��n + 2�
�n + 1�� + n� f

�

R3 . �1�

In this expression, � and � f are the densities of the liquid and
outer fluid, respectively, n refers to the mode number, and R
is the liquid drop radius. The surface tension � is the driving
force for the oscillations and is at the origin of the −3/2
exponent in the scaling of frequency with drop size. These
pionneering studies have been used and extended in different
fields—for example, in the case of nonlinear oscillations of
pendant drops �4�. However, the case of a liquid drop in
partial contact with a substrate has not been so fully investi-
gated. In the 1980s, microgravity experiments have moti-
vated both experimental and theoretical studies, leading to
new results in the case of axisymmetric vibrations �5–7�.
Nevertheless, the singularity of the drop shape at the triple
line has prevented analytical results. The fundamental mode
associated with a longitudinal vibration of the substrate has
not been described, and the dependence of the eigenfrequen-
cies on the wetting angle has never been fully examined.

If it is well known �8� that vibrations can help in probing
the energy barriers responsible for the wetting angle hyster-
esis, the effect of vibrations on the mobility of supported
drops has just been recently demonstrated �9,10�. These new
studies are motivated by numerous applications in microflu-
idics �11� and microelectronics �12�. They could also be of
importance in understanding fundamental questions associ-
ated with the contact line motion. The driving force for the
drop mobility can be achieved in different ways—for ex-
ample, with substrates with surface tension gradient �13–15�
or using the electrowetting effect �16�. Nevertheless, in both

cases the drop mobility is reduced because of the wetting
angle hysteresis �17�. The main idea is therefore to use vi-
brations of the substrate or another oscillating external force
acting on the drop in order to effectively reduce the hyster-
esis. Promising results have been obtained very recently
�18�, and possible applications are currently under study.

The aim of this paper is to fully characterize the funda-
mental vibration mode of a supported drop. It is associated
with vibrations of the substrate parallel to the surface. This
mode is the one that should have the most important influ-
ence on the drop mobility because the vibrations induce an
increase and a decrease of the advancing and receding wet-
ting angles, respectively �Fig. 1�. For a sufficiently large vi-
bration we expect to reach the wetting angle hysteresis
threshold and, under the influence of an external force, even-
tually move the droplet. We will not consider the second
mode corresponding to perpendicular vibrations of the sub-
strate but a similar approach to the one presented in this
paper can also be used for its characterization. An analogy
with a simple oscillator will be presented in the model sec-
tion from which we will propose a semianalytical expression
for the eigenfrequency and a scaling law of the dissipation
term with drop size. We will present the chosen system and
the measurement techniques in the experimental section
�Sec. III�. The experimental results obtained for a mercury
drop deposited on glass will be compared to the model in
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FIG. 1. Schematic representation of the droplet shape under the
influence of an external force. The deformation induces a displace-
ment dx of the center of mass and a variation �� of the advancing
and receding wetting angles.
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Sec. IV. We will finally discuss our results and some pros-
pects in the Conclusion.

II. MODEL

We first concentrate on the eigenfrequency �0 of a sup-
ported droplet vibrated in a direction parallel to the substrate.
For a sufficiently weak external force the triple line remains
fixed and the surface is deformed. The deformation is char-
acterized by the displacement dx of the center of mass and
by the variation �� of the advancing and receding wetting
angles �a and �d �Fig. 1�. We call � the equilibrium wetting
angle and assume a symmetric variation of the wetting
angles: �a=�+�� and �r=�−��. We note �S=S−S0, the sur-
face variation associated with the deformation where S0 is
the surface of the droplet at equilibrium and S its surface
under the influence of an external force. We can write �S as

�S = S0f�����2, �2�

where we include the linear relations between �S and S0 and
between �S and ��2. The function f��� takes into account the
fact that the precise relation between these quantities de-
pends on the equilibrium wetting angle value. The limiting
case where � tends to � helps understand the role of f���. In
this case the droplet has a small contact area with the sub-
strate; for �=�, the contact reduces to a point and the droplet
can freely rotate around it without any deformation. The
limit value of f��� when � tends to � is therefore 0. One can
easily see that this is no longer the case when �	�. We can
also write, for the displacement of the center of mass,

dx = g���R�� . �3�

In this expression R is the radius of the truncated sphere
�Fig. 1� and g��� a second function depending on the system
geometry.

Combining the two previous expressions we obtain

�S =
S0h���

R2 dx2, �4�

where h���= f��� /g���2. A restoring force F=−��S /dx is as-
sociated with the deformation. It reads

F = −
�S0h���

R2 dx , �5�

where � is the surface tension between the liquid and vapor.
The restoring force is linear in the displacement of the center
of mass so that we can define an effective spring constant ke

and the eigenfrequency of the droplet, �0=�ke /�V. Using
the expressions for the surface S0 and the volume V of a
truncated sphere we finally write

�0 =� 6�h���
��1 − cos ���2 + cos ��

R−3/2, �6�

where � is the liquid density. In this expression the depen-
dence on the geometry is included on h���. We compute h���
under the hypothesis that the deformation is the one obtained
at equilibrium—i.e., that the deformation is the one that

minimizes the free energy of the droplet under the influence
of a constant external force. This hypothesis can be checked
looking at the capillary number Ca=
V /� that measures the
relative importance of viscous and capillary pressures. For
the system considered experimentally the values of Ca are
well below unity, justifying the assumption of an equilibrium
deformation due to the predominance of capillary effects.

We use the program surface evolver �SE� �19� to numeri-
cally compute the function h���. We first simulate a drop
wetting a substrate parallel to the �Ox ,Oz� plane. The wet-
ting angle is given as an input parameter, and we fix the
triple-line position. We therefore use the gravity constant of
the SE to apply an external force to the droplet. Under the
influence of this external force, parallel to the substrate and
applied to the overall droplet volume, the drop reaches the
equilibrium shape that minimizes its free energy. For differ-
ent values of the gravity constant we record the different
quantities we are interested in: the advancing and receding
wetting angles �a and �r, the position of the center of mass
dx, the surface variation �S, and the ghost radius variation
dR, which will be discussed and used in the experimental
section. For what concerns the numerical estimate of h���,
we first plot �S versus dx to verify the expected quadratic
relation. Since S0 and R are known quantities, a best fit to Eq.
�4� permits us to obtain h���. The same procedure is used for
different values of the wetting angle. Calculated values of
h��� for wetting angles ranging between 90° and 170° are
represented in Fig. 2. Note that we recover the limiting case
discussed above for which h��� tends to zero when � tends to
�. This function is not material dependent and could there-
fore be used in the future for different systems. It should also
permit one, for example, to determine the angle of a tilted
plane above which the gravity force becomes larger than the
sticking one due the wetting angle hysteresis �20�. More gen-
erally this function permits one to obtain the characteristic
capillary time of a supported droplet as a function of its
wetting angle.

In the experiments presented below an inertial force is
applied to the droplet through the vibration of the substrate.
The substrate momentum diffuses within the liquid over a
distance �=�2� /� known as the Stokes length where � is
the kinematic viscosity. Above this distance the droplet
therefore experiences the inertial force. This situation is dif-
ferent of the simulated one using the SE. Indeed in the nu-
merical analysis the external force is applied to the overall

FIG. 2. Numerical values obtained for h���.
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droplet volume. A first-order correction consists in defining
an effective equilibrium wetting angle �ef f �Fig. 3�. In the
limit of a small Stokes length as compared to the droplet
radius � �

R sin � �1� we have

�ef f = � −
�

R sin �
. �7�

Finally, the corrected eigenfrequency can be calculated
using Eq. �6� but replacing the true equilibrium wetting angle
� by the effective wetting angle value �ef f.

In the limit of weak vibrations the position of the droplet
center of mass �in the vibrating frame� satisfies the differen-
tial equation

ẍ + 
ẋ + �0
2x = a0 cos��t� , �8�

where a0 is the acceleration due to the substrate vibration and
�0 the eigenfrequency discussed just above. We now need to
identify the dissipation term 
 to fully characterize the oscil-
lating drop. Since we here describe the regime with a fixed
triple line, the dissipation is due to the diffusion of the sub-
strate momentum within the liquid and therefore to the asso-
ciated shear stress. This occurs on a distance of the order of
the Stokes length �. The associated viscous force Fs there-
fore scales as

Fs �
Sc


�
ẋ , �9�

where Sc is the contact area with the substrate and 
 the
liquid viscosity. Since 
�FsR

−3, Sc�R2, and ���−1/2 with
�=�0�R−3/2 at the resonance, we therefore expect the scal-
ing


 � R−7/4 and Q � R1/4, �10�

respectively, for the inverse of the characteristic dissipation
time 
 and Q=�0 /
 the quality factor of the oscillating
droplet. It is important to note the weak size dependence of
Q, meaning that the resonance effect should be present even
for very small droplets.

III. EXPERIMENT

We choose to study mercury drops deposited on glass
slides. The liquid drop has a wetting angle of 140°. The glass
slides are first cleaned with a detergent after what they are
put into a freshly prepared piranha solution �30% H2O2 and

70% H2SO4� for 20 min. They are finally rinsed with an
ultradistilled water and dried under pure nitrogen. Mercury
drops with radius ranging roughly between 0.05 and 1 mm
have been studied. For the larger drops a microsyringe is
used for the deposition while the smallest ones are producted
using a thin capilar tube with an outer diameter of 70 �m.
Once the drop is deposited, the glass slide is inserted in the
vibrating apparatus presented in Fig. 4. A nitrogen flow is
necessary to prevent the oxidation of mercury. A low-
frequency signal is sent to the vibrator through an amplifica-
tor, and the oscillation amplitudes of the plate are optically
measured with a photodiode. A video camera is used to vi-
sualize the drop, and the image is formed through a mirror
attached to the vibrating plate. We therefore just visualize the
vibration induced to the drop by the substrate. The time ex-
posure of the camera being larger than the applied vibration
period we record ghost images of the drop. This is illustrated
in Fig. 5 for a drop with radius 0.192 mm vibrated at a fre-
quency of 252 Hz.

In the same manner that we found the relation between
the surface variation and the center-of-mass displacement,

FIG. 3. Schematic representation of the effective wetting angle
associated with the Stoke length.

FIG. 4. Schematic representation of the experimental
apparatus.

FIG. 5. Image of a vibrating R=0.192 mm mercury drop. The
measure of the ghost radius variation dR permits to calculate both
�� and dx.
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we use the SE to obtain the relation between the ghost radius
variation dR and the associated wetting angle variation ��
�Fig. 5�. For a wetting equilibrium angle of 140° we found
���96.5dR /R°. To fully and quantitatively describe the
drop oscillations we also need the relation between �� and
the associated displacement of the center of mass dx �Fig. 5�
as expressed in Eq. �3�. Once again we use the SE to numeri-
cally evaluate g��=140° � and obtain the relation ��=102.7
dx /R.

IV. RESULTS

We first concentrate on the eigenfrequency of the drops. A
simple manner to determine it is to find the frequency for
which dR is maximum. This is what we do for mercury drops
with radius ranging between roughly 0.04 and 0.9 mm. We
present in Fig. 6 the eigenfrequency as a function of the drop
size. The dotted line corresponds to Eq. �6� with a value of
�=140° corresponding to the true wetting angle of mercury
on glass. We can see that the −3/2 exponent is recovered but
that the model seems to underestimate the eigenfrequency
value. We therefore use the correction to � due to the Stokes
length �Eq. �7��. For the drop size considered in this study
the correction is roughly 10°. The full line in Fig. 6 therefore
represents Eq. �6� with �=�ef f =130°. Even if the agreement
is better, we still underestimate the eigenfrequency. This
means that the correction has to fully take into account the
deformation within the region near the substrate. Neverthe-
less, the model gives a reasonable prediction �the underesti-
mation is roughly 15%� without any adjustable parameter. A
similar agreement has been found looking at the eigenfre-
quency of the second mode, corresponding to a vibration
perpendicular to the substrate. The same approach has been
used to obtain a semianalytical expression, and the results
will be presented elsewhere �21�. We also verified that the
model gives a good agreement with the experimental data
recently obtained �10,18� for water droplets.

We now turn to the characterization of the energy dissi-
pation. The resonance effect can be illustrated by measuring
the amplitude of the wetting angle variation as a function of
the applied frequency f . This can be achieved for different
values of the substrate acceleration. We represent, in Fig. 7,
�� as a function of f for the two accelerations a0=0.48 and

0.63 ms−2 and for a droplet of radius R=0.176 mm. As ex-
pected �� passes through a maximum at the eigenfrequency
f0 and we recover a typical resonance plot. It is also not
surprising to see that the larger the substrate accelerations,
the larger the �� values get. In the inset we represent the
same quantity but normalized by the substrate acceleration.
In this case the two data sets lie on the same curve. This
means that, for the acceleration considered here, the response
of the oscillator is linear and that the hypothesis of a fixed
triple line is valid. One could extract from this curve the
bandwidth �f =
 /4� and therefore characterize the energy
dissipation. For example, from Fig. 7 we found �f �6 Hz
for the considered droplet. Nevertheless, the procedure is
rather complicated because we have to measure several reso-
nance curves in order to verify the linear response of the
system. We therefore choose a different procedure to charac-
terize the dissipation. It consists, for different fixed substrate
accelerations, of measuring the maximum wetting angle
variation—i.e., to measure �� at the eigenfrequency �0. For
the simple oscillator considered here, we know that, at the
resonance, dx=a0 /�0
. Using the relation between dx and
�� given in the experimental section we expect a linear re-
lation ��= pa0. A measure of the slope p therefore permits us
to extract the value of 
 and the associated bandwidth �f:

�f =
96.5

4��0Rp
. �11�

We represent, in Fig. 8, �� as a function of a0 for two
droplets with radius 0.177 and 0.149 mm. We recover a lin-
ear relation for the weaker accelerations which confirms the
observation from the inset of Fig. 7. For larger a0 values, the
curve deviates from linearity and tends to saturate. We inter-
pret this behavior in the following manner: when �� reaches
the value of the wetting angle hysteresis, the triple line starts
to move and part of the substrate acceleration is used for this
motion. As a consequence the angle amplitude variation satu-
rates. The same qualitative behavior is observed for the two

FIG. 6. Eigenfrequency as a function of the drop size. The dot-
ted and solid lines are calculated using Eq. �6�, respectively, with
�=140° and �=�ef f =130°. FIG. 7. Amplitude of the wetting angle variation �� as a func-

tion of the frequency vibration. The circles and diamonds, respec-
tively, correspond to substrate accelerations a0=0.48 and 0.63 ms−2.
In the inset �� is normalized by a0 to verify the linear response of
the drop oscillator.
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particles. More quantitatively, we can remark that the value
of �� at which we reach saturation is the same for the two
droplets and roughly equal to 10°. As stressed just above this
gives us an estimate of the wetting angle hysteresis which, as
expected, is not size dependent. A similar transition from a
pinned to a mobile triple line has been recently observed for
a sessile drop of water �22�. In this work the large-radius
droplets permit us to directly measure both the triple-line
position and the droplet deformation. This is not possible in
our case, and we detect the contact-line motion through the
nonlinearity of the �� versus a0 curve. Another way of de-
tecting the contact-line motion is to look at the frequency at
which �� is found to be maximum for different substrate
accelerations. In the linear regime the eigenfrequency is a
constant as expected for an oscillator with a constant dissi-
pation factor. Conversely, when we reach the nonlinear re-
gime, the contact-line motion induces a supplementary dissi-
pation source that lowers the eigenfrequency.

In the linear regime the slope is higher for the larger drop-
let. Since p is inversely proportional to 
, we recover here
the prediction of a larger dissipation for the smaller droplets.
To quantitatively test the scaling law given by Eq. �10� we
measure �f for different droplet sizes. We plot, in Fig. 9, �f
as a function of R in a log-log representation. We first verify
that we obtain values of �f that are in good agreement with
the ones directly obtained from the �� versus f plot �Fig. 7�.
The solid line represents the best fit to the expected scaling
law for the larger droplet sizes. The agreement between the
model and experiment is satisfactory for drops with radius
roughly above 0.1 mm. Conversely, below this size the dis-
sipation is found to be much larger than expected. We per-
formed a lot of measurements in this region to confirm this
apparent crossover and found that the dispersion in the ex-
perimental data increases as the droplet size decreases. We
have also verified that the disagreement is not due to the way
we prepare and deposit the drop on the substrate. It is impor-
tant to note that for the same drop the scaling law for the
eigenfrequency is respected while we found a large disagree-
ment for the dissipation term. Since the eigenfrequency is
governed by the liquid-vapor interface deformation, it is

therefore reasonable to think that a phenomenon is occurring
at the contact area between the liquid and substrate. The
most probable explanation is that for the lower sizes the hy-
pothesis of a fixed triple line is no longer valid. We therefore
think that the substrate acceleration induces both a surface
deformation and a triple-line motion. At present we cannot
definitely explain why such a behavior is obtained for the
smallest droplet sizes and plan to perform a similar experi-
ment on different substrates.The crossover could be due to
the presence of impurities on the surface but also to the onset
of slip at the liquid-solid interface.

V. CONCLUSIONS AND PERSPECTIVES

To summarize, we have used an analogy with a simple
oscillator to extract a semianalytical expression for the eigen-
frequency of a supported droplet and a scaling law for the
energy dissipation. We concentrate here on the fundamental
vibration mode corresponding to a parallel vibration of the
substrate �rocking mode�. The agreement found between the
model and experiment is rather good for the eigenfrequency
without any free parameter. The expression given by Eq. �6�
together with the numerical values of h��� �Fig. 2� could
therefore be used in the future to obtain a reasonable predic-
tion of the eigenfrequency whatever system �i.e., the wetting
angle� considered.

If the scaling law for the dissipation is verified for the
largest considered droplets, a large discrepancy is found for a
radius roughly below 0.1 mm. We cannot give a definite ex-
planation for this crossover. We nevertheless think that it is
related to the fact that for such drops substrate accelerations,
even weak, induce both a drop deformation and a contact-
line motion. This behavior is qualitatively different from the
one predicted and verified for the larger droplets. In this case,
for the weaker accelerations the drop is simply deformed
with a fixed triple line. Its motion appears when the ampli-
tude of the wetting angle variations is larger than the hyster-
esis. We plan future experiments to understand why this sce-
nario is not recovered for smaller droplets.

FIG. 8. Maximum wetting angle variation �� as a function of
the substrate acceleration for two droplets with R=0.177 and
0.149 mm.

FIG. 9. Inverse of the relaxation time 
 as a function of the
droplet radius. The solid line represents the best fit to the expected
scaling law �Eq. �9�� for the larger droplet sizes.
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