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Phase transition in two-dimensional dipolar fluids at low densities
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Monte Carlo computer simulations of a quasi two-dimensional (2D) dipolar fluid at low and intermediate
densities indicate that the structure of the fluid is well described by an ideal mixture of self-assembling clusters.
A detailed analysis of the topology of the clusters, of their internal energy and of their size (or mass) distri-
butions is used to obtain approximations to their partition functions. Within the scope of these approximations,
the results of this work suggest that the 2D dipolar fluid undergoes a phase transition from a dilute phase
characterized by a number of disconnected clusters to a condensed phase characterized by a network or
spanning (macroscopic) cluster that includes most of the particles in the system.
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I. INTRODUCTION

The condensation of simple fluids results from the free
energy balance of the high entropy gas and the low energy
liquid phases. This transition appears to be generic in simple
fluids interacting through isotropic intermolecular potentials
that are repulsive at short distances and attractive otherwise.
The dipolar hard sphere (DHS) fluid is a model where hard
(or soft) spheres with an embedded central dipole interact
through the dipole-dipole potential. As the average dipolar
interaction between two dipoles (weighted by the Boltzmann
factor) is attractive one may anticipate phase behavior analo-
gous to that of simple fluids. Indeed, a recent calculation of
the free energy of the DHS at several temperatures, based on
Monte Carlo (MC) simulations [1], suggests the presence of
an isotropic fluid-fluid transition at low densities, lending
some support to the analogy with simple fluids. However, the
structure of DHS at low densities, where the transition has
been reported, is drastically different from that of isotropic
fluids. Numerical simulations of DHS [2] (and also of
Stockmayer fluids [3]) for dipolar interaction strengths of the
order of the thermal energy, have shown that the anisotropy
of the dipolar potential promotes the formation of self-
assembled aggregates (chains, rings and more complex
clusters—see Fig. 1) in sharp contrast with the isotropic
compact clusters observed in simple fluids. Moreover, the
pair correlation function of DHS is strongly peaked at con-
tact and the internal energy is nearly independent of the den-
sity at odds with the behavior of simple fluids.

Association theories [4—8], that include the effect of clus-
ter formation in the thermodynamics, describe rather well the
slow variation of the internal energy with the density and the
size (or mass) distribution of the clusters. The simplest of
these theoretical approaches (based on simulation results
[2,6,8]) assumes that the only effect of the dipolar interaction
is to drive cluster formation and in this setting the DHS is
described as an ideal mixture of self-assembling clusters.
These theories fail to predict the existence of phase transi-
tions unless interactions among the clusters are added.

In a recent paper [8] we have found that various types of
clusters are formed in a quasi two-dimensional (2D) DHS
fluid (cf. Fig. 1): chains, rings and defect clusters (renamed
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networks in what follows as in [9,10]). The dipolar chains
and rings at very low densities were fully characterized by
analyzing their conformational properties, internal energy
and size (or mass) distribution, and a strong analogy with
equilibrium polymers [11] was found. However, we did not
address the question of the phase transition due to the diffi-
culty in extending the analysis to networks for the low den-
sity systems that were simulated [8]. In order to overcome
these problems we have performed longer simulations at
higher densities (along one isotherm only) and found a way
of including the effect of network formation in an association
theory of ideal self-assembly. This has allowed us to con-
clude that the simulation results suggest the presence of a
phase transition in the quasi 2D DHS.

We note that understanding the nature of this phase tran-
sition is important for applications based on dispersions of
ferromagnetic nanoparticles [12,13], where strong dipolar in-
teractions are present, as well as for theoretical reasons. In
fact, the interplay between cluster formation and condensa-
tion is a general problem, relevant in a variety of other the-
oretical contexts [10].

This paper is organized as follows. In Sec. II, the details
of MC simulations and the analysis of the structure of the
fluid are presented. In Sec. IIT we describe (following [14])
how a phase transition may occur in an ideal self-assembling
system and how networks can be included in the theory.
Finally, in Sec. IV we combine the results of Secs. II and III
to verify that the results of simulations of the quasi 2D DHS
indicate the existence of a phase transition.

II. MONTE CARLO SIMULATIONS AND THE
STRUCTURE OF THE QUASI 2D DHS FLUID

We have performed extensive MC simulations in the ca-
nonical ensemble for systems of hard spheres with diameter
o and dipole strength m, interacting through the pair poten-
tial
m A
EB(M Py Fio) = fy - ] (1)

Upns = Uns —

The term ry; is the distance between spheres 1 and 2, Uyg the
Fa—ry

hard-sphere potential (=% if r;, <o, 0 otherwise), 7, = o
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the unit interparticle vector and fi;, i, the unit vectors in the
direction of the dipole moments of spheres 1 and 2, respec-
tively. The centers of the spheres and their dipole moments
were constrained to lie on the same plane, and thus the
model is a quasi 2D dipolar hard sphere fluid [8].

We used N,=5776 particles in a square box with
periodic boundary conditions and, for the isotherm
m"=m(c>kzT) V=275, simulations were performed as de-

scribed in [8], at reduced densities p* = 02]7\;’1=0.05, 0.0625,
0., 0.075, 0.1, 0.15 and 0.2 (A is the area of the simulation
box). An appropriate Ewald sum [8,15], which in 2D is ab-
solutely convergent, was used to account for the long range
of the dipolar interaction. As at the dipole moment and range
of densities considered the dipolar spheres have a strong ten-
dency for clustering (see below) MC trial moves involved
both single particle moves (translation and rotation) as well
as cluster moves (translation of a whole cluster).

Calculations at different densities were started from an
initial configuration with no clusters and of the order of
5X10% cycles (i.e., attempts to rotate and move each of the
N, dipolar spheres) were discarded to allow for equilibration.
Between 100 (low densities) and 400 (high densities) con-
figurations were generated for analysis of the equilibrated
system. For each density, the configurations were obtained
from three independent runs and, in each run, the configura-
tions were separated by =~1,5X 10° MC cycles. Analysis of
the autocorrelation function of the internal energy indicates a
correlation time of about 10° MC cycles. By comparison to
the simulations performed at lower densities and for the
same m” and N, in [8], the number of MC cycles is larger by
a factor of 2-6.

Figure 1 shows snapshots of equilibrium configurations
and evidence that the structure of this system is nontrivial.
The particles tend to aggregate in clusters of several sizes
and topologies; some clusters exhibit linear aggregation only
(chains and rings) and all of the others (networks) have
branches even if most of their particles are still linearly ag-
gregated. This qualitative picture is quantified [8] by defining
a circle of diameter .. around each particle i: if there are one,
two or more additional particles within this circle, then i is
an end, an interior or a junction particle, respectively [10].
Two particles belong to a given cluster if their separation is
less than r. and the topology of a cluster is determined by the
number of ends and junctions: rings have interior particles
only, chains have two ends and no junctions, and networks
have at least one junction. The cutoff r, must be =o¢ and in
this work we took r.=1.150.

Both the total internal energy of the system and the inter-
nal energy of the clusters decrease =0.5% when the density
is increased from p*=0.025 to 0.1. At all densities, the dif-
ference between these two energies is of the order of 0.5%,
and well defined size distributions are observed even though
the clusters break and recombine during a simulation run.
Thus, as in previous works [4-8], the description of the sys-
tem as an ideal mixture of self-assembling clusters is justi-
fied.

In order to characterize the structure of the quasi 2D DHS
we have calculated, for each density, the size distribution of
chains, rings and networks, i.e., the mean number of clusters
of each topology with N particles. In Fig. 2 we plot the
results obtained for p*=0.1 (notice that we use histograms
of bin size =20, which is roughly half of the mean chain
length at m"=2.75—see [8]). Similar results are obtained
down to p*=0.05. The thick lines are the theoretical predic-
tions for the chain and ring length distributions obtained in
[8] by assuming that each chain and ring can be considered
as a dilute ideal polymer. The agreement with the new simu-
lation results shows that this hypothesis holds up to p*=0.1,
giving further support to the description of the DHS as an
ideal mixture of self-assembling clusters. Figure 2 also
shows that the exponential decay of the network distribution
for large values of N at p'=0.1 is smaller than that of the
chain distribution. This difference is found at all densities
studied (including those in [8]) and grows with increasing
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FIG. 2. Mean reduced density of chains [circles, ¢"(N,2,0)],
rings [squares, ¢"(N,0,0)] and networks [triangles, gb,*l(N)] of size
N, as obtained from simulations with p“=0.1. The lines are the
theoretical predictions for the chains and rings. Inset: mean reduced
density of networks at p“=0.05 (inverted triangles), p"=0.0625
(diamonds) and p*=0.1 (triangles).
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FIG. 3. Mean fraction of ends ({n,)/N, open symbols) and
junctions ({ns)/N, full symbols) in networks of size N, at p =0.1
(circles), 0.075 (squares) and 0.0625 (diamonds). Simulation results
are for clusters with N in the range 50-600. The statistical uncer-
tainty of these results is of the order of the size of the symbols. The
full line is the function 2/N, the fraction of ends in chains of size N.

density. This growth is due mainly to the decreasing decay of
the network distribution with increasing density, as depicted
in the inset of Fig. 2.

As mentioned previously, networks are defined as clusters
with at least one junction. This means that, by contrast to
chains and rings, the number of junctions and ends of a net-
work of length N is not defined a priori. To characterize the
typical topology of networks we have calculated the mean
number of ends, {n; ,(N)), and of junctions, {(n3(N)), at den-
sities p* =0.0625, 0.075 and 0.1, for networks of length N.
The result of this calculation is shown in Fig. 3. For the sake
of comparison, we have plotted in the same figure 2/N, i.e.,
the fraction of ends in chains of length N. For every density,
both (n; ,(N))/N and (n3(N))/N are decreasing functions of
N that decay slower than N~'. For large N (most notably for
p =0.1) (n;(N))/N appears to reach (within the statistical
error) a constant value that increases slightly as the density
increases.

Figures 2 and 3 show results for p"<0.1 only. In fact, in
simulations with p“=0.15 and 0.2 we have observed very
strong finite size effects. The distribution ¢,(N) does not
decay exponentially for large N since, in most of the con-
figurations analyzed, around 5000 particles belong to the
same network. This is an expected finite size effect: since the
particles self-assemble in larger aggregates as the density
increases (see [8]), for any finite system there is a density
above which all the particles will belong to the same net-
work. Given that this density is, for the system under study,
larger than p“=0.1, for p"<0.1 these finite size effects are
negligible. As a consequence we will assume that the trends
shown in Figs. 2 and 3 can be extended to much larger val-
ues of N.

The results shown in Figs. 2 and 3 also justifiy the choice
of only one (large) value of N, for the simulations. If smaller
values of N, were used the distributions represented in those
figures would have an effective cutoff at lower values of N,
and extrapolations to the large N limit (see the next sections)
would be less reliable.
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III. PHASE TRANSITION IN IDEAL SELF-ASSEMBLING
SYSTEMS WITH CHAINS, RINGS AND NETWORKS

The Helmholtz free energy density, f, of a system of vol-
ume V (or area A in 2D), at absolute temperature T and with
N, particles that self-assemble to form noninteracting clus-
ters of size N(I<N<N,), is [8,14]

N

Bf= 2 ¢(N)[In ¢(N) - 1 -1n g(N)], (2)
N=1

where 8= (kgT)™' (kg is Boltzmann’s constant); ¢(N) and
Vq(N) are, respectively, the density and the partition function
of clusters of size N. The free energy f is minimized with
respect to the densities ¢(N), subject to a normalization con-
dition N,/ V=2\r ,N¢(N), yielding the set of equations [8]

#(N) = g(N)exp[NBu(N,,p) ], 3)

where u(N,,p) is the chemical potential of a system with N,
particles and density p=N,/V. In general [16], the partition
function ¢(N) may be written as

q(N) = F(N)exp(= BAN), 4)

where \ is the free energy per particle of an infinite cluster
and —~ ' In[VF(N)] is a sublinear correction (in N) to that
free energy. The substitution of Egs. (3) and (4) in the nor-
malization condition results in

N

p= 2 NF(N)exp[ B(u(N,,,p) = \)N] (5)
N=1

and defines implicitly w(N,,p). The phase behavior of
the system is obtained from the equation of state
w(p)=limy _.u(N,,p), ie., the thermodynamic limit of Eq.
(5). This limit depends crucially on the convergence of the
sum p,=23_,NF(N) and may be obtained with the help of a
generic graphical representation of u(N,,p) as given by Eq.
(5) (see Fig. 4).

Let us first consider the case when p, diverges. From Eq.
(5) one concludes that for every value of p it is always pos-
sible to find a (finite) value of N, such that u(N,,p)=\, and
that this value increases with p. Therefore, one has
u(p) ElimNﬁw,u(N‘,,,p) <\ and lim,_.u(p)=N, which
leads to the schematic representation of Fig. 4(a). Consider
now the case when p, is finite. For every p<<p, it is always
possible to find a (finite) value for N, such that u(N,,p)=A\.
This value increases when p approaches p, so that
m(p)=limy _.u(N,,p)<N and u(p)=\. On the other
hand, for e\l/ery p>p, and every (finite) N, one must have
u(N,,p)>N\. At the same time, for every fixed p>p, any
increase in N, entails a decrease in u(N,,p). As a conse-
quence, when p>p,, u(p)=limy _.u(N,,p)=\.

Therefore, if p, diverges then ,ﬂ(p) is an analytic increas-
ing function of p, bounded by N (u(p) <\). Consequently,
when p, diverges, the system does not exhibit a phase tran-
sition. On the other hand, if p, is finite, u(p) converges non-
uniformly to the function: u(N,=%,p) [given through Eq.
(5)] if p<p,; and N\ if p=p, Then, for finite p, u(p) is
singular at p=p,, signaling a phase transition at this density:
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FIG. 4. General representation of the solutions of Eq. (5) for
different values of N,,. Dotted lines: ,LL(N[,,p) for finite N,,. Full line:
w(p)=limy _.u(n,,p); (a) and (b) represent systems where
p,EE;f}:lng (N) [see Eq. (5)] is infinite and finite, respectively. In
case (b), the discontinuity in the derivative of u(p) at p=p, signals
the existence of a phase transition; \ (dashed line) is the free energy
per particle of an infinite cluster.

when p<p, the structure consists of small disconnected clus-
ters (u(p) <\) and when p=p, any excess particles (with
respect to p,) condense in an “infinite,” spanning cluster
(w(p)=N).

This transition is similar to a variety of other transitions
[14]—lamellae formation in systems of disk-like micelles,
emulsification failure in microemulsions, Bose-Einstein con-
densation, etc.—where condensation is not driven by the in-
teractions between “particles” (or aggregates).

Previous applications of association theories to the DHS
considered chain and ring formation only [4,5,7,8] and failed
to predict a phase transition. Indeed, infinite chains and rings
have the same configurational entropy [16] and internal en-
ergy [8] per particle. Their behavior is similar to that of
self-avoiding random walks with F(N)ox(N?"!+N73+9),
where y and « are universal exponents known from polymer
theory [16]. Since y=1, p,— and the absence of a phase
transition follows from Eq. (5).

In order to account for the effects of network formation,
the theory entailed in Egs. (3), (4), and (5) must be general-
ized to include N clusters with different topologies. To do so,
we consider that each N cluster can be classified according to
its number of ends, n;, and junctions, n; [8-10].

The partition function of a cluster of size N is now
Vq(N,n,,nz), with

Q(N’nl’n3) =F(N,n1,n3)exp[— Nﬁ)\(xl’x3)]a (6)

where \(x;,x3) is the free energy per particle of an infinite
cluster with a fraction of ends x;=n;/N and a fraction of
junctions x;=n;/N, and =B~' In VF(N,n,,n;) is the sublin-
ear correction to that free energy. The generalization of Eq.
(3) for the density of clusters of size N with topology (n,,n3)
is

@(N,ny,n3) = F(N,ny,n3)exp[ BN (= N(xp,x3)]. (7)

The implementation of this approach requires the knowl-
edge of g(N,n,,n;) for networks (i.e., for n3 #0), and simu-
lation results for the various cluster distribution functions.
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Unfortunately, this is not possible at present, as the num-
ber of configurations of a network of N monomers, with 7,
ends and 73 junctions, is not known and simulations do not
yield reliable distribution functions for clusters with arbitrary
topologies. In order to proceed, we note that an increase in
the number of junctions and ends of a N cluster increases the
internal energy, while it decreases the volume available to
branches, decreasing the translational entropy of the net-
work. However, the number of possible branched architec-
tures increases, increasing the configurational entropy of the
network. We may then conjecture that, at fixed N, the func-
tion ¢(N,n;,n;) will exhibit a maximum for some
[7,(N),n3(N)]. If, in the spirit of the saddle-point approxima-
tion, only this maximum is considered the mean density of
networks of size N, ¢,(N), is

@u(N) = F,(N, 70y, 713)expl BN(p = N1, %3)) ], (8)

where x; =n,(N)/N and Xx3=73(N)/N. Substituting this (and
the corresponding expressions for chains and rings obtained
in [8]) in Eq. (5) yields the equation of state. Further analysis
requires the knowledge of the functions F, 72;(N) and 75(N).
In the next section we will use the simulation results of Sec.
II to obtain the relevant information.

IV. PHASE TRANSITION IN THE QUASI 2D DHS

The study of the phase transition in the quasi 2D DHS
reduces, in the present context and approximations, to the
analysis of the thermodynamic limit of the generalization of
Eq. (5) to include chains, rings and networks

NI’
p =2 N (N, w) + ¢, (N, ) + &,(N, )] )
N=1

Reliable approximations for the length distributions
of chains, ¢.(N,u), and rings, &.(N,u), at a fixed
temperature and for large N, are already known from
8]  ¢u(N,m)xN* " exp(B(u-N)N)  and (N, p)
o« N3+ exp(B(mu—Ny)N), where \ is the free energy per par-
ticle of infinite chains and rings, and 7y, « are universal ex-
ponents from polymer theory (y=1.34 and a=0.5 for 2D self
avoiding walks [16]). If we consider that the network distri-
bution function ¢,(N) is in general given by Eq. (8), then Eq.
(9) can be rewritten as

N,

p* = E [Grc(N) + Gn(N)] X eXP{,B[M(Np,P*) - )\(21’22)]]\]},
N=1
(10)
where

G,(N) = (N7 + N> *)exp[ BN (X},%3) = No)N],  (11)
and
G,I(N) =NF,,(n_1,ﬁ3,N). (12)

In order to explore the phase behavior of the system we
will use the simulation results of Figs. 2 and 3 to obtain the
relevant behavior of the functions 7z;(N), n3(N), F, (i, ,75,N),
X1, X3, M(X,X3) and A,
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The functions 72;(N),773(N) are approximated using the
simplest functional forms suggested by the simulation results
of Fig. 3 in the limit of large N: ;(N)=~c;N7 and
713(N) = c3N, where 0< <1 and c,,c; (both >0) are con-
stants. In what follows the precise values of ¢y, c3 and 7 are
irrelevant [17]. In the appendix we study the more general
case where c¢; and ¢z are functions of p and show that the
main result of this section does not change. As a conse-
quence, X;,Xx3 are approximated by x; =0 and X3~ c;.

The sublinear correction to the free energy of networks,
—In VF,(N,n,,i3), has an entropic and an energetic contri-
bution. The internal energy of a network can be approxi-
mated (in a similar way to what has been done in [8,9]) by
E,(N)=—=Ne€y+ €,i1,(N) + €3715(N), where €, is a “bond” en-
ergy (i.e., the internal energy per particle of an infinite chain
or ring), and €, and €; are, respectively, the energy costs of
an end and of a junction. Using the approximations adopted
for i1, ,i3, we obtain E,(N)=(—€y+ €3c3)N+€;¢c,N". The first
term of this sum is linear in N and will contribute to the free
energy per particle of an infinite network [i.e., to A(0,c3)].
Therefore, F,(N,n;,n3) is approximated by

F,(N,ny,in3) = Fs(N)exp(— Bejc;N7), (13)

where B~ !1In VF4(N) is the excess entropy of a finite
N-network (F4(N) expected to scale with some power of N
[16]).

Using these approximations Egs. (10), (11), and (12) be-
come, respectively

NP
p =2 [G,(N) + G,(N)] X exp[ BLu(N,,p") = N(0,¢3)IN],

N=1

(14)
G,o(N) = (N”+ N> *)exp[ BNM0.¢3) = NgN],  (15)

G,(N) = NFs(N)exp(— Be;c;N7). (16)

The inset of Fig. 2 shows that, for large N, the slope of
In ¢,(N) is negative and increases with increasing p°. Since
this slope is, from (8), ﬂ[,LL(NP,p*)—)\(O,C3)], we conclude
that u(N,,p") is approaching M(0,c3) as p” increases. More-
over, the simulations at densities p*=0.15 and 0.2 show a
size distribution of networks with a positive slope and a peak
close to N=5000, which means that for these values of p*
one already has u(N,,p") >\(0,c;). According to the theory
presented in Sec. III, this behavior of u(N,,p") [given im-
plicitly by Eq. (14)] corresponds to a phase transition if
p:=23_1[G,.(N)+G,(N)] converges.

The simulation results of Fig. 2 show that the slope
of Ing¢.(N) is smaller than that of In ¢,(N).
Since, In ¢,(N)= [/L(Np,p*)—)\(O,c3)]N and In ¢.(N)
= (u(N,,p")=No)N, N0,c3)—\g is the difference between
the slope of In ¢.(N) and that of In ¢,(N). Therefore,
(NM0,¢3)—N\g) <0 and =3_,G,.(N), with G,. given by (15),
converges. Verification of the convergence of =3_,G,(N) is
straightforward since G,(N), given by Eq. (16), is a product
of a power of N and an exponential of N7 with 0 < 7n<1.
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Then, p, converges and, at this density (in the thermody-
namic limit, at the given m"), the system exhibits a transition
to a phase where a finite fraction of particles belongs to a
macroscopic cluster.

The existence of the transition is related to the properties
of the clusters responsible for the convergence of p,. Since
the internal energy per particle of the infinite network
(—€y+ €3¢3) is larger than that of the infinite chain (—¢),
(M(0,c3)—Np) <0 implies that the entropy per particle of the
infinite network is larger than that of the infinite chain. In
other words, the difference between the entropies must bal-
ance the increase in energy due to the junctions. On the other
hand, the increase in the number of ends stabilizes the infi-
nite network, since 0<7<1. Thus, the transition corre-
sponds to the emergence of a phase with a large configura-
tional entropy, that balances the loss of translational entropy
and the increase of the internal energy.

Using Eq. (14) we find that, in the thermodynamic limit,
limpﬂp[— %"f L, 18 positive, and conclude that the transition is

discontinuous at m"=2.75 [18]. A second order phase transi-
tion occurs when the second moment of the distribution ¢(N)
diverges at p,, as in percolation or Bose—Einstein condensa-
tion.

V. CONCLUSIONS

Analysis of extensive MC simulations combined with a
theory that includes nonlinear clusters hint at the possibility
of the existence of a phase transition of the low density quasi
2D DHS fluid. This conclusion relies on several approxima-
tions. As a detailed knowledge of the distribution of net-
works of different topologies is not available from simula-
tions we approximated it by the distribution of mean
fractions of ends and junctions. We further assumed that the
scaling with N of these distributions, measured in the simu-
lations up to N=600, holds for infinitely large cluster sizes.
With these assumptions we have shown that the phase tran-
sition is driven by the formation of a macroscopic network,
with a large configurational entropy that overcomes the cost
in internal energy and the loss of translational entropy of the
phase with high connectivity. Whether a similar transition is
present in 3D DHS cannot be answered at present since de-
tailed information on the cluster distributions in three dimen-
sional is not available.

Recently, the thermodynamics of a self-assembling sys-
tem of chains and networks (with no rings and no attractive
interactions between clusters) was studied, at the mean-field
level, and a phase transition has been predicted [10]. The
approximations used in that work for the distributions of
chains and networks hinder a quantitative comparison with
the results of this paper. Nevertheless, the mechanism, driv-
ing the transition, is the same in both approaches.

The full phase diagram of the DHS at low densities may
be studied by generalizing the methods described in this pa-
per. However, this entropy driven transition may be pre-
empted by the stabilization of other condensed phases (or-
dered or not) that are not considered in this framework. This
is unlikely to occur at the low densities of the simulations
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M(Np,p)

p P,

FIG. 5. Generalization of Fig. 4 for the free energy per
particle of an infinite network that depends on density. Dotted
lines: w(N,,p) for finite N, as given by Eq. (Al). Full line:
M(P)—th el p), when pi=2y-1(G,.+G,) [see Egs. (A2)
and (A3)] i is finite. Dashed line: free energy per particle of an infi-
nite network, \,(p). Dashed dotted line: free energy per particle of
infinite chains and rings, A.

considered here but may prevent the critical point from being
observed.
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APPENDIX

In Sec. IV we approximated 723(N)=c;N and n,(N)
=c ;N7 inspired by the simulation results of Fig. 3. By assum-
ing that ¢, and c; are constants, the slight dependence on p°
[especially of 713(N)] depicted in Fig. 3 has been neglected.
In this appendix we show that the conclusion of Sec. IV (the
suggestion of the presence of a phase transition) does not
change if ¢; and ¢, depend on p° as shown by the simula-
tions.

Let us consider that i73(N)=c;(p")N and i7;(N)=c,(p")N".
Then A\(X;,X;) becomes N\[0,c5(p")]=\,(p"), ie., the free
energy per particle of an infinite typical network at density p"
becomes dependent on density. Using these forms for
i3(N)=c5(p")N and 7i1,(N)=c,(p")N" Egs. (14), (15), and
(16) become

PHYSICAL REVIEW E 73, 041507 (2006)

p= :2: [G,(N.p") + G, (N.p") Jexp{BL(N,.p") = N,.(p")IN},
_ (A1)
Gre(N,p") o= (N7 + N expl B\, (p7) = NgN],  (A2)
G,(N,p") = NFs(N)exp(- Beici(p)N7).  (A3)

We will start by defining s,(p") and s.(p") as the slopes, at
large N of In ¢,(N) and In ¢.(N), respectively

sn(p*) = M(N ’p*) - )\n(p*)’ (A4)
sd(p) = p(N,.p") = N (A5)
The simulation results of Fig. 2 show that
5, > 5. =N, (p") <\, (A6)
s, — S N
Hsu=se) o, M (A7)

ap ap

On the other hand, the results of Fig. 3 suggest that — >O
[17].

One can still show that there exists a finite density transi-
tion, p,, which is the solution of the equation p*=F(p") with

F(p') = 2 [G,(N.p") + G,(N,p")].

N=1

(A8)

Since —p<0 d - >0 F(p) is a decreasing function of p
and one expects that lim, o\, (p)=2. Therefore, the function
F(p) crosses the function p and a finite value for p, is ob-
tained. In order to show that the existence of a finite p, im-
plies the presence of a phase transition, we generalize the
argument given in Sec. III. For every p<p, it is always pos-
sible to find a finite value of N, such that u(N,,p)=\,(p).
This value of N, increases when p approaches p, so that

wlp)=limy _oopu(N,, p) <N, (p) and p(p)=N,(p,). On the
other hand, for every p>p, and every (finite) N, one has to

have w(N,,p)>N\,(p). At the same time, for every fixed
p>p, an increase in N, implies a decrease in u(N ,p). As a
consequence, when p>pl, u(p) —th —ckt(N,, N(p).

Therefore, if p, is finite, u(p) converges nonumformly to the
function: u(N,=%,p) [given through Eq. (5)] if p<p,; and
N.(p) if p=p,. Then, for finite p,, u(p) is singular at p=p,,
signaling a phase transition at this density. Figure 5 depicts a
graphical representation of the functions \,(p), w(N,,p) and
u(p) that may help to clarify the previous arguments.
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