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We present an experimental study of the mechanical impulse propagation through a horizontal alignment of
elastic spheres of progressively decreasing diameter �n: namely, a tapered chain. Experimentally, the diameters
of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential
decrease, �n+1= �1−q��n, where the experimental tapering factor is either q1�5.60% or q2�8.27%. In agree-
ment with recent numerical results, an impulse initiated in a monodisperse chain �a chain of identical beads�
propagates without shape changes and progressively transfers its energy and momentum to a propagating tail
when it further travels in a tapered chain. As a result, the front pulse of this wave decreases in amplitude and
accelerates. Both effects are satisfactorily described by the hard-sphere approximation, and basically, the shock
mitigation is due to partial transmissions, from one bead to the next, of momentum and energy of the front
pulse. In addition when small dissipation is included, better agreement with experiments is found. A close
analysis of the loading part of the experimental pulses demonstrates that the front wave adopts a self-similar
solution as it propagates in the tapered chain. Finally, our results corroborate the capability of these chains to
thermalize propagating impulses and thereby act as shock absorbing devices.
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I. INTRODUCTION

Granular materials are useful for shock protection, and
cast iron shots are a well-known example of a system effec-
tively used in the damping of contact explosive loading �1�.
Recent numerical results have demonstrated that new fea-
tures can still be developed, such as impulse thermalization
�2–5� or shock confinement �6� in one-dimensional granular
media. Indeed, the propagation of an impulse through a chain
of monodisperse elastic spheres exhibits interesting nonlin-
ear physics �1�. When the spheres in the chain barely touch
one another, the energy of an impulse initiated at one end of
the chain propagates as a solitary-wave of well-defined ve-
locity and width, as described by the pioneering work of
Nesterenko �1,7–10� and as confirmed later by other authors
�11–14�. When small dissipative effects such as viscoelastic
restitution or solid friction �mainly thwarted rotation between
beads and friction between beads and walls of the setup� are
taken into account the solitary-wave only attenuates in am-
plitude and spreads �14,15�. Under static loading, the chain
still supports solitary-wave solutions �1,11,13�, in addition to
dispersive linear sound waves of weak amplitudes. In the
presence of a gradient of static loading �e.g., a vertical chain
under gravity�, it has been proved that propagation of an
impulse is controlled by dispersion and extra dispersion in-
troduces a coupling between quasisolitary and oscillatory
propagating modes �16–19�. However, dispersion does not
allow the possibility of distributing the energy of a solitary-
wave uniformly, neither throughout a finite length vertical
chain �17� nor in a horizontal linear chain �13�. In regard to
energy propagation in the absence of dispersion, Pöschel and
Brilliantov �15� considered a one-dimensional chain of
spheres with a restitution coefficient that was velocity inde-
pendent. By keeping constant the size of the beads at both
ends of the chain they showed that the energy transmission is

optimal when the mass distribution is an exponentially de-
creasing function. Similarly, Nesterenko and co-worker have
shown �1,7,8� that the momentum of a pulse is totally trans-
mitted when it passes through a sharp decrease of bead size
and is partially reflected in the reverse case.

Here, we investigate experimentally the effect of shock
mitigation occurring in an unloaded chain of exponentially
decreasing bead size. This effect, recently predicted by Sen
and co-workers �2–5�, is due to the progressive delay on the
transmission of a fraction of the energy of the pulse when
propagating in a sequence of increasing stiffness contacts
defined by the sequence of smaller beads. Consistently,
excepting the reflection of the pulse at the rigid end of the
chain, there is no detectable reflected wave propagating
backward while the pulse propagates down toward the
smaller extremity of the tapered chain. Experimental evi-
dence of this effect has been observed by Nakagawa and
co-workers �20�, when an impulse is introduced in a tapered
chain in which the beads are initially barely in contact and
the chain is let to expand after the impulse propagation, the
last beads being initially at some distance of a wall sensor.
This configuration is suitable to measure the speed of beads
by imaging techniques and the force due to the ejection of
the last bead colliding with a wall sensor. In our experiment
the beads always keep in contact, which allows us to adopt a
complementary point of view and focus on the shape and
speed of the wave instead of that of beads. The main advan-
tage is that the wave picture is better realized and energy
transfer from the front pulse to a propagating tail is fully
visualized.

This article is organized as follows. In Sec. II, we describe
our main experimental considerations and present force mea-
surements acquired in two different chains, whose tapering
factor is either q1�5.60% or q2�8.27%. Similarly, the ac-
celeration of the front pulse is characterized as it propagates
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toward the decreasing end of the chain. Effects of misalign-
ments and tapering factor variations are investigated as well.
Section III is devoted to a brief summary of the main theo-
retical aspects and discussion. We show that the ballistic ap-
proximation in conjunction with the effect of small restitu-
tion coefficient is well suited to capture the acceleration and
decrease of the force amplitude of a pulse traveling through
the tapered chain.

II. EXPERIMENTAL OBSERVATIONS

Beads are high-carbon chrome-hardened AISI 52100 steel
roll bearing. The density is �=7780 kg/m3, Young’s modu-
lus is Y =203±4 GPa, the Poisson ratio is �=0.3, and the
yield stress is �Y �2 GPa, �21�. We have carefully checked
that the bead deformation always keeps elastic behavior in
all our experiments. Assuming that the contact surface
between two beads of radius R is a disk of area
A=2���RF�2/3 �where � is defined in III� �22�, we estimate
that yield stress occurs for a compression force greater or
equal to FY �3790 N, which corresponds to an overlap
	Y �46 
m, for beads of 26 mm diameter. This threshold is
smaller for smaller beads.

A solitary-wave is initiated in a monodisperse chain made
of n0=16 beads whose diameter is �0=26 mm by applying a
short impact with constant velocity �over all experiments� of
a smaller bead ��i=8 mm� at one of its extremities �14�. This
impulse then reaches a tapered chain composed of beads
whose diameters �n progressively decrease. More precisely,
two tapered chains are implemented, whose intermediate di-
ameters �n are given in Table I. The tapering factor is deter-
mined as q=1− ���n /�0�1/�n−n0��n�n0

. As everywhere in this
paper, error bars refer to the unbiased sample standard devia-
tion �confidence interval �CI��68%�. The first chain pro-
vides a tapering factor of q1= �5.60±0.67�%, and the second
one provides a tapering factor of q2= �8.27±0.31�%.

Beads of the monodisperse chain are aligned on a rigid
Plexiglas track over which beads are allowed to roll with
little friction. Beads of the tapered chain are located on a
special stepped track composed of a collection of short tracks
of length nearly the bead diameters, designed in such a way
that the tapered chain is automatically aligned on the axis of
the monodisperse chain. The whole rigid structure serving
for bead alignment is fixed on an optical table, which guar-
antees a misalignment—i.e., off-center error—lower than 2%
between the smallest consecutive beads and lower than 0.1%
for the biggest beads considered here. It appears that repeat-

ability of measurements is not so much affected by misalign-
ments if the beads are not allowed to move laterally. This
effect is quantified further in the text by introducing a con-
trolled off-center displacement of the beads.

A piezoelectric dynamic impulse sensor �PCB 208A11
with sensitivity 112.40 mV/N� located at the end of the
chain provides the force at the rigid end. This sensor has a
flat cap made of the same material as the beads. Forces inside
the monodisperse chain are monitored by a flat dynamic im-
pulse sensor �PCB 200B02 with sensitivity 11.24 mV/N�
that is inserted inside one of the beads, cut in two parts. The
total mass of the bead sensor system has been compensated
to match the mass of an original bead. This system allows
achieving nonintrusive force measurement by preserving
both contact and inertial properties of the bead-sensor sys-
tem. The stiffness of the sensor ks=1.9 kN/
m being greater
than the stiffness of the Hertzian contact �ks�kH
�	1/2; see
Sec. III for definitions of � and 	�, the coupling between the
chain and sensor is consequently negligible. Additional de-
tails on how to relate the force Fs detected by the sensor with
the actual force at the contact between two beads are given in
Ref. �14�. Signals from sensors are amplified by a condi-
tioner �PCB 482A16�, recorded by a two-channel numeric
oscilloscope �Tektronix TDS340�, and transferred to a com-
puter. Measurements have been repeated 9 times and aver-
aged to minimize errors, and acquisitions are achieved as
follows. In the monodisperse chain, the sensor at the end of
the chain serves as a trigger and the force is recorded at
various positions by the sensor in the chain. In the tapered
chain, force is recorded by the sensor at the end of the chain,
while the sensor in the monodisperse chain is let at a given
position to trigger the acquisition. In addition, we know from
numerical simulations �14� that under perfectly elastic colli-
sions, forces recorded in the chain and at the end of the chain
are related in amplitude and duration: Fm

wall�1.94Fm
chain and

�wall�1.09�chain, with relative error less than 5%.
In Fig. 1 we show the evolution of an unaveraged pulse,

initiated in an n0=16 bead long monodisperse chain, as it
propagates in the first tapered chain �q=q1� made with
n1=14 beads of decreasing diameters as described above.
Practically, the evolution of the pulse is measured at the end
of a tapered chain containing an increasing number of beads
�0�n1�14�. It appears that a tail is formed behind a front
pulse and the wave, initially symmetric, becomes more and
more asymmetric. In Fig. 2 is the evolution of a pulse, initi-
ated in an n0=16 bead monodisperse chain, as it propagates
in the second tapered chain �q=q2� made with n2=12 beads

TABLE I. Bead diameters.

Chain Bead n 01–16 17 18 19 20 21 22 23

1 �n �mm� 26.00 24.00 23.00 22.00 21.00 20.00 19.00 18.00

2 �n �mm� 26.00 24.00 22.00 20.00 18.00 16.65 16.00 14.00

Chain Bead n 24 25 26 27 28 29 30

1 �n �mm� 16.65 16.00 15.00 14.00 13.00 12.00 11.00

2 �n �mm� 13.00 12.00 11.00 10.00 9.00
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of decreasing diameters as described above. The tail formed
behind a front pulse of the wave is in this case even more
pronounced. This effect is exactly the one predicted by Sen
and co-workers �3�. For tapered chains �q�0�, the pulse be-
comes distributed throughout the chain as it propagates.
Since impulsion is transmitted down the chain at the contact
surface, impedance mismatches are introduced by tapering
the diameters, every mismatch limiting transmission between
the grains. By comparing Fig. 1 to Fig. 2, it can be observed
that the effects of pulse spreading and maximum force de-
crease become more dramatic as the tapering factor is in-
creased. Figures 1�h� and 2�h� illustrate typical power spectra
of the incident solitary-wave, as well as the corresponding
waves reaching the end of the chain for the values of the
tapering factor used here. A clear cascade of energy is ob-
served, from low to high frequencies, as the pulse propagates
through the tapered chain.

In order to check the robustness of our experimental con-
figuration, we have explored how sensitive is the shock miti-
gation effect to a small misalignment of beads. To quantify
the effect of bead misalignments we have performed two test
experiments. In a first experiment, we check the chain sen-
sitivity to misalignment occurring in the middle of the ta-
pered chain. Second, we impose a well-controlled vertical
displacement of the bead in contact with the wall sensor and
observe how the pulse is modified. As seen in Fig. 3�a�, as
the misalignment in the middle of the tapered chain in-
creases, the signal decreases slightly in amplitude and the
oscillations of the tail progressively decrease. When looking

carefully, one can see that the more pronounced peak of the
tail �t−T�0.38 ms� is progressively decreasing in ampli-
tude, suggesting the existence of a correlation between the
oscillating tail and a given contact at the chain. Similarly, as
observed from Fig. 3�b�, a misalignment up to 10% at the
end of the chain does not introduce a dramatic effect on the
wave. The amplitude is slightly modified and only some ef-
fects take place at the tail of the wave. However, in both
cases, the front pulse velocity is nearly unchanged at the
experimental resolution achieved here.

Although the tapering factor was not kept exactly constant
through the chain in the above description, the effect of
shock mitigation predicted by Sen and co-workers �2� is well
captured in our experimental results. To better characterize
the effect of local variation of tapering factor, we have tested
a short tapered chain in which we replaced one of the beads
by a smaller one, in such a way that two consecutive beads
have equal diameter. Thus, a local variation of
q, dq /q= +1, is produced. Similarly, to investigate the effect
of a negative variation of q, dq /q=−1, we replace a bead by
one equal to the bigger neighbor. As seen in Fig. 3�c�, two
effects are visualized. First, for dq /q= +1, the front pulse is
slightly steeper and narrower. In contrast, for dq /q=−1, a
smoother and slightly wider front pulse is produced. These
two effects are consistent with results presented in Figs. 1
and 2.

III. DISCUSSION

The physical behavior of solitary-waves in chains of N
identical beads is summarized below. Under elastic deforma-

FIG. 1. �a�–�g� Force as a function of time �arbitrary origin�.
Evolution of a pulse initiated in a monodisperse chain of n0=16
beads, shown in �a�, as it propagates in the tapered chain of n1

beads with tapering factor q=q1. �b�–�g� Actual forces felt at the
right contact of bead Nos. 18, 20, 22, 24, 26, and 28 �see Table I�.
�h� Power spectrum, with arbitrary units, indicating a comparison
between incoming and outcoming pulses in the tapered chain.

FIG. 2. Same as Fig. 1, for a pulse initiated in a monodisperse
chain of n0=16 beads, shown in �a� and propagating through the
tapered chain of n2 beads with tapering factor q=q2. �b�–�g� Actual
forces felt at the right contact of bead Nos. 18, 20, 22, 24, 26, and
28 �see Table I�. �h� Power spectrum, with arbitrary units, indicating
a comparison between incoming and outcoming pulses in the ta-
pered chain.
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tion, the energy stored at the contact between two elastic
bodies submitted to an axial compression corresponds to the
Hertz potential �22�, UH= �2/5��	5/2, where 	 is the overlap
deformation between bodies, �−1= ��+����R−1+R�−1�1/2,
�=3�1−�2� / �4Y�, and R and R� are radii of curvature at the
contact. Y and � are Young’s modulus and Poisson’s ratio,
respectively. Since the force felt at the interface is the deriva-
tive of the potential with respect to 	 �FH=�	UH=�	3/2�, the
dynamics of the chain of beads is described by the following
system of N coupled nonlinear equations:

mün = ���un−1 − un�+
3/2 − �un − un+1�+

3/2� , �1�

where overdots denote time derivatives, m is the mass, un is
the displacement of the center of mass of bead n, and the
label + on the brackets indicates that the Hertz force is zero
when the beads lose contact. Under the long-wavelength ap-
proximation ��R �where � is the characteristic wavelength
of the perturbation�, the continuum limit of Eq. �1� can be
obtained by replacing the discrete function un±1�t� by the
Taylor expansion of the continuous function u�x±2R , t�.
Keeping terms of up to fourth-order spatial derivatives, Eq.
�1� leads to the equation for the strain �=−�xu�0 �1�,

�̈ � c2�xx��3/2 + �2/5�R2�1/4�xx��5/4�� , �2�

which admits an exact periodic solution in the form of a
traveling wave, ���=x−vt�, with speed v. This solution is
�7–10,23�

� = �5/4�2�v/c�4cos4��/�R�10�� , �3�

where c= �2R�5/4�� /m�1/2. Although this solution only satis-
fies the truncated equation �1�, it is well established that one
hump �−� /2�� / �R�10��� /2� of this periodic function
represents a solitary-wave solution �7,14,24�. Finally, ap-
proximating spatial derivative by finite difference, the strain
in the chain reads ��	 / �2R�. The force felt at the interface,
F���2R��3/2, and the wave velocity v become

F � Fmcos6	 x − vt

R�10

 , �4�

v � � 6

5��
�1/2� Fm

�2R2�1/6

� � 6

5��
�2/5�Vm

�2 �1/5

. �5�

The second expression for the wave velocity v is obtained
by relating the maximum force Fm to the maximum bead
velocity Vm �1,7,8,22�. Experimentally, the maximum force
Fm, the time of flight T, and the duration � are obtained here
from fitting the loading part �−�� t−T�0� of the measured
force as a function of time to the Nesterenko solution
F�t�=Fmcos6��t−T� /��.

It is worth mentioning that Rosenau and Hyman, while
studying the role of nonlinear dispersion in pattern forma-
tion, introduced a K�m ,n� family of fully nonlinear equations
�25–27�, which in some cases support solitary-waves with
compact support �thus named compactons�, similar to the
continuum limit of Eq. �1�. The equation K�2,1� corresponds
to the Korteweg–de Vries equation, and the equation
K�3/2 ,3 /2� has a solution of the form of Eq. �3�, but which
is strictly zero outside a finite range—i.e., for 
� / �R�10� 

�� /2 �27�.

In the following, we discuss what features of the front
pulse, traveling in the tapered chain, can be captured using
the simple monodisperse solution of solitary-waves in con-
junction with a ballistic approximation. Indeed, Doney and
Sen �4� proposed recently a ballistic approximation, with a
heuristic term rendering energy dissipation, to model the
elastic collision of individual beads. Taking into account a
classical restitution coefficient �, the ratio of consecutive
bead velocity is

Vm
n+1

Vm
n =

2�

1 + �1 − q�3 . �6�

The restitution coefficient is obtained from force measure-
ments �14� acquired in the monodisperse chain �q=0� by
using the fact that �= �Fm

n+1 /Fm
n �5/6�Vm

n+1 /Vm
n . We thus esti-

mate that ��0.985. The theoretical maximum of the force in
the tapered chain is then obtained from Eq. �5�,

FIG. 3. Force as a function of time, measured at the end of the
entire chain of tapering factor q=q2. Vertical displacement e of the
bead under scope is indicated in the figure. �a� Effect of a controlled
vertical misalignment introduced at the bead number �22=16 mm
close to the middle of the tapered chain. �b� Effect of similar verti-
cal misalignment which is this time located at the bead in contact
with the wall sensor, �28=9 mm. �c� The force as a function of
time, measured at the end of a partial tapered chain �q=q1� made of
beads 01–24. dq /q= +1 corresponds to the same signal when bead
No. 18 is replaced by a bead of diameter �18=�19=23.0 mm. Thus,
two consecutive beads have identical diameter. Similarly, for
dq /q=−1, bead No. 19 is replaced by a bead of diameter
�19� =�18=23.0 mm.
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Fm
n+1

Fm
n = �1 − q�2	 2�

1 + �1 − q�3
6/5

, �7�

and the predicted speed of the quasisolitary-wave �the front
pulse�, in the ballistic approximation, reads

vn+1

vn
= 	 2�

1 + �1 − q�3
1/5

. �8�

In writing Eqs. �7� and �8�, it is assumed that the front
pulse adapts to the self-similar solution at every impedance
mismatch. Therefore, this approximation is suitable for a
small tapering factor, since for slow variation of bead size,
quasisolitary-wave adjustments are expected to be small and
to take place at a distance much longer than its characteristic
width. This can be shown also by comparing the time scale
of the wave, �wave�2R /v, to the time scale of the loading
during a collision, �coll�	m /Vm �use Eq. �5� to estimate the
ratio v /Vm�. These characteristic times are equal in a mono-
disperse chain and almost equal for small tapering factor,
demonstrating that the loading of the contact is the process
governing the main features of quasisolitary-wave formation.
In Fig. 4, when the force is normalized to the maximum
force Fm and the time scale is selected to be the measured
duration �, all data presented in Figs. 1 and 2 show a collapse
in the rising part of the front pulse. Thus, this result provides
strong evidence that the main front of the pulse follows a
self-similar solution.

Based on the results above, we discuss in further detail
the main features of the quasisolitary-wave: namely, its
maximum force, its local speed, and the momentum transfer
from the main peak to its tail. As a reference, for both taper-
ing factors, Figs. 5�a1� and �a2� indicate the size of beads as
a function of position. In Figs. 5�b1� and �b2� is given the
maximum force felt by the rigid wall. An important decrease
in the force is observed in both cases as the pulse propagates
in the tapered chain. Interestingly, such a decrease cannot be
attributed to dissipation only. Indeed, the dashed lines in
Figs. 5�b1� and �b2� indicate that predictions from Eq. �7�,
with q=0, overestimate the force. However, when the taper-
ing factor is introduced, the experimental data follow reason-
ably well the predictions from Eq. �7�.

In Figs. 5�c1� and �c2� we represent the duration � of the
pulses as the bead diameter decreases. From the theory of
monodisperse chains schematized above, it is known that
the quasisolitary-wave duration �, according to Eq. �4�, is
�n= ��n /2��10/vn. It has been checked that �n, measured at
every bead, agrees with the monodisperse-ballistic approxi-
mation in a reasonable manner for small tapering factor; see
the solid lines in Figs. 5�c1� and �c2�. This result is not
obvious since to calculate the solid lines in Figs. 5�c1� and
�c2�, we have used the calculated value of the quasisolitary-
wave speed at every bead from Eq. �8�.

On the other hand, the impulse of the front is
QF=�−�

T+�F�t�dt and the impulse of the tail is QT=�T+�
+� F�t�dt.

The principal effect of the tapered chain is then shown in
Figs. 5�d1� and �d2�, in which a noticeable part of the im-
pulse is transferred from the front pulse to the tail. From a
comparison to Figs. 5�b� and �c�, it appears that the diminu-
tion of the front impulse is principally due to dramatic de-
creases of both the maximum force and duration of the front
pulse, as it propagates down the tapered chain. Note that
total momentum is conserved in the tapered chain. This has
been checked more accurately using lower-frequency resolu-
tion, which allowed us to fully record the pulse tail and thus
verify that �QF+QT=cte�. In fact, the signal being acquired
on a fixed set of points, for the rest of our measurements, we
have preferred to keep a high sampling frequency, which

FIG. 4. The collapse of all data presented in Figs. 1 and 2 when
the force is normalized to the measured maximum force Fm and the
time scale is �t−T� /�, where T and � are the measured time of flight
and pulse duration, respectively.

FIG. 5. Characteristics of the chain and of the pulse traveling in
both tapered chains �the left column is for q=q1 and the right one is
for q=q2� as a function of the position in the chain. �a1�, �a2� The
bead diameter used in the experiments compared with the fit pre-
sented in the text. �b1�, �b2� Maximum compression measured in
the chain. �c1�, �c2� Duration of the pulse contrasted to predictions
from the dissipative ballistic approximation including or not
the tapering effect. �d1�, �d2� Front and tail linear momenta
QF=�−�

T+�F�t�dt and QT=�T+�
+� F�t�dt, respectively. Here the solid

lines are guides for the eye.
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provides high resolution for the front pulse but avoids re-
cording the very end of its tail.

We compare below the measured to the predicted time of
flight of the front pulse when reaching the sensing wall. The
relation Tn=T0+�1

n��m /vm�=T0+ ��0 /v1� 1−�−n/5

1−�−1/5 helps to find
v1 and T0 by fitting to measurements done in a chain of equal
beads �n�n0�. The theoretical velocity is then found by
using Eq. �8�, and finally, a prediction of the time of flight
in the tapered chain is obtained by using the relation
Tn=Tn−1+ ��n /vn�. In Figs. 6�a1� and �a2� comparisons with
experimental data are presented in the case of q=0. The de-
crease observed for both tapering factors cannot be attributed
to the restitution coefficient effect only. The effect of
tapering factor is better observed in Figs. 6�b1� and �b2�
which provide a close comparison of time difference
T−T�� ;q=0�, where T�� ;q=0� is the prediction that only
includes the restitution coefficient effect. It is seen that the
measured time of flight is shorter than the prediction from
the ballistic approximation which slightly overestimates the
time of flight between two consecutive beads.

For the sake of comparison, we finally contrast theoretical
velocity from Eq. �8� to the local velocity vn

d

= �	n−	n−1� / �Tn−Tn−1�. Experimentally, the local velocity,
estimated from time of flight differences, naturally provides

very large relative errors. We thus choose to present an esti-
mate obtained by smoothing the local time of flight fluctua-
tions. This is done as follows. In accordance with Eq. �8�, we
map the local velocity vn

d onto the behavior vn
d=Qn−n�vn�

d to
find equivalent coefficients of proportionality Q for both ta-
pered chains. The results of the fits are presented in Figs.
6�c1� and �c2�. The inflection of the velocity in the tapered
part of the chain, rendering the acceleration of the pulse, is
clearly demonstrated in both cases. Nevertheless, experimen-
tal fits slightly overestimate theoretical predictions and a
closer comparison is necessary. Experimentally, we find that
the coefficient of proportionality is Q1=1.025±0.016 for the
first chain �q=q1� and Q2=1.049±0.044 for the second chain
�q=q2�. These coefficients must be compared to their theo-
retical predictions Q1

th=1.014 and Q2
th=1.022, respectively.

We thus check that both theoretical values lie inside their
respective experimental error bars. Moreover, these
experimental coefficients only overestimate their theoretical
counterparts by 1.1% for the first chain and by 2.7% for the
second one. This last satisfactory agreement, between theo-
retical and experimental coefficients of proportionality Q in
both chains, is not surprising and must be balanced, since Q
is weakly sensitive to the tapering factor variation 	q
�see Eq. �8� with q�1�: 	Q /Q= �3/10�	q.

IV. CONCLUSION

In conclusion, we have shown that a tapered chain is use-
ful for shock attenuation and energy transfer from low to
high frequencies, as previously stated by Sen and co-workers
�2–5,20�. The ballistic approximation allowed capturing es-
sential behaviors such as front pulse acceleration, amplitude
shrinking, and diminution of its duration. This lowest-order
model appeared accurate for small tapering factor, but may
become insufficient when tapering becomes greater. Under
this approximation, it was assumed that the front pulse
adapts to a self-similar solution at every impedance mis-
match. This may clearly not always be true. Nevertheless,
our data seemed to follow this scaling in a reasonably good
manner, indicating that the main parameters to characterize
the quasisolitary-wave are the maximum force and the bead
size, in addition to the mechanical properties of the beads. As
a possible extension of this work, it would be interesting to
extract a more complete behavior from a nonlinear wave
equation that would take into account the tapering of the
chain. In addition, comparisons of our experimental findings
with numerical simulations are under way and should help to
elucidate some of the hypotheses stated here.

ACKNOWLEDGMENTS

This work was supported by Conicyt-Chile under research
program Fondap No. 11980002. The authors are grateful to
V.F. Nesterenko for fruitful discussions.

FIG. 6. time of flight and velocity measurements in both tapered
chains �the left column is for q=q1 and the right one is for q=q2� as
a function of the position in the chain. �a1�, �a2� time of flight T.
�b1�, �b2� Difference between the measured time of flight and the
theoretical time of flight obtained when only the restitution coeffi-
cient is taken into account ���1 and q=0�. �c1�, �c2� Pulse
velocity.

MELO et al. PHYSICAL REVIEW E 73, 041305 �2006�

041305-6



�1� V. F. Nesterenko, Dynamics of Heterogeneous Materials
�Springer-Verlag, New York, 2001�.

�2� S. Sen, F. S. Manciu, and M. Manciu, Physica A 299, 551
�2001�.

�3� S. Sen, S. Chakravarti, D. P. Visco, M. Nakagawa, D. T. Wu,
and J. H. Agui, in Modern Challenges in Statistical
Mechanics, edited by V. M. Kenkre and K. Lindenberg, AIP
Conf. Proc. No. 658 �AIP, Melville, NY, 2003�, p. 357.

�4� R. L. Doney and S. Sen, Phys. Rev. E 72, 041304 �2005�.
�5� A. Sokolow, J. M. Pfannes, R. L. Doney, M. Nakagawa, J. H.

Agui, and S. Sen, Appl. Phys. Lett. 87, 254104 �2005�.
�6� J. Hong, Phys. Rev. Lett. 94, 108001 �2005�.
�7� V. F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, 733 �1984�.
�8� A. N. Lazaridi and V. F. Nesterenko, J. Appl. Mech. Tech.

Phys. 26, 405 �1985�.
�9� V. F. Nesterenko, J. Phys. IV 4, C8 �1994�.

�10� V. F. Nesterenko, A. N. Lazaridi, and E. B. Sibiryakov, J. Appl.
Mech. Tech. Phys. 36, 166 �1995�.

�11� C. Coste, E. Falcon, and S. Fauve, Phys. Rev. E 56, 6104
�1997�.

�12� E. Hascoet, H. J. Herrmann, and V. Loreto, Phys. Rev. E 59,
3202 �1999�.

�13� R. S. Mackay, Phys. Lett. A 251, 191 �1999�.
�14� S. Job, F. Melo, A. Sokolow, and S. Sen, Phys. Rev. Lett. 94,

178002 �2005�.
�15� T. Pöschel and N. V. Brilliantov, Phys. Rev. E 63, 021505

�2001�.
�16� R. S. Sinkovits and S. Sen, Phys. Rev. Lett. 74, 2686 �1995�.
�17� S. Sen and R. S. Sinkovits, Phys. Rev. E 54, 6857 �1996�.
�18� J. Hong, J.-Y. Ji, and H. Kim, Phys. Rev. Lett. 82, 3058

�1999�.
�19� E. Hascoet and E. J. Hinch, Phys. Rev. E 66, 011307 �2002�.
�20� M. Nakagawa, J. H. Agui, D. T. Wu, and D. V. Extramiana,

Granular Matter 4, 167 �2004�.
�21� See, for instance, http://www.wsb.co.th/
�22� L. D. Landau and E. M. Lifshitz, Theorie de l’Élasticité, 2nd

ed. �Mir, Moscou, 1967�.
�23� S. L. Gavrilyuk and V. F. Nesterenko, J. Appl. Mech. Tech.

Phys. 34, 784 �1993�.
�24� A. Chatterjee, Phys. Rev. E 59, 5912 �1999�.
�25� P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70, 564 �1993�.
�26� P. Rosenau, Phys. Rev. Lett. 73, 1737 �1994�.
�27� P. Rosenau, Phys. Lett. A 230, 305 �1997�.

EXPERIMENTAL EVIDENCE OF SHOCK MITIGATION¼ PHYSICAL REVIEW E 73, 041305 �2006�

041305-7


