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We analyze theoretically and experimentally the influence of current noise on the longitudinal mode hopping
dynamics of a bulk semiconductor laser. It is shown that the mean residence times on each mode have different
sensitivity to external noise added to the bias current. In particular, an increase of the noise level enhances the
residence time on the longitudinal mode that dominates at low current, evidencing the multiplicative nature of
the stochastic process. A two-mode rate equation model for a semiconductor laser is able to reproduce the
experimental findings. Under a suitable separation of the involved time scales, the model can be reduced to a
one-dimensional bistable potential system with a multiplicative stochastic term related to the current noise
strength. The reduced model clarifies the influence of the different noise sources on the hopping dynamics.
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I. INTRODUCTION

Fluctuations and noise are inherent to the behavior of any
physical system. Their ubiquity and impact on technological
applications have stimulated since long ago the study of their
effects in different branches of science �statistical physics,
mathematics� and technology �communications engineering�.

Noise is usually perceived as a source of degradation of
the properties of any system, leading to relatively small sto-
chastic variations of a given magnitude around its determin-
istic �noise-free� value. Such a point of view is rooted on the
study of systems close to equilibrium, whose dynamics can
be linearized around the deterministic steady state. However,
it does not hold in systems far from equilibrium, where non-
linear corrections to the dynamics must be taken into ac-
count. In these systems, noise may not only be responsible
for the observed behavior, but it may also make possible new
states and behaviors that do not exist in the noise-free limit
�1�. Examples of such behaviors are, for instance, the en-
hancement of the decay time of a metastable state �noise
enhanced stability� �2,3�, the synchronization with a weak
periodic input signal �stochastic resonance� �4�, or the ap-
pearance of a periodic output �coherence resonance� �5�. In
systems with spatial degrees of freedom, noise may lead, for
instance, to the formation of convective structures �noise-
sustained structures� �6�.

The effects of noise depend on whether it is additive or
multiplicative. Additive noise is present in all real, noniso-
lated systems where the environment acts as a thermal bath.
Moreover, even in an isolated system all interaction pro-
cesses exhibit some degree of stochastic fluctuations that
lead to internal noise in the system. This effect may be fur-
ther enhanced by adding noise to the control parameters of
the system. In general, the fluctuation-dissipation theorem
implies that noise in a nonlinear system may have both an
additive and a multiplicative component. The effects of both
kinds of noise in nonlinear systems have been thoroughly

studied from the theoretical point of view �1�, although ex-
perimental studies of the effects of multiplicative noise are
more scarce. In particular, it has been shown that the char-
acteristic signatures of either type of noise can be profoundly
modified by the presence of even a weak component of the
other kind �7,8�. Moreover, it was also found that multipli-
cative �parametric� noise induces a shift in the critical mean
value of the parameter that controls an instability �9–11�.

In this paper we analyze theoretically and experimentally
the influence of multiplicative noise on the mode-hopping
dynamics of a bistable semiconductor laser. Since the pump-
ing current enters into the laser field equations in a nonlinear
way, adding current noise may lead to multiplicative effects.
We find that the residence times of each mode are strongly
affected, and that increasing the noise added to the current is
equivalent—from the point of view of residence times—to a
lowering of the bias current. A theoretical model for the sys-
tem under study is presented and analyzed, with the aim of
understanding the observable consequences of the imposed
fluctuations and the role of laser parameters. A better insight
is obtained by a simplification of this model to a bistable
potential system. This allows us to discuss in detail the ef-
fects of current noise on the mode-hopping dynamics. The
results are in good agreement with the experimental obser-
vations carried out for a bulk edge-emitting semiconductor
laser.

The outline of the paper is the following. In Sec. II we
introduce the rate equations for a two-mode semiconductor
laser and we derive from them a reduced one dimensional
�1D� Langevin model that describes the hopping dynamics of
the freely operating laser. In Sec. III we discuss in detail the
reduced model and, in particular, the effect of external fluc-
tuations of the injection current. The limit case of a slowly
fluctuating current is analyzed as well and the results are
compared with simulation of the rate equations. Section IV is
devoted to the presentation of the experimental results. We
draw our conclusions in Sec. V.
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II. THEORETICAL ANALYSIS

A. Rate equations

Our starting point is a stochastic rate-equation model for a
semiconductor laser that may operate in two modes. Both
modes interact with a single carrier density that provides the
necessary gain. The two modes have very similar linear
gains, provided that their wavelengths are almost equal and
they are close to the gain peak. If E± denote the complex
modal amplitudes, N the carrier density, and J�t� the injec-
tion current, the model can be written as

Ė+ = 1
2 ��1 + i��g+ − 1�E+ + �2DspN�+ �1�

Ė− = 1
2 ��1 + i��g− − 1�E− + �2DspN�− �2�

Ṅ = ��J�t� − N − g+�E+�2 − g−�E−�2� , �3�

where � is the linewidth enhancement factor �12�. The modal
gains read

g± =
N ± ��N − Nc�

1 + s�E±�2 + c�E��2
, �4�

where � determines the difference in differential gain among
the two modes while Nc defines the carrier density where the
unsaturated modal gains are equal. The parameters s and c
are, respectively, the self- and cross-saturation coefficients.
The �± are two independent, complex white noise processes
with zero mean ���±�t��=0� and unit variance ���i�t�� j

*�t���
=�ij��t− t��� that model spontaneous emission. Equations
�1�–�3� have to be interpreted in Itô sense �13�; thus the
average power spontaneously emitted in each mode at any
time is given by 4DspN.

The deterministic version of Eqs. �1�–�3� admits four dif-
ferent steady state solutions: the trivial solution E±=0, two
single-mode solutions—E+�0, E−=0 and vice versa—and a
solution where both modes are lasing, E±�0. The single-
mode solution where only E+�E−� is lasing lacks physical
sense for bias currents below J+�J−� given by

J± =
1 ± �Nc

1 ± �
. �5�

The trivial solution E±=0 is the only stable solution for
bias currents J�min�J+ ,J−�; for definiteness, we consider
Nc	1, hence J−�1�J+. Upon increasing J, the trivial so-
lution looses stability and the system switches to the solution
E−�0, E+=0 at the laser threshold, J=J−. Further increasing
the current, the sequence of bifurcations depends quite
strongly on the parameters s, c, and Nc. For c	s, this solu-
tion may coexist with the solution E+�0, E−=0 or even with
the solution E−�0, E+�0 �in this case, only for a small
current range�. Finally, the solution E+�0, E−=0 prevails.

B. Reduction to an effective model

In order to better assess the effects of current noise on the
modal dynamics, we next reduce the rate-equation descrip-
tion to a bistable 1D system. In the first place, we introduce
the amplitude-phase coordinates for each mode,

E± = 
±exp i�±. �6�

Using this standard transformations �see �14�� we obtain


̇± =
1

2
	g± − 1 +

2DspN


±
2 

± + �2DspN�


±,

�̇± =
�

2
g± + �2DspN��

± ,

Ṅ = ��J�t� − N − g+
+
2 − g−
−

2� . �7�

Since the modal phases do not influence the evolution of the
modal amplitudes and carrier density, we can disregard them
without loss of generality. It is convenient to perform a fur-
ther change to “cylindrical” coordinates,


+ = r cos �, 
− = r sin � . �8�

In these new variables, r2 is the total power emitted by the
laser, and � determines how this power is partitioned among
the two modes: �=0 ��=
 /2� corresponds to emission in
mode + �−� only, and intermediate values give different
power to each mode.

Using again Ref. �14�, we obtain

ṙ =
r

2
	N�1 + �r2 + �r2cos2 2�� + ��N − Nc��1 + �r2 + �r2�cos 2�

�1 + �r2�2 − ��r2cos 2��2 − 1 +
6DspN

r2 
 + �2DspN�r, �9�

�̇ = −
sin 2�

2

N�r2cos 2� + ��N − Nc��1 + �r2�
�1 + �r2�2 − ��r2cos 2��2 +

2DspN

r2tan 2�
+�2DspN

r2 ��, �10�

Ṅ = �	J − N − r2N�1 + �r2 + �r2cos2 2�� + ��N − Nc��1 + �r2 + �r2�cos 2�

�1 + �r2�2 − ��r2cos 2��2 
 . �11�
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where we have defined

� =
c + s

2
, � =

c − s

2
. �12�

The parameter � thus represents the gain saturation induced
by the total power in the laser, while �—given by the differ-
ence between the coefficients of cross- and self-saturation—
describes the reduction in gain saturation due to the partition-
ing of the power among the two modes. We also wish to
remark that, although we worked in the Itô formalism, this
form of the equations would be the same also in the Stra-
tonovich representations �14�.

The general expression just obtained for the dynamics is
too involved to allow for a detailed analysis of the effects of
noise. In order to simplify the theoretical analysis of this
dynamical system, we further assume that �i� the asymmetry
of the modal gains is very small, i.e., Nc�1, ��1, ��1; �ii�
the laser operates close to threshold, so that the saturation
term is small, �r2�1. In this limit, we find that, to lowest
order in the small terms, the dynamics is governed by

ṙ =
r

2
�N − 1 − N�r2 +

6DspN

r2 � + �2DspN�r, �13�

�̇ = −
sin 2�

2
�N�r2cos 2� + ��N − Nc��

+
2DspN

r2tan 2�
+�2DspN

r2 ��, �14�

Ṅ = ��J − N − r2N� , �15�

so the dynamics of the total intensity r2 and of the carrier
density N decouple from those of the relative phase �. Thus
� is driven by the other two variables.

Moreover, the time scale for the evolution of the relative
phase � is of second order in the small quantities, while that
of r and N is of the first order. Since we are mainly interested
in time scales long enough for the relaxation oscillations of
the total power and carrier density to be totally damped, and
not in the transient dynamics, we can consider that r and N
have reached the vicinity of their steady state. By neglecting
the spontaneous emission term in �13�, we have that

r 
 r0 =� J − 1

1 + �J
; N 
 N0 =

1 + �J

1 + �
. �16�

A more accurate approximation would be to solve the Lange-
vin equations for r and N and to insert the solution into the
equation for � in order to describe how the fluctuations of
the former affect the dynamics of the latter. For simplicity,
we disregard this issue under the assumption that the noise in
�13� and �15� is so weak that they simply “follow” J as
prescribed by �16�. For a time-dependent current this ap-
proximation is valid only if J does not change too fast. For
example, in the case of an Orstein–Uhlenbeck process that
will be considered below one must require the corresponding
correlation time � to be longer than the typical relaxation

time of the total intensity. We shall see that this condition is
generally met in our experimental setups.

In this representation the dynamics can be geometrically
visualized as follows. The motion is constrained along a
manifold �approximated as portion of a circle of radius r0�
connecting the fixed points. Radial fluctuations �i.e., fluctua-
tions in the total intensity output� are completely neglected.
The hopping dynamics is thus effectively one-dimensional
and described by the phase variable �, which determines
how the total power is partitioned among the modes.

Altogether, the above calculation yields the reduced
model

�̇ = − 1
2�a cos 2� + b�sin 2� +

2D�

tan 2�
+ �2D���, �17�

where we have defined the parameters

a = N0�r0
2 =

�

1 + �
�J − 1� , �18�

b = ��N0 − Nc� =
��

1 + �
�J − Js� , �19�

D� =
DspN0

r0
2 =

�1 + �J�2

�1 + ���J − 1�
Dsp, �20�

and, for later convenience, we have introduced

Js =
�1 + ��Nc − 1

�
. �21�

Note that the strength of fluctuations D� depends on the
current. At this stage, one may get rid of one of the three
parameters. For example, one may rescale time t→ t /a ;��

→�a�� so that the only independent parameters are b /a and
D� /a. However, since we wish to understand the role of the
phenomenological parameters in relation with the physical
quantities we stick to the form �17�. This choice is especially
useful when current fluctuations will be taken into account.

To conclude this section, we point out that the same equa-
tion �17� has been derived by Willemsen et al. �15,16� to
describe polarization switches in vertical cavity surface-
emitting lasers �VCSELs�. The starting point of their deriva-
tion is the San Miguel-Feng-Moloney model �17�. We point
out that the physical meaning of the variable � is different
from here as it represents the polarization angle of emitted
light. Thus the potential minima correspond to the two or-
thogonal linearly polarized directions. Also, Nagler and co-
workers �18,19� have derived a one-dimensional Langevin
equation for the mode intensity in VCSEL starting from a
rate equation model for the field intensities in the two polar-
ization directions. Indeed, it can be shown that, upon the
change of variable sin �= p and redefinition of parameters,
model �17� transforms into Eqs. �19� and �23� of Ref. �18�.
This suggests that, upon a suitable reinterpretation of vari-
ables and parameters, many of the results presented hence-
forth may apply also to the dynamics of VCSELs.
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III. ANALYSIS OF THE REDUCED MODEL

In this section we analyze some features of the model in
the case in which J is a constant. In this case, �17� is a
one-dimensional Langevin equation with additive noise
originating from spontaneous emission. The force in Eq. �17�
can be derived from the potential

U��,D�� = −
a

16
cos 4� −

b

4
cos 2� − D�ln sin 2�

�22�

The stationary distribution is thus straightforwardly com-
puted as

P��� = P0exp�− U��,D��/D�� , �23�

with P0 being the normalization constant. Note that the po-
tential depends explicitly on D� �i.e., on Dsp� through the
repulsive logarithmic term in �22�. This term is usually very
small for weak noise except at the extrema �=0,
 /2 where
it diverges logarithmically. As a consequence, P vanishes
linearly there. Physically, this corresponds to the fact that,
due to spontaneous emission, the modes are never com-
pletely switched off.

A. Bistability and effect of the injection current

The most important property that can be immediately
drawn from the form of U is that there exists a range of
current values J3�J�J4 for which the system is bistable.
Within this region, the system has three stationary solutions,
�± �stable� and �0 �unstable�. To compute them, let us ne-
glect the term proportional to D� in the definition of U: �0


� 1
2

�a cos�−b /a�, �−
0, �+

 /2. The bistability domain
is evaluated by the condition �b � �a yielding the approxi-
mate expressions

J3 =
��Js + �

�� + �
, J4 = ���Js − �

�� − �
if �� 	 � ,

+ � otherwise.
� �24�

Those last expressions have been checked to be a good ap-
proximation of the exact values computed from the bifurca-
tion analysis of the deterministic rate equations in the limit
of small � and �. The effect of the term proportional to D� in
�22� is to make the bistability domain dependent on the noise
intensity, i.e., J3�D���J�J4�D��. By computing numeri-
cally the stationary points of U�� ,D�� we have found that
the width of this interval of current values is reduced upon
increasing D� with respect to the deterministic case. The
current value J controls the symmetry of the potential
through the term proportional to b. Within the bistable re-
gion, at the critical value Js, b vanishes and the effective
potential is symmetric under the transformation �→
 /2
−�. In this situation the hopping between the two modes
occurs at the same rate. For weak noise D��a we can easily
estimate the two potential barriers as

�U± =
�a ± b�2

8a
. �25�

In the neighborhood of the J
Js, i.e., for �J−Js�� �Js−1�:

�U± 

�

8�1 + ��
�Js − 1� +

� ± 2��

8�1 + ��
�J − Js� . �26�

Actually, also the noise strength depends on J: expanding to
second order around Js the definition of D�, Eq. �20�, we get

D� 
 D��Js�	1 −
��Js − 2� − 1

�1 + �Js��Js − 1�
�J − Js�

+
�1 + ��2

�1 + �Js�2�Js − 1�2 �J − Js�2
 . �27�

However, it turns out that this correction to the noise is pretty
small for the parameters we choose. More precisely, one can
estimate that, for a given change of J, the relative change of
�U± is roughly a factor 10 larger than the one of D� �21�. We
thus neglect the correction terms in �27� and let D�=D��Js�.

In other words, we assume that changing J only affects
the barriers through formula �26�. With this simplification the
corresponding residence times are given by �20�

T± =�8
D�

a3 exp��U±/D��, � Tsexp	 � ± 2��

8�1 + ��
J − Js

D�

 .

�28�

Here Ts is the residence time at the symmetry point. Note
that the prefactor depends on the noise strength to the lead-
ing order. Formula �28� enlightens the role of the asymmetry
parameters in determining the residence times. Indeed, it pre-
dicts that the residence times should depend exponentially on
the injection current with different rates. In particular, we see
that increasing J around Js may lead to an increase of both T±
if 2���� or to an increase of T+ accompained by a decrease
of T− if instead 2��	�. To discriminate which of the two
cases is of relevance one must thus know the values of the
parameters for the laser at hand. This can only be accom-
plished by comparing them with experimental data. For the
laser at hand �see below�, the measurements indicate that the
case of interest is 2��	�.

B. Comparison with the simulation
of the rate equations

Before proceeding further, we check the accuracy of the
reduction by comparing with simulations of the rate equa-
tions. For defineteness, we let �=0.1, s=1.0, Nc=1.1, �
=0.01, and c=1.1 and perform different runs for different
values of Dsp and for J some 10% above threshold. With the
above choice, �=0.05 and �=1.05, meaning that the time
scale for the slow variable � is estimated to be about one
order of magnitude larger than those of the fast ones. We also
set �=0 since, as explained above, we expect that the phase
dynamics should not matter. The largest part of the simula-
tions was performed with the Euler method with time steps
0.01–0.02. For comparison, some checks with the Heun
method �1� have also been carried on. Within the statistical
accuracy, the results are found to be insensitive the choice of
the algorithm.

We first evaluated the stationary distribution P���
as evaluated from the data through the relation
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�=a tan��E+ � / �E− � �. In Fig. 1 we compare the expression of
U with −ln P. The simulation data reported there correspond
to the current value J=1.197 which we empirically found to
yield an almost symmetric shape of P. This value only dif-
fers by 2% from the one estimated from formula �21� yield-
ing Js=1.195 23, . . . . We also compared the numerically
measured residence times T± with the prediction of the re-
duced model �see again Fig. 1�. Since we work with values
of the noise that are not extremely small, we employed the
quadrature formula �20�

T± = ±
1

D�
�

�−

�+

P−1�x��
�±

x

P�y�dx dy . �29�

This functional form accurately follows the numerical data
�within 10% or so�. In the inset of Fig. 1 we show that the
cumulative distribution of residence times which is Poisso-
nian as expected from the reduced model. Another series of

simulations �not reported� for an asymmetric case, J=1.18
yield comparable results.

C. Including current fluctuations

We include the fluctuation of the injected current by let-
ting J→J+�J�t�. The following considerations hold for an
arbitrary time dependencence of �J under the limitations
necessary to eliminate Eq. �13�. For defineteness, we may
focus on the case in which �J is a Ornstein-Uhlenbeck pro-
cess with zero average ��J�t��=0 and correlation time �:

�J̇ = −
�J

�
+�2DJ

�
�J �30�

that means

��J�t��J�0�� = DJexp�− �t�/�� . �31�

This choice is suitable to model the finite bandwith of the
noise generator employed in the experimental setup. Notice
that � and the variance of fluctuations DJ= ��J2� can be fixed
independently.

The effect of a time-dependent current is twofold. First,
the potential becomes fluctuating: the a, b, and D� coeffi-
cients become time-dependent quantities and the potential
barriers �U±�t� change accordingly. For weak noise, and
close to the symmetry point �J� �Js−1� they are computed
from the approximated formula �26� with J−Js replaced by
�J�t�,

�U±�t� 

�

8�1 + ��
�Js − 1� +

� ± 2��

8�1 + ��
�J�t� . �32�

The barriers’ height depends linearly on �J to leading order.
Obviously, this last expression makes sense only when the
fluctuating term is subthreshold, i.e., whenever the system
is bistable �a large enough �J could always occur making the
potential single well�. The second effect is on the additive
noise strength. Since D� depends on �J the amplitude of
spontaneous emission is renormalized. Indeed, since �� is
�− correlated, the process �2D��J��� can be replaced by
�2�D���� where the average is over the fluctuations of the
variable �J. Using the expansion �27� we get

�D�� = D��Js�	1 +
�1 + ��2

�1 + �Js�2�Js − 1�2DJ
 . �33�

The coefficient in front of DJ is strictly positive meaning that
current fluctuations always enhance spontaneous ones. How-
ever, as argued in Sec. III A for the case of static changes of
J, it turns out that the relative change �U± is larger than that
of D� if DJ� �Js−1�2 �see, however, again note �21��. There-
fore, in the following we can safely set �D��
D��Js�.

Although expression �32� is sufficient to draw some con-
clusion than can be experimentally tested, it is useful to write
down also the full Langevin equation associated with the
problem. Putting all the terms together we find that, to first
order in �J, Eq. �17� transforms to

�̇ = − U���,D�� − V���,D���J + �2D���, �34�

where

FIG. 1. �Color online� Comparison between the reduced model
and the simulation of the rate equations for J=1.197, Dsp=7
�10−6 �the other parameter values are given in the text�. �a� −ln P
evaluated from simulation compared with the analytical result; �b�
average residence times as a function of 1/Dsp. The line is obtained
from the quadrature formula �29�. Inset: Cumulative distributions of
residence times for Dsp=7�10−6. The lines are the expected Pois-
son distribution with the same average.

MULTIPLICATIVE NOISE IN THE LONGITUDINAL¼ PHYSICAL REVIEW E 73, 041101 �2006�

041101-5



− V���,D�� = −
1

2�1 + ��
�� cos 2� + ���sin 2� �35�

�for simplicity we neglected again the dependence of D� on
the current fluctuations�. The multiplicative term can be thus
derived from the “potential”

V��� = −
�

16�1 + ��
cos 4� −

��

4�1 + ��
cos 2� . �36�

For an arbitrary choice of the parameters, V has a different
symmetry with respect to U meaning that the effective am-
plitude of the multiplicative noise is different within the two
potential wells. If this difference is large enough, the current
fluctuation will remove the degeneracy between the two sta-
tionary solutions.

Non-Markovian equations of the form �34� have been
thoroughly studied in the literature �see e.g., �22–25�, and
references therein�. Although their full analytical solution for
arbitrary � is not generally feasible, several approximate re-
sults can be provided in some limits. In the following section
we will discuss the case which is of experimental impor-
tance.

D. The kinetic limit

Altogether, the mode switching can be seen as an acti-
vated escape over fluctuating barriers given by �32�. The
statistical properties of the latter process is controlled by the
current fluctuations. To assess the nature of the stochastic
process at hand, it is important to discuss the relevant time
scales. In particular, one should compare the relaxation time
TR within the wells with both � and the residence times T±. If
TR�� we are in the colored noise case. An estimate of TR is
the inverse of the curvature at �0 that is approximatively
given by 1/a. For example, with the set parameters chosen in
Sec. III B one finds TR�200 in model units.

In bulk semiconductor lasers the residence times are gen-
erally much larger than TR �the switching time between the
two states�. Typically, TR�5–10 ns while residence times
may range between 1 and 100 �s. The noise correlation time
can be somehow tuned but the noise generator limit � to be
larger than 100 ns �8.8 Mhz is the maximal bandwidth used
in the experiment, see Sec. IV below�. Moreover, the fre-
quency of the relaxation oscillations of the total power is
typically above 1 GHz, and its damping occurs on a ns time
scale, in accordance with the assumptions made in the theo-
retical analysis.

At least to a first approximation, we can thus consider the
limit of large �. This justifies a further reduction of the prob-
lem to a kinetic description which amounts to neglect the
intrawell motion and reduce to a rate model describing the
statistical transitions in terms of transition rates. If we con-
sider � as a time scale of the external driving we can follow
the terminology of Ref. �26� and refer to this situation as the
“semiadiabatic” limit of Eq. �34�. We will now consider
separately two limit cases.

1. Slow barrier, rare hops: TR™�™T±

This corresponds to the situation in which spontaneous
emission noise is very weak. In this case the residence time

is basically the shortest escape time, which in turn corre-
sponds to the lowest value of the barrier �the noise is ap-
proximatively constant in the current range considered
henceforth�. For the case of interest ��2�� we can use �32�
to infer that the minimal values of �U± should be attained
for �J� ��DJ respectively. This yields

T± 
 Tsexp	− K
2�� ± �

1 + �

�DJ

D�

 , �37�

where K is a suitable numerical constant. The ratio of resi-
dence times � is thus exponential in the noise rms:

� �
T+

T−
= exp�− K

2�

1 + �

�DJ

D�
� . �38�

Note that � controls the asymmetry level: if ��2�� the two
residence times decrease at approximatively the same rate.
This prediction is verified in the simulations reported below
and also in the experiment.

2. Slow barrier, frequent hops: TR™T±™�

This corresponds to the adiabatic limit in which the time
scale of the external driving is slower than the intrinsic dy-
namics of the system �26�. The results of this subsection are
thus not of direct relevance for interpreting the experimental
results reported here. However, we discuss also this regime
for completeness and to emphasize the differences with re-
spect to the previous case.

To a first approximation we can here treat current fluctua-
tions in a parametric way. The switch time will be the aver-
age of escape times over the distribution of barrier fluctua-
tions, i.e., �T±��J. Using again the approximation �32�, since
the variable �J is Gaussian, using the identity �exp �z�
=exp��2�z2� /2� one gets �24�

T± 
 Tsexp	2�� ± 2���2

�1 + ��2D�
2 DJ
 . �39�

This means that in this limit the residence times increase
exponentially with the noise variance �i.e., exponentially
with the square of rms�. In other words, the fluctuations al-
ways increase the effective barriers albeit asymmetrically.

E. Comparison with the rate equations
in the presence of current noise

The above analysis shows that the effect of the multipli-
cative noise may strongly depend on the actual parameters of
the model, in particular, of the ratio between � and �. Ac-
cordingly, the symmetry-breaking effects can vary consider-
ably depending on the parameter �, see Eq. �38�. To further
clarify this dependence and as a check of the prediction, we
performed some simulations of the rate equations �1�–�3� to-
gether with �30�. We investigated the effect of changing the
value of the cross-saturation coefficient c, keeping the other
parameters fixed as the same used in Sec. III B. The dc value
of the current J has been again choosen empirically to yield
an almost symmetric distribution P��� for DJ=0.

We set �=4�104 which corresponds roughly to the
experimental values. In Fig. 2 we plot −ln P for c=1.1 and
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c=1.3 corresponding to �=0.05 and �=0.15, respectively. In
the second case the multiplicative effect of the noise is stron-
ger and leads to a sizeable distortion of the curve while for
small asymmetries the curves basically maintain their sym-
metry.

The same type of behavior can be observed in the depen-
dence of the residence times on the current fluctuations. Fig-
ure 3�a� illustrates how for c=1.1 ��=0.05� the residence
times decrease at approximatively the same rate upon in-
creasing current fluctuations and the ratio � remains very
close to 1. On the contrary, upon increasing the cross-
saturation coefficient to c=1.3 ��=0.15� a sizeable symmetry
breaking �Fig. 3�b��: one of the two times remains almost
constant while the other decreases. This is in agreement with
formulas �37� and �38�. Indeed, the ratio between the decay
rates of � obtained from the fits �insets of Fig. 3� is about 40,
which is roughly a factor 2 of the corresponding value as
computed from �38� with the simulation parameters at hand.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup is similar to the one described in
�27,28�. Several edge-emitting semiconductor lasers were

tested: two Hitachi Hlp 1400 lasing at 840 nm and three
Sharp LT021 MD lasing at 780 nm. These lasers are
GaxAl1−xAs double-hetero-structure with a bulk active region
and cleaved, uncoated facets. The wavelength separation be-
tween consecutive longitudinal modes is around 0.3 nm, and
the laser emission occurs in a single-transverse mode. The
laser package temperature is stabilized up to 0.01 °C and the
laser current is controlled with a very stable �up to 1 �A�
power supply. The laser is optically isolated from the rest of
the setup by means of an optical diode that avoids spurious
back reflection. The total laser emission is detected by an
Avalanche Photodiode detector �APD� �DC-1.5 GHz band-
width� while the time-averaged optical spectrum is measured
by an Agilent 86140B spectrum analyzer. Individual longitu-
dinal mode detection is obtained by sending part of the laser
output into a monochromator �resolution 0.5 Å� with two
independent output slits. The monochromator can be set in
order to have at the two exits two different longitudinal
modes emitted by the laser. Each longitudinal mode intensity
is then monitored by two APD detectors �DC-1.5 GHz band-
width� placed beyond the slits. The outputs from these detec-

FIG. 2. �Color online� Simulation of the rate equation with cur-
rent fluctuations: −ln P for different amplitudes of imposed noise
DJ; for c=1.1, J=1.197, Dsp=7�10−6 �a� and c=1.3, J=1.194,
Dsp=1.5�10−5 �b�. FIG. 3. �Color online� Simulation of the rate equation with cur-

rent fluctuations: Residence times T+ �squares� and T− �circles� for
c=1.1 �a� and c=1.3 �b�. The parameters are the same as in Fig. 2.
The insets report the ratio of the two times and the dashed line is an
exponential fit, see expression �38�.
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tors are monitored on a LeCroy 7200A �500 MHz analog
bandwidth, 1 GS/s�. The power spectra of the signals can be
monitored using an Agilent E4403B spectrum analyzer.

B. Longitudinal mode hopping

Two control parameters can be directly varied in this sys-
tem: the pumping current J and the temperature of the laser
substrate Tsub. As described in �27,28�, the optical spectra of
the lasers tested show a single longitudinal mode emission
for most of the parameter values �J, Tsub�. However, there
exist small regions in the parameter space where the lasers
are bistable and exhibit mode hopping between two longitu-
dinal modes. A basic explanation of the destabilization of the
leading longitudinal mode is that, fixing the Tsub and increas-
ing J, the wavelength of the cavity resonance increases due
to Joule heating of the semiconductor medium. The gain
curve peak shifts towards the longer wavelength as well, but
at a larger rate. Eventually, the dominating longitudinal mode
looses its stability in favor of a longer wavelength one,
which has become more resonant with the gain peak. The
same happens when, for fixed J, Tsub is increased. This type
of transition among lasing modes is well known �12� and
occurs sharply in the parameter space.

An observation of this regime of stochastic mode hopping
has been reported in several papers �27,29,30�. Its most rel-
evant features are �i� the total emitted intensity remains al-
most constant though each longitudinal mode is switching on
and off. In other words, the anticorrelation of the two modal
intensities is very strong �better than −0.95 in our case�; �ii�
the distribution of residence times in a mode, defined as the
interval between a switching-on and a switching-off event, is
Poissonian; �iii� a sweep of the pump current across this
parameters’ region, reveals the existence of a hysteresis cycle
for the modal emission which is a signature of the bistability
between the two longitudinal modes. It is thus clear that
these features are straightforwardly explained by the theoret-
ical analysis presented above.

The study of the fluctuations of the laser emission can be
carried out by monitoring the modal intensities normalized to
the total intensity output: mI= iI / itot and mII= iII / itot. The
mode labeled with I is the one with the larger wavelength.
These are related to 
± defined in the theoretical analysis, by
mI,II=
±

2 /r0
2. Then, it is useful to represent the state of the

system in the phase space �mI
1/2 ,mII

1/2�. Hence, the variable �
used in the theory is simply the angle that this vector forms
with the horizontal axis. The strong anticorrelation of the
modal intensities implies that the modulus of this vector is
almost constant and equal to 1. In Fig. 4 we plot the the
probability distribution function in the space �mI

1/2 ,mII
1/2�. The

maxima of the distribution correspond to the two stable
modes involved in the hopping. It is evident that the relevant
dynamics occur on a portion of the unit circle as assumed in
the simplified theory.

The probability distribution functions of the angular vari-
able � as obtained from the experiment are reported in Fig. 5
for different values of the pumping current. For every � we
have included in the histograms all the points along the ra-
dial direction. Two peaks located around �=0.2 and �=1.4

are found, corresponding to the activation of the modes I and
II, respectively. In Fig. 5�a� we plot the distribution of � for
the case of Fig. 4, where the modal emission is symmetric,
J
Js. The measurements show that upon changing the
pumping current an asymmetric situation settles down,
where the laser emission on one of the two modes is favored.
In particular, a decrease �resp., increase� of J with respect to
the value of Fig. 4, enhances the stability of the mode labeled
by II �resp., I�, see Figs. 5�b� and 5�c�, respectively. In all
cases, the logarithm of the distribution can be fitted with the
function �see Eqs. �22� and �23�� −A /16 cos 4�
−B /4 cos 2�−D ln sin 2�+C.

The dependence of the average residence times, TI and
TII, on the pumping current is shown in Fig. 6. As predicted
by formula �28�, both times depend exponentially on J and
the two curves have different absolute values of the slopes
�remember the remark at the end of Sec. III A�. Incidentally,
this implies that the quantity �TI+TII� /2 increases with the
current, meaning that hops become more and more rare.
Moreover, the ratio �=TI /TII increases exponentially with
the current as shown in the inset of Fig. 6. This behavior is
also consistent with formula �28�.

C. Effect of noise addition
onto the pumping current

In a semiconductor laser driven by a constant �dc� current,
the main source of noise is the spontaneous emission within
the semiconductor medium. This noise source cannot be var-
ied directly through the control parameters. Fluctuations can
be added into the system externally by adding electrical
noise on the pumping current. This signal employed in our
setup has zero-mean, a bandwidth ranging from 100 Hz to
8.8 MHz and it is ac-coupled to the laser bias current.

FIG. 4. Experimental probability distribution of the normalized
modal amplitudes �see text�. The histogram is represented in loga-
rithmic scale with a gray scale code from white �low probability� to
black �high probability�; J=95.9 mA, Tsub=20.4 °C.
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In Fig. 7�a� we show how the average residence times TI,II
change upon increasing the current noise level around the
static value Js. The times are affected in a strongly asymmet-
ric way: while TII is almost unchanged, TI decreases expo-
nentially. In Fig. 7�b� we plot the probability distribution
function of the angular variable � for different values of the
pump noise. The experimental evidence confirms that the
asymmetry of the probability distribution increases upon in-
creasing the noise level. It is interesting to remark that an
increase of the noise level is equivalent, from the point of
view of the residence times, to a decrease of the dc pumping
current. This experimental result confirms that the imposed
noise does affect the dynamics in a multiplicative way. The
qualitative agreement between the experimental data and the
simulations reported in Figs. 2�b� and 3�b� supports the va-
lidity of our modeling. The exponential dependence of the
ratio � on the rms of the fluctuation predicted by the analysis
of the reduced model, Eq. �38�, is indeed observed in the

experiment �see Fig. 8�. This is another indication that con-
firms that the kinetic description suffices to capture the
mode-hopping dependence on noise level.

V. CONCLUSIONS

In this paper we have explored experimentally and theo-
retically the effects of external current noise on the mode-
hopping dynamics of a bistable semiconductor laser. We
have shown that the residence times of each mode are
strongly affected, bearing the typical signatures of multipli-
cative noise. We have investigated a theoretical model based
on a rate-equation description, where the bias current enters
parametrically into the evolution of the modal amplitudes,
hence the multiplicative character of its fluctuations. Nu-
merical simulations of the rate equations are in good quali-
tative agreement with the experimental observations. More-
over, the reduction of this model to a 1D Langevin equation
describing activated escape over a fluctuating barrier has al-
lowed us to draw some predictions �e.g., the dependence of
residence times on noise strength� and to better understand
the role of the physical parameters. Depending on their val-
ues, the fluctuating part of the effective potential may have a
different parity with respect to the static one. This explains
the observation that imposed fluctuations have different ef-
fects on the hopping rates �symmetry breaking�.

The reduced model and many of the results presented here
could be useful to describe also the polarization switching in
VCSELs driven by external noise. Indeed, experimental data
show strong similarities between this phenomenon �31,32�
and the longitudinal mode dynamics. On the theoretical side,

FIG. 5. The logarithm of the experimental probability distribu-
tion function of the variable � �squares� for three different values of
the current, Tsub=20.4 °C. The line is the fitting with the function
given in the text. �a� J=95.9 mA, fitting parameters A=108.5, B
=0, D=4.6, and C=−10.6; �b� J=95.1 mA, fitting parameters A
=85, B=−18.7, D=4.9, and C=−8.1; �c� J=96.6 mA, fitting param-
eters A=90, B=13.5, D=2.5, and C=−7.2.

FIG. 6. Average residence times for mode I �triangles� and II
�squares� as a function of the pumping current, Tsub=20.4 °C. Inset:
the ratio TI /TII.
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this analogy is supported by the fact that the polarization
dynamics in VCSELs is described by models that are very
similar to the one discussed here �15,16,18�. The inclusion of
current noise effects along the same line above reported
should be feasible once the typical time scales and param-
eters for such a class of lasers are evaluated. This work, that
we plan to undertake in the future, will provide a common
theoretical basis to the stochastic dynamics of bistable semi-
conductor lasers.
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