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We studied a nematic liquid crystal �LC� cylinder under the action of an axial electric field E0. Elaborate
modeling of the free energy leads to the conclusion that the configuration of the molecules is “escaped radial”
for low E0; a phase transition, however, occurs for a critical value Ec, the configuration becoming axial for
E0�Ec. From these results, the position-dependent dielectric tensor is determined and the photonic band �PB�
structure is calculated for a photonic crystal of LC cylinders. It is shown that by varying E0 a PB gap can be
fully tuned from open to closed. Also, switching to a supercritical field can give rise to interesting polarization
and directional effects in the propagation of light.
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Photonic crystals �PCs�—spatially periodic, composite
materials that can exhibit photonic band �PB� gaps for light
propagation—have reached a mature state of development,
with their optical properties well understood and with many
realized and potential applications �1�. Most of this research
deals with PCs whose characteristics are fixed, that is, once
they have been fabricated there is no possibility to alter their
optical response. A recent trend, however, concerns tunable
or active PCs; by this we imply that, by means of some
external agent, it becomes feasible to change the optical
properties of the PC continuously and reversibly. This could
lead to tunable optical waveguides, switches, limiters, and
polarizers; to reconfigurable optical networks; and to electro-
optic interconnects in microelectronics.

The tuning or switching of PCs has been proposed or
achieved by producing structural changes, by the incorpora-
tion of a ferromagnetic material, by varying the density of
the plasma of free electrons in a semiconductor constituent,
by taking advantage of optical nonlinearities caused by in-
tense laser illumination, and by infilling the PC with a liquid
crystal �LC�. Some 50 papers have been published on the
subject, recently explored at a specialized conference �2�. In
particular, LCs are well-established electro-optic materials
that can be tuned by means of pressure, heat, and applied
electric or magnetic field. Their incorporation within a PC is
of particular interest because of the possibility of selectively
tuning PB gaps, as reviewed recently �3�.

In 1999, Bush and John �4� pointed out that, when a nem-
atic LC is infiltrated into the void regions of an inverse opal
PC, the resulting composite exhibits a completely tunable PB
gap. In their calculation, this is achieved by an electric field,
which rotates the axes of the LC molecules relative to the
opal backbone. This, however, requires external fields strong
enough to overcome the Van der Waals forces on the mol-
ecules. Moreover, the rotation of the electric field is very
cumbersome experimentally. Further, these PCs are disad-
vantageous because they have a high density of defects and
only pseudogaps restricted to the �111� direction. Finally, the
anchoring problem in opal PCs is extremely complicated �5�,
thus hindering theoretical analysis. For all these reasons, the

LC tuning of the PCs has not lived up to the blueprint and
promise originally outlined. More than anything else, theory
has lagged much behind experiment; in fact, there is no first
principles theory that predicts the response of a LC-infilled
three-dimensional �3D� or two-dimensional �2D� PC to an
applied field. In this paper, we present just such a theory for
2D PCs of hollow cylinders, infilled with a nematic LC. We
argue that such PCs are advantageous for tuning by modest
electric fields that are parallel to the cylinders. This is so
because of their relative simplicity and high quality of fabri-
cation; because typically large material contrasts lead to
large PB gaps in all the in-plane directions; and because the
theory of a dielectric response of a LC cylinder is a manage-
able problem, that can lead to convergence with experimen-
tal studies. Leonardet al. �6� have already infilled a 2D
macroporous Si PC with a nematic LC and showed that tem-
perature tuning can be accomplished by provoking a transi-
tion of the LC from the nematic to the isotropic phase. The
same type of transition was employed to tune the transmis-
sion peak of a wave guided by a III-V semiconductor PC
with a missing row of cylinders �7�. The selective tuning of
light propagation in a Y-shaped, LC-infilled PC waveguide
was also theoretically studied �8�. Further, very recently,
electric tuning of a 2D PC laser was accomplished �9�.

We study the detailed nature of the interaction of the nem-
atic LC with the cylinder wall and the applied field. Mini-
mizing the free energy, we show that, for a critical value of
the field, the molecules undergo a second-order configura-
tional phase transition. We determine the dielectric tensor at
every point within a LC cylinder, leading to the PB structure,
which exhibits polarization-dependent tuning and switching
behaviors.

First, we focus on a single, infinite, circular cylinder of a
nematic LC. In order to determine the molecular or “direc-
tor” orientations n̂�r� ��n̂�r��=1� at a point, we consider the
Helmholtz free energy. This has an elastic part or Franck
energy �corresponding to the Van der Waals forces� of the
form �1/2�Kijkl��inj���knl�, a surface “anchoring” part, and
an electromagnetic part �−1/2�D0 ·E0, with the wave field E
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neglected in comparison to the static field E0 �linear approxi-
mation�. With E0 � ẑ �cylinder direction� the free energy is
�Refs. �10,11��

F =
1

2��V

dV�K11�� · n̂�2 + K22�n̂ · � � n̂�2

+ K33�n̂ � � � n̂�2 − K24 � · �n̂ � · n̂ + n̂ � � � n̂��

+ �
S

dSW� sin2 ��r� − �
V

dV��o + �anz
2�E0

2	 . �1�

The elastic moduli K11, K22, K33, and K24 describe, respec-
tively, transverse bending �“splay”�, torsion �“twist”�, longi-
tudinal bending �“bend”�, and surface interaction. W� is the
strength of anchoring of the molecules at the walls, and
��r�=angle �n̂�r� , ẑ�. In the last term, �o and �a are the
ordinary dielectric constant and the “dielectric anisotropy”
��a=�e−�o� of the LC. Assuming axial symmetry, the direc-
tor is n̂=sin ��x̂ cos �+ ŷ sin ��+ ẑ cos �. Integrating over �,
the free energy per unit length is obtained. The stationary
orientational configuration ��r� is determined by minimizing
the free energy. This leads to the following Euler-Lagrange
equation �with primes denoting differentiation with respect
to the argument x=r /R, R is the cylinder radius� �11�:

�cos2 ��x� + � sin2 ��x���x2���x� + x���x��

+ 1
2 sin 2��x�
�� − 1�x2����x��2 − qx2 − 1� = 0,

�2a�

with the condition ��0�=0 on the axis and the boundary con-
dition at the surface �x=1�

���1� = 1
2� sin 2��1�/�cos2 ��1� + � sin2 ��1�� . �2b�

�=K33/K11, �=W�R /K11+K24/K11−1, and q is the “field
parameter”

q = �aR2E0
2/K11, �3�

representing the ratio of the electric and elastic energies. For
q�1 the influence of the applied field is weak, while for
q	1 the field essentially overcomes the Van der Waals
forces.

Equation �2� has two simple exact solutions, namely,
�=
 /2 and �=0. The first possibility corresponds to the
“planar radial” �PR� configuration with n̂�r�� ẑ; the second
is the “axial” �AX� configuration with n̂= ẑ. A third solution
is the “escaped radial” �ER� configuration, with the directors
fanning out from the cylinder axis to its wall, Fig. 1, left
inset. We have selected the nematic LC “5CB” for our
numerical study; the ordinary permittivity and anisotropy
are �o=7, �a=11.5 for low frequencies and �o=2.403,
�a=0.605 for optical frequencies, all in units of the vacuum
permittivity. Note that the former values are used in Eqs.
�1�–�5� and the latter in Eqs. �6� and �7�. Other parameters
are K11=1.2�10−11 N=K24, �=1.316, W� /K11=40 �m−1;
hence �=40R ��m� �12�. The solutions for ��r� have been
found by the shooting method �13�, and are shown in Fig. 1
for R=0.2 �m and a series of values of the field parameter q,
Eq. �3�. It is seen that, on the cylinder wall �r /R=1�, in the
absence of the field �q=0�, the director does not deviate
much from the perpendicular direction; it becomes more and
more aligned with the cylinder as the field increases.

The ER configuration, in fact, is realized for relatively
large R and E0=0 �14�. Is it possible, however, that a phase
transition occurs for a different configuration for a suffi-
ciently strong field? The “planar polar” and the PR configu-
rations are not plausible and, indeed, if we set ��x�=
 /2 in
Eq. �2�, we find that FPR�q��FER�q�. On the other hand, if
we set ��x�=0 in Eq. �2�, we get

FAX�q� = 
K11�W�R/K11 − �eq/2�a� , �4�

and the AX configuration becomes more stable than the ER
provided that FAX�q��FER�q�. This can occur for suffi-

FIG. 1. The angle ��r /R� between the nematic director n̂�r� and
the cylinder axis ẑ, as the function of the normalized radial distance
inside a liquid crystal cylinder. The curves correspond to the field
parameter q=�aR2E0

2 /K11, taking the values �from above� 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 11, 15, 20, 30, 40, 60, 70 �the curves for
q=0,9 ,20,40 are drawn in heavy lines because they correspond to
four cases considered in Fig. 3�. For q�71.4, a phase transition
occurs from the escaped radial to the axial configuration shown in
the insets.

FIG. 2. The critical applied electric field for transition from the
escaped radial to the axial configuration of the nematic liquid crys-
tal cylinder, as a function of the cylinder radius.
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ciently large fields, such that q�qc, where the critical value
qc is given by

FER�qc� = 
W�R − 
K11�eqc/2�a. �5�

The corresponding critical electric field is plotted in Fig. 2 as
a function of the cylinder radius. We see that, with the ex-
ception of extremely small radii �R�50 nm�, the critical field
is Ec�14 V/�m. For R=0.2 �m this gives qc=71.4, from
which it follows that, in Fig. 1, �=0 for q�71.4.

Now that we have determined ��r� for all E0, we proceed
to calculate the elements of the dielectric tensor �ij�r� of the
LC cylinder. Of course, in the proper system of the LC at a
point r, �ij has the uniaxial form, given in terms of �o and �e.
Transforming to the “laboratory” system,

�ij�r� = �o
ij + �ani�r�nj�r�, �i, j = x,y,z� �6�

with n̂�r� given after Eq. �1�. Clearly, the problem at hand is
both anisotropic and inhomogeneous. The host material is
chosen to be Si with permittivity �Si=11.7. The PB structure
is obtained from the wave equation for the magnetic field,

� � 
�I−1�r� · �� � H�r��� = ��/c�2H�r� �7�

where the dyadic �J−1�r� is found from the inversion of �ij�r�
for r within a cylinder. H�r� must be a superposition of plane
waves with wave vectors k+G, where k and G are the Bloch
and reciprocal-lattice vectors. It has two components that are
perpendicular to k+G; these are coupled because of the an-
isotropy. Hence, despite of the 2D periodicity, strictly speak-
ing, there are no modes with their electric or magnetic field
polarized parallel to the cylinders.

The first three bands of a typical band structure �with �
normalized by the PC period a� are shown in Fig. 3 �top� for
four values of the field parameter. The first two bands are
rather insensitive to E0, and it is band 3 that is responsible
for most of the tuning. Below in Fig. 3 the eigenvectors—
actually the square of the perpendicular �for bands 1 and 3�

FIG. 3. �Color� Top: Band structure for a square lattice of LC
cylinders in Si. The first three bands are plotted for four values of
the field parameter q. �The corresponding ��r� curves in Fig. 1 are
rendered thicker.� Bands 1 and 3 �2� have their E�H� field very
nearly parallel to the cylinders, as can be understood from the mag-
netic field eigenvectors �below�. These are shown for the first three
bands at the X and M points of the Brillouin zone. For the first and
third bands, H�

2 �r� is shown; H�
2�r� is very small, with the average

value 
H�
2��3�10−3
H�

2 � in all cases plotted. For the second band
H�

2�r� is exhibited and H�
2 �r� is extremely small, with 
H�

2 ��3
�10−5
H�

2�. Note that there is a completely tunable gap for E
polarization.

FIG. 4. �Color online� �a� Band structure for supercritical fields
�q�71.4�, that is, axial configuration of the liquid crystal �triangu-
lar lattice�. Note a complete �partial� band gap for H-polarized �un-
polarized� light. �b� The edges of the two forbidden �shaded� bands
in �a� as a function of the field parameter. A phase transition occurs
from the ER to the AX configuration at q=71.4.
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or parallel to ẑ �for band 2� component of Hk�r�—are plotted
in nine unit cells, for k corresponding to the X and M points
of the Brillouin zone. The important conclusion is that
H�

2 	H�
2 for the first and third bands, while the reverse is

true for the second band. Therefore, we may regard the
modes corresponding to the first and third bands as nearly
E-polarized �E � ẑ�, while those corresponding to the second
band are nearly H-polarized �H � ẑ�. Now, it becomes appar-
ent that there is a completely tunable PB gap for E modes
between the first and third bands: in the absence of an
applied field �q=0� and for small fields �q=9� a wave inci-
dent at the PC with k� ẑ and E � ẑ will be completely re-
flected for � within the gap; for q=20 the gap closes; and for
q=40 �large applied field� the bands overlap, thus allowing
propagation.

While Fig. 3 concerns tuning �by subcritical fields�, Fig. 4
is an example of switching—from the field “off” to a super-
critical value—taking advantage of the transition from the
ER to the AX configuration. Figure 4�a� shows a wide, com-
plete PB gap for supercritical fields with �now strictly� H
polarization, and there is a smaller gap for propagation lim-
ited to the �X direction, however, for any polarization of

the incident wave. In Fig. 4�b�, we see the approach to criti-
cality of the edges of the two aforementioned band gaps; for
q�qc=71.4 these band edges do not shift anymore and co-
incide with the corresponding values in Fig. 4�a�. As an ex-
ample of switching, if the PC is illuminated by the unpolar-
ized light of the frequency �a /2
c=0.276, for E0=0 both E
and H components will be transmitted. On the other hand,
for E0�Ec, only the E-polarized component is transmitted.

Quite independently of the PCs, this paper established
the existence of a phase transition—from the ER to the
AX configuration—within a single LC cylinder, reached
for a critical value of the applied field E0. This behavior
would surely be interesting to investigate for other LCs, both
theoretically and experimentally. Our calculations also
demonstrated that both tuning and switching of LC-infilled
PCs is feasible for a system that is much simpler than opal
PCs. These ideas could contribute in a significant way to
“the aim to monolithically integrate tunable properties with
other optoelectronic components, like lasers, waveguides and
detectors” �3�.
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