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We present a Markov process which models particle hydrodynamics with conservation of the first three
momenta. This is achieved by extending the �Peters, Europhys. Lett. 66, 311 �2004�� and �Lowe, Europhys.
Lett. 47, 145 �1999�� method to incorporate energy conservation. The equivalence of the energy conserving
Peters method and dissipative particle dynamics with energy conservation �DPDE� in the limit of a vanishing
time step is shown. Simple numerical experiments clearly demonstrate the applicability of the methods. This
overcomes current limitations of DPDE in the study of complex fluids in the �N ,V ,E� ensemble.
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Dissipative particle dynamics �DPD� has attracted much
attention over the past decade. Originally proposed to coarse
grain the dynamics of fluids on a mesoscopic scale in the
canonical ensemble �1�, DPD can be considered as Brownian
dynamics with additional momentum conservation. The dis-
sipative and fluctuating forces act between pairs of particles,
giving hydrodynamic behavior.

A generalization of DPD to nonisothermal systems by in-
troducing a local equilibrium assumption has been developed
independently by Avalos and Mackie �2� and Español �3�.
The kinetic energy created or absorbed by the dissipative and
fluctuating forces is balanced with each particle’s local en-
ergy �i. A local entropy function s��i� is defined for each
particle such that a definition of the particle’s temperature is
possible using the relation 1/Ti=�s /��i if local equilibrium
is assumed. This model is known as dissipative particle dy-
namics with energy conservation �DPDE�.

DPDE becomes useful when applied to mesoscopic simu-
lations of nonisothermal flow behavior. This may be of inter-
est in microfluidic devices or biological applications where
thermal fluctuations and viscous heating effects coexist.
However, very few applications of DPDE have been pub-
lished �see, e.g., �4��. We believe the reason for this is the
fact that early versions of the discrete DPDE algorithm did
conserve energy only in the mean and only in the limit of a
vanishingly small time step �2,3�. The original idea behind
DPD was, however, to be able to investigate systems at time
scales longer than those possible using molecular dynamics.
An approach to overcome this shortcoming was presented in
�5�. This approach is an implicit scheme and does require a
different interpretation of the stochastic differential equations
of DPDE which is neither Itô nor Stratonovich. Our pro-
posed method is a Markov process similar to existing ther-
mostating schemes which gives an explicit algorithm. Energy
conservation is imposed by inspecting the state of pairs of
particles before and after the dissipative and random dynam-
ics has been estimated. The essential result of this paper is

the form of the fluctuation-dissipation theorem for the dissi-
pative and random dynamics in the system. This is derived
by comparing the limit of vanishing time step of our model
to continuous DPDE.

The dissipative and random dynamics is estimated using
the Peters thermostat �6�. Furthermore, a Lowe-Andersen
thermostat �7� that is equivalent to DPDE with respect to its
relaxation behavior in the temperature will be used. This
procedure will, however, exhibit a different relaxation behav-
ior in the higher order cumulants of the velocity distribution.
Throughout this paper we will keep the term “thermostat” to
outline the similarity between the traditional thermostat,
which couples the system to one global and infinitely large
heat bath, and our method, which couples the momentum
relaxation process to each particle’s local heat bath and then
accounts for energy balance. By local heat bath, we refer to
a system, which cannot be mechanistically controlled and
whose heat capacity is finite but large. Thus, the energy con-
serving “thermostat” gives a prescription how to relax the
system to its equilibrium locally.

The DPDE stochastic differential equations for a particle i
are given by �2,3�

dri = vidt , �1�

dvi = − �
j�i

�ijw�rij��eij · vij�eijdt + �
j�i

�ijw
1/2�rij�eijdWij , �2�

d�i =
m

2 �
j�i

�ijw�rij��eij · vij�2dt −
m

2 �
j�i

�ij
2 w�rij�dt

−
m

2 �
j�i

�ijw
1/2�rij��eij · vij�dWij , �3�

where ri is the position, vi the velocity, and �i the internal
energy of the ith particle. Furthermore, the two-particle
quantities are defined as rij =ri−r j and vij =vi−v j, whereas
eij denotes the unit vector pointing from particle j to particle
i, i.e., eij =rij /rij. The symbol dWij denotes the Wiener incre-
ment �8�. Parameters of the DPDE model are the two-particle
dissipation constant �ij, the two-particle noise amplitude
�ij, which define the pace at which the system approaches
equilibrium, and the weighting function w�r�, which defines
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the range of the forces. The corresponding fluctuation-
dissipation theorem �2,3�

�ij =
m

4kB
�ij

2� 1

Ti
+

1

Tj
� �4�

ensures that the system relaxes to the equilibrium distribu-
tion

�eq =
1

Z
exp��

i

s��i�����
i

mvi − p0�
���

i

�mvi
2 + �i� − E0� . �5�

Here, E0 and p0 are the total energy and the total momentum,
respectively, which are conserved quantities. The kinetic
theory of this model has been discussed in �9�.

In the Peters thermostat for the �N ,V ,T� ensemble �6�, the
system under consideration is partially relaxed to the equi-
librium situation which is known a priori from statistical
mechanics. The thermostat considers pairs i-j of particles
and modifies the relative velocity to ensure momentum con-
servation. The equilibrium relative velocity distribution be-
tween particles i and j is Gaussian with variance 2kBT /m
where T is the equilibrium temperature the system attains
due to the coupling to an infinitely large heat bath. Effec-
tively, the energy lost in the dissipative process is absorbed
by the heat bath. All pairs are thermalized, but only to a
fraction a, which depends on the relaxation constant � that
appears in the DPD equations of motion.

This procedure can be transfered to DPDE. In DPDE,
each particle carries its own heat bath characterized by the
internal energy �i. The kinetic energy lost in the dissipation
process or gained due to fluctuations has to be balanced with
the respective internal energies. Whenever a pair is thermal-
ized the difference in kinetic energy Eij

kin before and after the
update process is split equally between the two participating
particles. The equal splitting assures the system is modeled
with equal a priori probabilities.

The variance of the local velocity distribution for a pair of
particles i-j is not clear a priori and has to be determined by
finding the limiting equation of motion for vanishing time
steps �t.

The update prescription for the Peters thermostat is

vi� = vi + 1
2 �− aij�vij · eij� + bijWij�eij , �6�

v j� = v j − 1
2 �− aij�vij · eij� + bijWij�eij , �7�

�i� = �i + 1
2 ��Ei

kin + Ej
kin� − �Ei

kin� + Ej
kin��� , �8�

� j� = � j + 1
2 ��Ei

kin + Ej
kin� − �Ei

kin� + Ej
kin��� , �9�

where the primed quantities denote the state after the update
process and Wij is a Gaussian noise term with unit variance.
Note that this construction allows for numerically exact en-
ergy conservation. Inserting Ei

kin=mvi
2 /2 and using Eqs. �6�

and �7�, the energy update equation becomes

�i� = �i −
m

4
�− aij�vij · eij� + bijWij��vij · eij�

−
m

8
�− aij�vij · eij� + bijWij�2.

The terms quadratic in Wij are also considered explicitly in
the algorithm given in �5�.

A compact way to express this update process is by con-
sidering the total state of the system x= �ri ,vi ,�i , i
=1, . . . ,N	, where N is the number of particles. Let Tij be the
operator acting on the state x and giving the update steps
Eqs. �6�–�9� for the pair of particles i-j. Then the total op-
erator for the thermostat is T=
�k

T�k
. Here, �k gives the

order of the pairs i-j.
The update operator can be further split according to

Tij = 1 + Tij
D + T ji

D + Tij
R + T ji

R + Tij
E + T ji

E ,

where Tij
D and Tij

R give the dissipation and the random contri-
bution to the velocity update, respectively. Update of the
energy is given by Tij

E. The operators replace the specific
state variable, i.e., v or �, with their value after the update
process, i.e., the primed quantities. These operators have the
properties Tij

	Ti�j�
R =0 and Tij

ETi�j�
	 =0 with 	� �D ,R ,E	. Be-

cause other combinations do not necessarily give zero, the
outcome of the thermalization does depend on the order of
the �k. In fact, during simulation one has to choose random
permutations of all pairs for �k in order to avoid biasing.

In equilibrium the variance of the distribution of the rela-
tive velocities must not be changed locally by the update
process, i.e., �Tij�vij ·eij�2�= ��vij ·eij�2�

ij

2 . This leads to the
condition bij =
ij�2aij −aij

2 �1/2.
By considering the update equations in the limit of van-

ishing time step �t it is possible to identify aij and 
ij from
the DPDE equations of motion. The only quantity left that is
allowed to depend on the time step is aij. Expanding to first
order gives

aij = aij
�1��t + O��t2� ,

bij
2 = 2
ij

2 aij
�1��t + O��t2� ,

where aij
�0�=0 must be presumed. This assures no unphysical

jumps occur due to the dissipative part of the update equa-
tions for �t→0. Inserting into �6�–�9� gives the vanishing
time step expression for the update equations for the particle
pair i-j,

T̃ijvi = − 1
2aij

�1��vij · eij�eij�t + 1
2 �2aij

�1��1/2
ijWijeij�t1/2,

and

T̃ij�i = +
m

4
aij

�1��vij · eij�2�t −
m

4
�2aij

�1��1/2�vij · eij�
ijWij�t1/2

−
m

4
aij

�1��
ijWij�t1/2�2,

where T̃ denotes a vanishing time step operator.
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In the limit of �t→0, when only retaining terms of the
order of �t1/2 and �t, we can define the limiting operators

T̃ij
x . These operators exhibit the properties

T̃i�j�
D T̃ij

E�i � ��ii�� j j� − � ji��ij���t ,

T̃i�j�
R T̃ij

E�i � ��ii�� j j� − � ji��ij���t ,

T̃i�j�
R T̃ij

D�i = 0.

Because a thermalizing operator is never applied twice, the
case i= i� and j= j� or i= j� and j= i� does not occur. Thus,
the total thermalization process is

T̃ = 1 + �
i�j

�T̃ij
D + T̃ij

R + T̃ij
E� ,

giving exactly the equations of motion for DPDE. Note that
for �t→0 one can identify Wij�t1/2=dWij �8�.

The update equations thus reduce to the stochastic differ-
ential equations for DPDE. This allows us to make the iden-
tifications

aij
�1� = − 2�ijw�rij� ,

bij
2 =

4kB

m
� 1

Ti
+

1

Tj
�−1

�2aij − aij
2 � , �10�

with �10� being the manifestation of the fluctuation-
dissipation theorem for DPDE �4�. Note that �10� is the main
result of this report, defining the correct equilibrium distri-
bution in the nonisothermal case. In analogy to continuous-
time DPDE aij can be called the dissipation variable and bij
the noise amplitude. Note that �10� is always stable because
0�aij �1. For aij =1 the system relaxes to its local equilib-
rium instantaneously.

There is obviously more than one choice for aij. The spe-
cific choice of aij crucially defines the deviation of the par-
ticles’ trajectories from continuous DPDE. In this paper, we
will use the value for aij obtained when solving the dissipa-
tive dynamics of two particles exactly, i.e.

aij = 1 − exp�− 2�ijw�rij��t� , �11�

which has been proposed by Peters �6�.
The Lowe-Andersen thermostat �7� is the predecessor to

the Peters thermostat, and similar in the respect that pairs of
particles are thermalized. However, not all pairs are thermal-
ized, rather each pair with a probability of ��t. The pairs are
equilibrated completely, i.e., a=1 for the Peters thermostat.
Here, � is the relaxation constant of the Lowe-Andersen
thermostat.

Instead of using the Peters update Eqs. �6�–�9�, it is also
possible to use the Lowe-Andersen update equations. How-
ever, as the equations of the Lowe-Andersen thermostat do
not reduce to DPD in the limit of vanishing time step, it is
unclear how to choose the variance 
ij. Because of the simi-
larity between the Peters and the Lowe-Andersen method we
will choose the variance 
ij identically to Eq. �10�. Further-
more, we will choose the relaxation constant � to depend on
the relative position of two particles. Specifically it will be
set to

�ij�t = 1 − exp�− 2�ijw�rij��t� .

In analogy to �11� this gives the same relaxation rate in the
temperature as the corresponding Peters thermostat.

In all simulations the units are fixed to m=1 and rc=1
using the weighting function w�r�=15/ �2
rc

3��1−r /rc�2. The
dissipation constant is chosen to be �=1. Furthermore, the
local entropy function is chosen to be s���=Cp ln �, where
Cp=100 is the local per-particle heat capacity. The derived
quantities displayed in Figs. 1–3 are thus dimensionless, but
units can be readily reintroduced. For the standard DPDE
equations of motion from �2,3�, a Velocity-Verlet algorithm
is used for the integration of the positions and velocities as
presented in �10�. An Euler algorithm is used for the integra-
tion of the energies.

The velocity and energy distribution in the equilibrium
case are exactly reproduced for the Peters and Lowe-

FIG. 1. Distribution of the internal energy � in equilibrium.
Figures show the results for the DPDE �top�, Peters �middle�, and
Lowe-Andersen �bottom� integration scheme. The solid line gives
the theoretical results, whereas simulation results are given for a
time step of �t=0.01 ��� and �t=0.001 ���. For the simulation,
N=5000 particles where observed over a total time of t=200.

FIG. 2. Pair distribution function g�r�−1 for the different inte-
gration methods. The deviation from g�r�−1=0 for small r is due to
poor statistics in this region. Time step and number of particles are
chosen to be �t=0.001 and N=50 000, respectively, while averag-
ing over n=50 000 simulation steps.
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Andersen method, but not for DPDE. A Maxwell-Boltzmann
distribution is obtained for velocities and the energies are
distributed according to �11�

f��� =
1

M

1

E0
� �

E0
�Cp/kB�1 −

�

E0
��N−1��Cp/kB+1�−1

, �12�

with E0 being the total energy and M a normalization con-
stant. This energy distribution is shown in Fig. 1. In the case
of DPDE, the average energy of a particle is shifted to higher
values. This corresponds to a larger total energy E0, i.e.,
energy is not conserved.

The fact that both thermostating procedures do not induce
structure into the system can be seen from the pair correla-

tion function g�r�−1. It shows a deviation from the theoret-
ical curve g�r�−1=0 that is virtually nonexisting. This is
shown in Fig. 2. Note that the deviation for r→0 is due to
poor statistics in that region. This is consistent with the iso-
thermal results presented in �12�.

In order to study the dynamical relaxation behavior of the
thermostating schemes the system is set to nonequipartition
initially. Specifically the initial velocity and energy distribu-
tions were chosen to be f�v�= ���v− �kBTv /m�1/2�� /2 and
f���=���−CpT��, respectively. Here Tv and T� correspond to
two different temperatures giving nonequipartition. The re-
laxation of the second and fourth cumulant of the relative
velocity distribution, i.e., ���eij ·vij�2�� and ���eij ·vij�4��, re-
spectively, is observed over time, showing an exponential
decay. This decay can be quantified by the inverse relaxation
time 1/� and compared to the relaxation constant � of the
thermostats. Figure 3 shows that the relaxation time of the
second cumulant is identical for the three methods presented.
However, the Lowe-Andersen thermostat does show a faster
relaxation of the fourth cumulant of the relative velocity dis-
tribution. This effect has been first predicted by Peters �6�.

We presented a Markov process for particle hydrodynam-
ics equivalent to dissipative particle dynamics with energy
conservation. Outstanding results are the conservation of en-
ergy and the reduction to the DPDE equation of motion in
the limit of vanishing time step. The equivalence of DPDE
and the Peters scheme has been also verified numerically.
This model can be regarded as a prototypical example for
Markov processes that possess hydrodynamic behavior.
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FIG. 3. Inverse relaxation time 1/� of the second cumulant �top�
and the fourth cumulant �bottom� of the relative velocity distribu-
tion in dependence on the model relaxation constant �. The time
step is chosen to be �t=2�10−5 /� for N=100 000 particles and a
total of n=10 000 simulation steps.
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