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Constrained surrogate time series with preservation of the mean and variance structure
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A method is presented for generating surrogates that are constrained realizations of a time series but which
preserve the local mean and variance of the original signal. The method is based on the popular iterated
amplitude adjusted Fourier transform method but makes use of a wavelet transform to constrain behavior in the
time domain. Using this method it is possible to test for local changes in the nonlinear properties of the signal.
We present an example for a change in Hurst exponent in a time series produced by fractional Brownian

motion.
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Distinguishing between linear and nonlinear processes
from a time series of system outputs plays an integral role in
the detection of deterministic chaos in physical systems. One
approach is to formulate a null hypothesis for a specific class
of processes and compare the system output to this hypoth-
esis. The surrogate data method is a popular way to establish
such a null hypothesis [1] and can be undertaken in two
distinct ways: Typical realizations are Monte Carlo generated
surrogates from a model that provides a good fit to the data;
constrained realizations are surrogates generated from the
data values to conform to certain properties of the data (such
as its autocorrelative structure). This latter approach is more
suitable for hypothesis testing as it does not require the defi-
nition of a pivotal test statistic [2]. In order to test the null
hypothesis at a level of significance a with a two-tailed test,
one can generate 2/a—1 surrogates which, together with the
original data leads to an appropriate number of realizations
of the data. If all the surrogates are either greater or less than
the original data, the null hypothesis may be rejected at the
level a.

An early method for generating constrained realizations
conforming to a linear Gaussian, stochastic process [1] that
has subsequently seen several applications [3] has been
termed the amplitude adjusted Fourier transform (AAFT)
method [4]. An AAFT surrogate for a time series {x;}, i
=1,...,N is found by generating white-noise data {w;} and
manipulating it so that the sequential order of the ranked
values matches that for {x;}. The phases of this ordered white
noise sequence are then randomized in the Fourier domain
and again rank ordered with respect to the original data.
Some limitations with this method due to finite sample sizes
and preservation of the Gaussian distribution [5] led [6] to
propose an enhanced method known as the iterated AAFT
(TAAFT), which has proven popular [7]. The squared ampli-
tudes of {x;} are stored and then a random sort of the values
in {x;} takes place. The Fourier transform of the random sort
is taken and the squared amplitudes are replaced by those for
{x;}, with the complex phases retained. The Fourier transform
is then inverted and rank ordering is used to map values in
this surrogate series to those in {x;}. The modification to the
spectral behavior that results from this rank-ordering adjust-
ment is dealt with by iterating this procedure until no further
reordering occurs. The IAAFT method’s popularity is due to
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its elegance, computational efficiency and ability to discrimi-
nate effectively between linear and nonlinear phenomena [4].
In a subsequent paper, a more general approach for con-
structing constrained surrogate data was proposed [8]. How-
ever, the computational time associated with the simulated
annealing procedure for this algorithm has meant that it has
not been as popular as the original IAAFT method.

More recently, a method for producing typical realizations
has been proposed for cyclic data based on time-delay em-
bedding [9]. This is known as the pseudoperiodic surrogates
(PPS) method and for this case, the appropriate null hypoth-
esis is that the data have been produced by periodic behavior
driven by white noise. Although the surrogates are only typi-
cal realizations, the authors argue that their correlation di-
mension test statistic [10] is pivotal for the hypothesis of
periodic behavior and the method seems to work well for this
hypothesis. However, as shown in Fig. 1, this approach can-
not be used successfully for testing the more common null
hypothesis that the data are from a stationary, linear process,
where nonlinearity is assessed using the asymmetry [2]
AN =((x;=x;)3) {(x;=x;_,)>)*? where the angled braces
indicate ensemble averaging. The (IAAFT) and our proposed
algorithms both accept the null hypothesis for the stationary
case and reject it at the 5% significance level for the nonlin-
ear process. These results are not surprising because the PPS
method is designed to test a different null hypothesis. Be-
cause it generates typical realizations, the PPS algorithm is
also not constrained to the values in the original dataset and
gives a weaker match to the original spectrum than the other
methods as is clear in Fig. 2. In particular, note that at low
frequencies there has been a significant enhancement of the
energy for the two examples based on the Rossler attractor
using the PPS method. This problem has been previously
noted for AAFT surrogates [6].

Our approach to surrogate generation uses a wavelet
transform to preserve local values in the time domain. It has
been previously proposed to use wavelets to generate surro-
gate data [11] but that method was based on a randomization
of the wavelet detail coefficients at a particular dyadic scale.
The potential advantage of the wavelet approach is that be-
havior in the time-frequency plane can be preserved. Hence
randomization of the coefficients on the time axis offers no
clear advantage over the IAAFT, at least for univariate time
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FIG. 1. The asymmetry measure A(A=3) for a second-order
autocorrelative process (a), (c), and (e) and a chaotic path from the
Rossler attractor (b), (d), and (f). In each case the long black line
records the asymmetry for the original data and the short gray lines
the values for 39 surrogates. The IAAFT surrogates are displayed in
(a) and (b), (PPS) surrogates (d,=3, r=8, a=0.005) in (c) and (d),
and surrogates generated with our wavelet-based variant of [AAFT
(WIAAFT) in (e) and (f). The autocorrelative process is given by
x;=0.8x;_1—0.25x;,_,+0.2¢ where & is a zero mean, unit variance
Gaussian distribution. The Réssler equations are g=—(r+s),r=q
+ar,§=2+1t(q—4) where, following Ref. [9], we choose a=0.398
to obtain a chaotic response. These equations were integrated for
20480 time steps of 0.1 units and values for r extracted. The first
10240 values were then discarded and one in every ten of the
remainder were regularly sampled.

series. Our method for generating surrogates is wavelet
based, but overcomes this deficiency and preserves the pat-
terns in the mean and variance while randomizing nonlinear
properties of the signal such as the Hurst exponent.

Our algorithm for generating a single surrogate time se-
ries proceeds as follows:

(i) Take the stationary or maximal overlap discrete wave-
let transform MODWT of the signal over dyadic scales
21 j=1,...,J. This will produce J sets of detail coefficients
{DI} each containing N values (because the MODWT is an
undecimated transform) and a set of approximation coeffi-
cients {A{} representing the unresolved scales. In this study
we have analyzed signals with a length 2’ so that all infor-
mation (beyond a constant) is contained in the detail coeffi-
cients. The MODWT has the additional useful properties that
it is well defined for any N (not restricted to a multiple of 27),
and produces detail coefficients and spectra unaffected by
circularly shifting the data (i.e., the coefficients are robust to
the time at which one breaks into the signal). The variance of
the detail coefficients at each level is equivalent to the Fou-
rier spectrum of the signal [12]. The choice of wavelet basis
function affects the time-frequency properties of the wavelet
decomposition. In order to deal with nonstationary signals it
is advantageous to use a wavelet with a high number of
vanishing moments [12]. The results in Figs. 1-4 all use a
Daubechies wavelet with 16 vanishing moments [13].
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FIG. 2. Power spectra for a second order autocorrelative process
(a), a path on a periodic Rossler attractor (b), and a chaotic Rossler
attractor (c). Each plot shows four spectra displaced from each
other by 10° for clarity. The upper is the spectrum for the original
data, the second is an IAAFT surrogate, the third is for a surrogate
produced using our algorithm and the bottom for a PPS surrogate.
The data in the middle figure were obtained from the Rossler equa-
tions in the same way as described in Fig. 1 except for «, which was
altered to 0.3909 to give period 6 behavior [9].

(i1) Obtain a constrained realization of the detail coeffi-
cients at each level by applying the IAAFT algorithm (i.e.,
apply the IAAFT as if each set of detail coefficients was a
time series in its own right) to yield surrogate detail coeffi-
cients {D{(surr)}, i=1,...,N;j=1,...,J. Because this is a
constrained realization method the values of the detail coef-
ficients are preserved. Because the frequency behavior of
these coefficients is retained, this method eliminates the ran-
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FIG. 3. Time series and surrogate analysis for fractional Brown-
ian motion with a change in H from 0.4 to 0.65 at the mid point.
The dimensionless time series (black) and two surrogates using the
new algorithm (gray) are shown in the top panel, with vertical dis-
placements to aid visibility. The second row shows properties of the
original signal (black) and surrogates (gray) for our method and the
third row shows similar information for IAAFT surrogates.
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FIG. 4. Hurst exponent properties for the time series in Fig. 3.
The plot on the left is for our surrogates and that on the right is for
the IAAFT method. (a) and (b) a log-log plot of ¢,={|x(¢)—x(¢
—A)?) vs |A] over the whole time series for A=1,....512. Hence
from Eq. (1) the gradient is 2H. (c) and (d) have the same axes but
the calculation is undertaken over the last 256 values in the time
series for A=1,...,64 (e) and (f) give the probability of obtaining a
particular value for H for the data (estimated from the slope of the
line from plots similar to the above figure) as a function of the
values for H of the 39 surrogates based on eight blocks of 256
values.

domization problem associated with Ref. [11]. We then have
a surrogate for the detail coefficients at a particular level. In
addition, we produce the mirror image of this surrogate
{D!(mirror)}={Di(surr)}, i=1,...,N;k=N,N-1,...,1.

(iii) Match the surrogate and its mirror image to the origi-
nal detail coefficients at a particular level by circularly rotat-
ing the values until an appropriate error function is mini-
mized. Retain either the surrogate or the mirror image
according to the lowest value for the error function. This
locates the energy peaks at the appropriate locations in the
signal, preserving the temporal structure. We have found that
there is little advantage to using more than a simple least-
squares function at this stage.

(iv) Perform the inverse MODWT on the chosen surro-
gate detail coefficients for each level and the original ap-
proximation coefficients to produce a surrogate of the origi-
nal time series and use the rank-ordering method from the
standard TAAFT algorithm to recover the values of the origi-
nal time series.

(v) As with TAAFT algorithm, the rank ordering has de-
graded the accuracy of our spectral representation of the sig-
nal. Hence we require an iterative procedure to obtain con-
vergence. We have found it best to implement these
subsequent iterations in exactly the same manner as the
TAAFT due to the relative speeds of the wavelet and Fourier
transforms and the degree to which our wavelet-based first
stage to the algorithm approximates a local minimum.

Figures 1 and 2 show that our algorithm is able to gener-
ate surrogates that discriminate between linear and nonlinear
processes and provide as good a match to the power spec-
trum of the data as other algorithms. Figure 3 shows proper-
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ties of the surrogates for a time series consisting of 2048
values for fractional Brownian motion with a Hurst exponent
(H) of 0.4 for the first half of the record and a change to
H=0.65 for the second half. Figure 3(a) illustrates the local-
ization properties of our algorithm The surrogates (in gray)
retain the positions of the major maxima and minima of the
original series (black). Hence they have the nice property
that they “look like” the original data. The next two rows of
Fig. 3 show various properties of both the signal and 39
surrogates generated by our method (middle) and the IAAFT
(bottom). Our algorithm preserves the local mean and vari-
ance structure while randomizing the nonlinear aspects of the
signal. The latter is assessed by estimating H using a second
derivative method [14] for 16 blocks of 128 consecutive val-
ues. The mean values were determined for the same blocks,
while the wavelet variance was calculated using Ref. [15].

The advantage of producing surrogates that “look like”
the data is not merely aesthetic. This property allows us to
formulate further hypotheses that cannot be tackled success-
fully with standard IAAFT surrogates. For example, consider
the case of fractional Brownian motion B defined by

B(0)=0,

(|B(1) = B(r=2) ") = o7 A (1)

If one considers the whole of the time series in Fig. 3 then
the surrogates from IAAFT and our algorithm yield a similar
average H (Fig. 4). However, specific segments of IAAFT
surrogates do not preserve the local value for ¢, meaning
that variability in both the local variance and the time series
increments will contribute to the local estimate of H. Figure
3 shows that this will not be the case for our surrogates,
meaning that, from Eq. (1), the variability in H for the sur-
rogates is merely due to differences in the increments. This
provides a means for detecting changes in H as the surro-
gates will retain an average measure of H (defined over the
whole time series) while the data will reflect the local value.
Figures 4(c) and 4(d) show example estimates of H for the
final 256 values of the time series in Fig. 3 determined for
A=1,...,64, and Figs. 4(e) and 4(f) give the probability of
H based on the data plus surrogates for all eight windows of
256 values across the data set. The transition between the
values for the first and last halves of the data is clear in the
case of our surrogates, but much more confused for IAAFT
surrogates. Hence our surrogates have correctly found the
transition from H=0.4 to H=0.65. The higher value for H for
the data compared to the surrogates for the final increment is
clear from Fig. 4(c).

Given the range of phenomena that may be described by
fractional Brownian motion or related fractal noises that are
stationary in the increments, the surrogate algorithm pro-
posed in this paper may have application in a number of
areas where one is concerned with changes in the properties
of a signal through time. Our conceptually simple alteration
to the highly effective IAAFT approach permits this surro-
gate generation method to be extended to consider a wider
class of null hypotheses.
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