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We examine a new second-order integrator recently found by Omelyan et al. The integration error of the new
integrator measured in the root mean square of the energy difference, (AH?)!/2, is about 10 times smaller than
that of the standard second-order leapfrog (2LF) integrator. As a result, the step size of the new integrator can
be made about three times larger. Taking into account a factor 2 increase in cost, the new integrator is about
50% more efficient than the 2LF integrator. Integrating over positions first, then momenta, is slightly more
advantageous than the reverse. Further parameter tuning is possible. We find that the optimal parameter for the
new integrator is slightly different from the value obtained by Omelyan et al., and depends on the simulation
parameters. This integrator could also be advantageous for the Trotter-Suzuki decomposition in quantum

Monte Carlo.
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I. INTRODUCTION

The hybrid Monte Carlo (HMC) algorithm [1] is now the
established standard for the generation of dynamical fermion
configurations in lattice quantum chromodynamics (QCD).
The HMC algorithm consists of molecular dynamics (MD)
trajectories, each followed by a Metropolis test. During the
MD trajectory, one integrates Hamilton’s equations of mo-
tion, using an integrator with a discrete stepsize Az which
must satisfy two conditions in order to maintain detailed bal-
ance: (i) simplecticity (the phase space volume dpdg must be
conserved) and (ii) time reversibility. The simplest and most
widely used integrator with these properties is the second-
order leapfrog (2LF) integrator, which causes (O(Af?) errors
in the total energy or Hamiltonian. These errors are elimi-
nated at the Metropolis accept/reject step, which makes the
algorithm exact.

The acceptance at the Metropolis step depends on the
magnitude of the error in the total energy. In order to reduce
the error and thus increase the acceptance one could use
higher order integrators. Early attempts, however, did not
appear to be practical [2,3]. This is because the efficiency of
higher order integrators depends largely on the system size
and these early attempts were made on rather small lattices.
As the lattice size increases above a certain value V., the
higher order integrators should perform better than the low
order integrator. This minimum lattice size V. depends on the
Hamiltonian which we consider and on the choice of integra-
tor. For lattice QCD, it turned out that V. becomes very large
at small quark masses, so that on currently accessible com-
puters the 2LF integrator is the best choice [4] for simula-
tions at zero temperature. At finite temperature, higher order
integrators could perform better on moderate-size lattices
[5]: this is because chiral symmetry gets restored, so that
small Dirac eigenvalues disappear, which allows for stable
MD integration using larger stepsizes.

So far, only the 2LF integrator has been considered in the
HMC algorithm of lattice QCD as a second-order integrator,
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because of its simplicity and effectiveness. Recently how-
ever, Omelyan et al. [6] found a new second-order integrator
which is expected to be better than the 2LF integrator al-
though it has twice the computational cost. Here we examine
this new second-order integrator for the HMC algorithm in
lattice QCD and measure its efficiency. We also examine the
new fourth-order integrators recommended in Ref. [6]. Fi-
nally, we try to further tune the new second-order integrator.

II. SYMPLECTIC INTEGRATOR
A. Recursive construction scheme

Symplectic integrators are most conveniently described
by the Lie algebra formalism [7-9]. Let H be a classical
Hamiltonian,

H=3p"+5(q), (1)

where ¢=(q;,45,...) and p=(p;,p,, ...) are coordinate vari-
ables and conjugate momenta, respectively. Hamilton’s equa-
tions are expressed as

f={f.H}, 2)

where f=q or p and {,} stands for the Poisson bracket,
(a_f@ ifﬁ)
aq; op;  Ip; 9q;)

{fLH =2

i

3)

If we define the linear operator L(H) as

L(H)f = {f.H}, (4)

then we can write the formal solution of Hamilton’s equa-
tions,

St + Ar) = exp[AtL(H)1f(1). (5)

In general the operator exp[ A7L(H)] cannot be expressed ex-
actly in a simple form. Therefore we approximate
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exp[AzL(H)] with an operator correct up to a certain order in
At. Let us write L(H) as

L(H) = L(3p?) + L[S(g)] (6)

=T+V, (7)

where TEL(%pZ) and V=L[S(¢)]. The 2LF integrator is
given by decomposing 2 "*V) as

explA{T+ V)] = exp(%AtT)exp(AtV)exp(%AtT) +O(AP).
(8)
We call G,(Ar) the 2LF integrator,
G,(Ar) = exp(%AtT)exp(AtV)exp(%AtT). 9)

The integrator G,(A¢) amounts to mapping ¢ and p to new
variables as

1 1 0 1
(qEHit;): LA 15() A 1 LA (qit;)
p(t+ At Y v 0 Pl
(10)
_ q(t))
—Gz(At)<p(t) . (11)

This map is symplectic. This is easy to see, since the three
matrices representing the elementary substeps are triangular
with determinant 1. It is also exactly time reversible,
G,(A1)G,(-Ar)=1.

An equivalent algorithm is obtained by interchanging T
and V in Eq. (9).

Higher order integrators can also be found by decompos-
ing ¢27*Y) to the desired order. Although the decomposition
to a higher order is a nontrivial problem with no unique
solution, there is a simple recursive construction scheme
which generates higher order integrators from lower order
ones [3,10,8]. In this scheme, the (2k+2)th order integrator
is given by

Go2(A1) = Gop(b1 A1) Gy (b, A1) G (b At), (12)

where
1
b= e (13)
A 1/(2k+1)
b2=1—2b1=—m. (14)

Let us call the integrators of Eq. (12) recursive construction
(RC) integrators. These integrators are symplectic and con-
structed in a symmetric way, thus time reversible, i.e.,
Gorin(A1)Gopia(=Af)=1. Note that b, is negative. The ap-
pearance of negative coefficients in higher order integrators
is inevitable: beyond the second-order decomposition there is
no decomposition scheme having positive coefficients only
[11]. However if we include the commutator [V,[T,V]] in
the decomposition we may circumvent this situation [12,13],
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and integrators with all positive coefficients can be con-
structed. Even so, the inclusion of this commutator requires
the calculation of the gradient of the force, which increases
the computational cost. If the force-gradient calculations are
computationally simple for the system considered, then it
would be worth considering such integrators. For lattice
QCD, it is unclear that such force-gradient integrators have
advantages over the non-force-gradient ones. We do not con-
sider such force-gradient integrators here.

B. Minimum norm construction scheme

Although the recursive construction scheme makes it easy
to construct higher order integrators to any order, their per-
formance may not be optimal, since the number of force
calculations grows rapidly with the order of the integrator.
More generally, one can decompose ¢*'"*") as

exp(AHT+V)) = Hf exp(c;AtT)exp(d,AtV) + O(Ar),
(15)

where Sfc;=3fd;=1. Moreover, in order to form a time-
reversible integrator certain relations must hold. For instance
if we take k=3, the following equations must be satisfied: (i)
c1=Cy4, Cx=C3, d1=ds, dy=0 or (ii) ¢;=0, cy=cy4, d|=d4, dy
=d;. For time-reversible integrators, the error terms with odd
n always vanish [3,8,11]. Thus time-reversible integrators
have a leading error term O(A7"*!) with n even.

The error term O(Ar™*!) consists of commutators of T and
V. For instance, the leading error terms of the second- and
fourth-order integrators are, respectively [6],

O(Ar) = o T.[V.T1]+ ALV.[V.T1], (16)
and
OAP) = Y[TITITIT VI + %I TIT.IV.IT.VIII]
+ BT LT VI + vl V.LV.IZ.[T. V]I,
(17)

where «, 8 and 7; depend on c¢; and d;.

One strategy to find optimal integrators in the absence of
further information about the operators 7 and V is to mini-
mize the norm of the error coefficients. For the case of Egs.
(16) and (17), this strategy implies minimizing the following
error functions:

E=1a’+p, (18)
and
_ 2 2 2. 2
Es=NV+ Y+ v+ (19)

Omelyan et al. [6] found a class of integrators by following
this strategy.1 Among the new integrators which they identi-
fied, they found several “outstanding” integrators having es-
pecially small norms of the error coefficients. In this analy-

'Note that in some cases, the set of polynomial equations defining
the optimal decomposition can be solved analytically, even beyond
the second-order case [14].
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sis, we consider the new second- and fourth-order integrators
which they recommend as outstanding integrators, and which
are described as follows.

1. Second-order minimum norm (2MN) integrator

Omelyan erf al. [6,15] obtained the following new second-
order integrator:

12MN( At) — e)\AtTe(At/Z)Ve(l—Zx)AtTe(At/Z)V e}\AtT, (20)

where N\ takes value A,

1 (2\326+36)'3 1
c= 5" +

2 12 (64326 +36)'3

~(0.193 183 327 503 7836. (21)
This value of X minimizes \a(\)*>+B(\)?, where
1 -6\ +6\?
N=—"T—""-7 22
a(N) T (22)
1-6A
N=—" 23

BN =, 3)

as can be derived from the expansion of (20).

This integrator requires two force calculations per step.
Thus, compared to the 2LF integrator, it has twice the com-
putational cost. The norm of the error coefficients &, how-
ever, is a factor of 10 smaller (£3°F/&3MY~10.9 [15]). As we
will see later, the error of a second-order integrator at the end
of a hybrid Monte Carlo trajectory is expected to be propor-
tional to A72. Therefore, even after taking into account the
increased computational cost, we expect that the 2MN inte-
grator will perform better than the 2LF integrator, by a factor
~\10.9/2. We will numerically confirm this in the next sec-
tion, and later we will further try to tune the integrator by
modifying the error function.

2. Fourth-order minimum norm (4MN) integrator

At the beginning of the MD integration one can start the
integration with either g or p. Usually we do not consider
this freedom seriously since for the second-order integrator
the choice of the starting variable does not make a significant
difference in performance.2 In general, however, the perfor-
mance could be different depending on the choice of the
starting variable. In fact, the optimal integrator itself could
also be different depending on the starting variable.

This is precisely what Omelyan et al. found for higher
order MN integrators. Let us call velocity version® the inte-
grator starting by integrating p and position version the inte-
grator starting by integrating ¢. For the optimal fourth-order
MN integrators with five force calculations they found that
the velocity version has smaller errors than the position ver-
sion. Actually we have tested both integrators and also found

2Actually there is a small difference, which we identify later.
*One could say momentum version. Here we follow the conven-
tion in the literature.
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that typically the error of the velocity version is a few times
smaller than that of the position version. In the following
numerical tests we use only the velocity version of the
fourth-order MN integrators with five force calculations
(4MN5FV) which is written as [6]

Lisiv(AD) = o OMV G pAIT NATY JuAIT [ 1-2(\+0)](A112)V
L 1=2(p+p) AT [ 1-20:+0) (A1) V

Xe,u,AtTe}\AtVepAtTeﬂAtV’ (24)

where

0=10.083 983 152 628 766 93,
p=0.253 978 510 841 0595,
A =0.682236 533 571 9091,

m=-0.032302 867 652 699 67. (25)

Furthermore we have also tested the position version of
the fourth-order MN integrators with four force calculations
(4MN4FP) given by [6]

I4MN4FP(At) — epAtTe)\szeHAtTe(l—ZA)(Az/Z)Ve[l—Z(H+p)]AzT

Xe(l—Z)x)(At/Z)VeBAlTe)\AtVepAtT’ (26)

where

p=0.178 617 895 844 8091,
6=—-0.066264 582 669 818 43,

A=0.712 341 831 062 6056. (27)

The velocity version (4MN4FV) is expected to have a simi-
lar error to the position version 4MN4FP above [6]. Thus we
used the 4MN4FP integrator which has one less force evalu-
ation per MD trajectory.

III. NUMERICAL TESTS OF THE NEW INTEGRATORS
A. Lattice QCD action

We use the plaquette Wilson gauge and standard Wilson
fermion actions with two degenerate fermion flavors [16].
The partition function is given by

Z= f DU det{M(U)M(U) Jexp[- S, (U)], (28)
with §,(U) the gauge action given by
S, (U) = §2 T 1 - U,(U)], (29)
U,

where U,(U) stands for the plaquette, B is the gauge cou-
pling and U is an SU(3) link variable. M(U) is the Wilson
Dirac operator defined by
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Mij(U) = 5i,j+ KE [(YH_ 1)Ui,M5i,j+,u

“
- (7#+ 1)U;!-—/,L,p,6i,j+,u,]9 (30)

where « is the hopping parameter and 1y, are the y matrices.
The inverse of the hopping parameter « is related to the
quark mass m and the value xk where m is zero is denoted by
k.. As m decreases the eigenvalues of the matrix M become
small and at the zero quark mass limit the matrix M becomes
singular.

Using pseudofermion fields ¢ the partition function is re-
expressed as

Z= f DUD$ D exp[— ¢"(MU)M(U)') " - S,(U)].

(31)

Furthermore introducing momenta p, we obtain

Z= f DUD¢ DHDp expl- HU, b, ¢",p)],  (32)

where

1 ,
HU, ¢, ¢"p) =5 2 p* + $'(MUM(U)) ! ¢+ S,(U)

(33)

is the Hamiltonian we consider in our numerical tests.

B. Hybrid Monte Carlo algorithm

The HMC algorithm combines MD and Metropolis
accept/reject steps [1] to form a Markov chain. Starting from
an “old” configuration {U}, a “candidate” configuration {U’}
is obtained by (i) drawing momenta {p} and pseudofermion
fields {¢} from Gaussian distributions exp(—%pz) and
exp[-p'(M(U)M(U)")'¢], respectively; (ii) integrating
Hamilton’s equations of motion Eq. (2) with a discrete step-
size integrator. In order to maintain detailed balance the in-
tegrator in the MD step must satisfy two conditions: simplec-
ticity and time reversibility. Let Typ(Af) be an elementary
MD step with a discrete step size Ar. Typ(A7) evolves (p,q)

to (p'.q"),
Typ(An):(p.q) — (p'.q"). (34)

The time reversibility condition means the following is sat-
isfied:

Typ(=An:(p".q") — (p.q). (35)

The simplecticity is the condition that the phase space vol-
ume is conserved, dpdg=dp'dq’. The symplectic integrators
in Sec. II satisfy the above two conditions.

This elementary MD step is performed repeatedly to inte-
grate the equations up to a certain “length” of the MD tra-
jectory. Here the trajectory length is set to unity. In general
the integrator cannot solve the Hamilton’s equations of mo-
tion exactly and thus the energy is not conserved. Let AH be
the change in energy caused by the integrator at the end of
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the trajectory. This error is corrected by the Metropolis test,
which accepts the candidate configuration {U’} at the end of
the trajectory with probability p=min[exp(—AH),1]. If the
candidate configuration is rejected, the old configuration {U}
is included again in the Markov chain.

Thus, a trade-off must be achieved between two conflict-
ing goals: good energy conservation, because it ensures high
acceptance probability in the Metropolis step, and low com-
puter cost. This is why the choice of integrator plays a cru-
cial role.

The fermionic part of the force dH/JU is given by

aerrmionic 6(MMT)

d

o -1
U ¢'(MM')

(MM~ (36)
Since the matrix M is singular at the quark mass m=0, as m
decreases the fermionic force diverges. Thus HMC simula-
tions in lattice QCD become unstable at small quark masses,
unless the stepsize is reduced in proportion to .

C. Error of Hamiltonian and acceptance

Here we summarize the expected behavior for the error of
the Hamiltonian and the acceptance of the HMC algorithm.
The nth order integrator causes O(A#™*!) integration errors
for g and p after one step. However the error in the Hamil-
tonian at the end of a unit-time trajectory” is O(Ar"). Thus
AH~ Af". Furthermore from Creutz’s equality (exp(AH))
=1 [18] we expect

(AH) ~ (AH?) = VA", (37)

where V is the volume of the system. Thus the root mean
square of the error of the Hamiltonian at small Az is expected
to be

(AH»'? = C,V'2Ar", (38)

where C, is a Hamiltonian- and integrator-dependent coeffi-
cient. Using (AH?)!"2, the acceptance of the HMC algorithm
for large volumes is given by [17]

(Pyee) = erfc((éAH2> ”2) . (39)

For small (AH?)"?, one may use the approximate formula,

(Pyee) = exp(— %@HW) , (40)

N

which is applicable for P,..=20% [4]. The performance of
integrators can be measured by the (inverse of the) work per
accepted trajectory, i.e., by the product of the acceptance and
step size, P, X At. The best performance of integrators is
obtained at the step size which maximize P, X At. Using
Egs. (38) and (40) we obtain the optimal acceptance which
maximizes P,.. X At as [4]

*AH does not increase linearly with trajectory length. It increases
linearly up to a certain characteristic length /. provided that Az is
not too large, then saturates. Thus the accumulated error in the
Hamiltonian is expected to be AH~ O(A#™!) X (1./At) ~ O(Ar?)
[17].
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FIG. 1. (AH?)!? as a function of At. Simulations are performed
at 8=5.00 and xk=0.160 on 4* lattices. The line proportional to Af>
is drawn to guide the eye.

1
Poptzexp(_ ;)’ (41)

which does not depend on the details of the Hamiltonian but
only on the order of the integrator. This result indicates that
the optimal acceptance for any second-order integrator is
about 61% which is consistent with the numerical results of
60%-70% [4]. Equation (41) also indicates that the optimal
acceptance increases with the order of the integrator, 78% for
fourth order and 85% for sixth order.

D. Performance of second-order MN (2MN) integrator

Here we compare the efficiency of the new 2MN integra-
tor with that of the 2LF integrator. For second-order integra-
tors, from Eq. (38) (AH?)"/? at small At is expected to be
C,V'2Af>. We measure the coefficient C, for both integrators
at small enough Af, and by comparing the coefficients we
obtain the performance of the 2MN integrator relative to the
2LF integrator.

Figure 1 shows (AH?)!? as a function of step size At at
B=5.00 and k=0.160 on 4* lattices. We see that (AH*)!? is
proportional to Af?> as expected and the error of the 2MN
integrator is about 10 times smaller than that of the standard
2LF integrator at any Az until instabilities show up.

Figure 2 shows the ratio Cy g/ Cyyy as a function of «.
The coefficients Cy r and C,yy are extracted by using Eq.
(38) for the second-order with simulations at a small value of

20 T T T T T

| o—0B=5.00 '
=—ap=5.60 !

215* -— K (B=5.00) -
= - X, (B=5.60) b
< 1oL i
= i
O :
S5+ :,

1

: 17

: |

4} I . 1 . I . M| . L1

0.1 0.12 0.14 0.16 0.18
X

FIG. 2. Cyp/Cyyn as a function of «. Simulations at S
=5.00(5.60) are performed on 4*(8?) lattices.

PHYSICAL REVIEW E 73, 036706 (2006)

At. As seen in the figure, Cyp/Coyy is about 10, which
means that the error of the 2MN integrator is about 10 times
smaller than that of the 2LF integrator. This is consistent
with the theoretical expectation of Omelyan et al. If we take
Corp/ Comn= 10, this means that the step size of the 2MN
integrator can be increased by a factor 3 (=110) over that of
the 2LF integrator, as long as the error still behaves as Az’
Since the 2MN integrator has two force calculations per el-
ementary step, the efficiency should be measured by
VCo1 g/ Copn/ 2, which is about 1.5. Thus it is concluded that
the 2MN integrator is about 50% faster than the 2LF integra-
tor.

Of course, this assessment rests on the assumption that the
step size can indeed be increased without running into insta-
bilities, so that the limiting factor in the step size comes from
the error accumulation. Note that the 2MN integrator appears
no worse, or perhaps slightly better, than the 2LF with re-
spect to instabilities: departure from the quadratic behaviour
(AH*)'2 o Af? starts at similar values of (AH?)"? in Fig. 1,
and appears more gradual.

E. Comparison of second- and fourth-order MN integrators

The efficiency of higher order integrators should be mea-
sured against lower order ones. From the above analysis we
know that the 2MN integrator is more efficient than the 2LF
integrator. Therefore we compare the 4MN integrator with
the 2MN integrator. Assuming Eq. (38) the comparison could
be done by following the analysis of Ref. [4]. However we
found a problem with the 4MN integrator. Namely the error
of the Hamiltonian (AH?)!? is not simply described by Eq.
(38) but is dominated by higher order terms in Az already at
small (AH?)"?. Figure 3 shows (AH?)"> on 8* lattices as a
function of Az. As seen in the figure (top) , at a fixed step size
the error of the 4MNSFV integrator is about 1000 times
smaller than the previously known fourth-order integrator
(4RC), which is consistent with the theoretical expectation
[6]. The expected behavior of (AH?*)'?~C,V'?At*, how-
ever, is seen only at small (AH?)!"?. We are only interested in
the region of 0.1<(AH?)"><1 which corresponds to an ac-
ceptance of 60%-95%.> In this region, (AH®'? of the
4MNSFV integrator is dominated by higher order terms in
At, which results in that (AH?)"/? grows rapidly with At. This
observation makes the 4MN integrator unattractive on prac-
tical lattice sizes.

Although the 4AMN4FP integrator seems to be more stable
than the 4MNS5FV integrator, it also shows the deviation
from the Ar* line at small (AH?)""? (see Fig. 3). Thus com-
pared to the 2MN integrator, the 4MN integrators tested here
seem unattractive. As the quark mass m decreases, it is often
seen that the integrator becomes unstable [20], because the
force increases as 1/m. In lattice QCD calculations the pa-
rameter region of small quark masses is the physically inter-
esting one. In this region the 4MN integrators may easily
show instability, which limits their applicability.

5Figure 1 of Ref. [4].
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FIG. 3. (AH?)!”? as a function of At. Simulations are performed
on 8* lattices. 4RC stands for the fourth-order integrator obtained
by Eq. (12). The lines proportional to As* are drawn to guide the
eye.

At finite temperature, however, the coefficients C, behave
differently from those at zero temperature. Typically we ex-
pect CZ#OS C?O. Therefore at finite temperature we may be
lead to a different conclusion and this must be studied nu-
merically. A numerical test showed that at finite temperature
the 4RC integrator performs better than the 2LF integrator on
lattices larger than a minimum size [5]. We have made the
same test for the 2MN and 4MN5FV integrators on an 18°
X 4 lattice at $=5.75 and k=0.1525. For the 2MN integrator
the acceptance is measured to be about 0.6 at Ar=0.1 and for
the 4MNS5FV integrator the acceptance is about 0.8 at Ar
=0.37. These values of the acceptance are close enough to
the optimal acceptance given by Eq. (41). The gain of the
4MNSFV integrator over the 2MN one is calculated by

(Pacc X Al‘)4th

= e Tr4h (42)
K42(Pacc X At)an

where &y, is the relative cost factor and k4,=2.5 for the 2MN
and 4MNSFV integrators. Substituting the measured values
into G, G is calculated to be =2, which shows that the
4MNSFV integrator is more effective. Thus at finite tempera-
ture there is room to use a 4MN integrator depending on the
simulation parameters.

IV. TUNING THE 2MN INTEGRATOR

The strategy to minimize Egs. (18) and (19) is based on
the assumption that the errors coming from the two commu-
tators [7,[V,T]] and [V,[V,T]] are equally dominant. In

O position
x velocity .

FIG. 4. (AH?)"? as a function of \. The bottom figure is a zoom
of the top figure. Simulations are performed at $=5.00 and «
=0.160 on 4* lattices with Ar=0.05. The lines are determined from
simulations of the position version integrator at \; and \,. The
position version has a small advantage over the velocity version,
since it gives a slightly reduced minimum RMS error (bottom).

general this simplifying assumption does not hold. Here we
try to minimize a more general form of the error function.
Let us assume the following form of (AH?)!/2:

(AE)'2 = \a(N)’f(AD? + B(V) g (A1) (43)

=\a(\)*f* + B(N)g*Ar, (44)

where a(\) and B(\) are given by Eqs. (22) and (23), and f°
and g2 are unknown parameters, to be determined from nu-
merical simulations. In general, by performing simulations at
two values of N one can determine f> and g> numerically.
The determination can be made easier by noticing that a(\))
and B(\,) are zero at \;=(1-1/v3)/2 and \,=1/6, respec-
tively. By simulating at \; and \, we immediately obtain f°
and g>.

Figure 4 shows (AH?)'? at 8=5.00 and x=0.160 as a
function of \. We see that the optimal A\ at the minimum of
(AH*)'? is slightly different from \, the value of Eq. (21).
Moreover the optimal A is different between the velocity and
position version integrators. Here Eq. (20) is the position
version integrator. The velocity version is obtained by inter-
changing T and V in Eq. (20). The lines in the figure are
given by Eq. (44), with f> and g” determined by simulations
of the position version of 2MN integrator at A| and \,. To
draw the dashed line for the velocity version, we simply
interchange the values f> and g?. Both lines describe the
numerical results very well, down to A=0. Note that the
velocity version of 2MN integrator becomes the position ver-
sion of 2LF integrator at A=0, and vice versa. The position
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FIG. 5. |f]A¢%, |g|As, and |f|/|g] as a function of 1/«. Simula-

tions are performed at 8=5.00 on 4* lattices with Ar=0.05. The
dashed line indicates x.=0.187 [19].

version of the 2MN integrator gives a slightly smaller mini-
mum. At A=0 the velocity version of 2MN integrator has a
smaller error than the position version, which means that the
position version of 2LF integrator has a smaller error than
the velocity version. This was already observed in Ref. [21].
Since the position version also leads to one less force evalu-
ation by the end of a trajectory, we definitely recommend
using the position version (for the 2MN and the 2LF integra-
tors both): it requires less work and gives a higher accep-
tance.

The quality of our fit justifies a posteriori the ansatz made
for the magnitude of the error Eq. (44). Indeed, to leading
order Ar*, the error (AH?) should be of the form

(AH?) =[a(NXF?) + a(N) BONFG + GF) + BONXGH]AL,
(45)

where F=[T,[V,T]] and G=[V,[V,T]] from Eq. (16). We
find that the crossterm (FG) is in our case “one order of
magnitude smaller” than (F?) and (G?), indicating that the
two operators are almost uncorrelated in our system. While
this finding may not be true in general, it provides support
for the minimum norm strategy of Omelyan et al. at least in
the context of lattice QCD.

Figure 5 shows |f|Af%, |g|A#%, and |f|/|g| as a function of
1/ at $=5.00 on 4* lattices (Ar=0.05). As one approaches
K., both |f] and |g| increase. On the other hand, the ratio
If|/]g| decreases. This is as expected since g comes from the
error term [V,[V,T]] involving two factors of the fermion
potential, versus one for f and [7,[V,T]]. Although |f|/|g|
seems to approach one at «,., there is a possibility that it
further goes down to zero and its limit must be carefully
investigated. Note that when |f]/|g|=1, the optimal \ be-
comes A..

Figure 6 shows the optimal \ as a function of 1/«. We see
that the optimal \ is different from A, and slightly larger.
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FIG. 6. Optimal N as a function of 1/«. Simulations are per-
formed at 8=5.00 on 4* lattices with Ar=0.05. The dashed line
indicates «.=0.187.

V. CONCLUSIONS

We have tested the new second- and fourth-order integra-
tors obtained by minimizing the norm of the error coeffi-
cients. We find that the 2MN integrator performs better than
the conventional 2LF integrator, by about 50%. Therefore we
recommend to use the 2MN integrator in HMC simulations.
Although in our tests we used the standard Wilson fermion
action, the 2MN integrator can be used for any actions, e.g.,
KS fermions, improved actions, polynomial actions for odd
flavors [22,23]. Moreover we may combine the 2MN inte-
grator with other acceleration techniques such as multiple
time step integration [9], multiple pseudofermions [24], and
preconditioned actions [23].

The same 2MN integrator can also be used in the Trotter-
Suzuki decomposition of the partition function: exp(—BH)
=[exp(-AtH)]V, where N=/At, in quantum Monte Carlo
simulations, when a formulation in continuous imaginary
time [25] is not practical.

Although at first sight, one can equivalently start by inte-
grating over positions or velocities, we observe that integrat-
ing over positions first gives a slightly higher acceptance
[21], with one less force evaluation at the end of a trajectory.
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