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The Fermi-Pasta-Ulam �FPU� problem consists of the nonequipartition of energy among normal modes of a
weakly anharmonic atomic chain model. In the harmonic limit, each normal mode corresponds to a periodic
orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic
limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers
�QB�. They are characterized by time periodicity, exponential localization in the q-space of normal modes, and
linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting
are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as
well.
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I. INTRODUCTION

In 1955, Fermi, Pasta, and Ulam �FPU� published their
celebrated report on thermalization of arrays of particles con-
nected by weakly nonlinear springs �1�. Instead of the ex-
pected equipartition of energy among the normal modes of
the systems, FPU observed that energy, initially placed in a
low-frequency normal mode of the linear problem with a
frequency �q and a corresponding wave number q, stayed
almost completely locked within a few neighbor modes, in-
stead of being distributed among all modes of the system.
Moreover, recurrence of energy to the originally excited
mode was observed. The door was thus opened to study the
fundamental physical and mathematical problem of energy
equipartition and ergodicity in nonlinear systems, which in-
volves the Kolmogorov-Arnold-Moser �KAM� theorem,
thresholds between regular and chaotic dynamics, and
soliton-bearing integrable models.

From the present perspective, the FPU observation
�equally coined FPU problem or FPU paradox� appears to
consist of three major ingredients: �FPU-1� for suitable pa-
rameter ranges �energy, system size, nonlinearity strength�,
low-frequency excitations are localized in q-space of the nor-
mal modes; �FPU-2� recurrence of energy to an initially ex-
cited low-frequency mode is observed; �FPU-3� different
thresholds upon tuning the parameters are observed—a weak
stochasticity threshold �WST� which separates regular and
chaotic dynamics, yet possibly preserving the localization
character in q-space, and an equipartition threshold �ET�,
also coined strong stochasticity threshold, separating local-
ized from delocalized dynamics in q-space �see Refs. �2–4�
for a review�.

Two major approaches were developed. The first one,
taken by Zabusky and Kruskal, was to analyze the dynamics
of the nonlinear chain in the continuum limit, which led to a
pioneering observation of solitary waves �5�. It took �FPU-1�
as given, and aimed at obtaining quantitative estimates for
�FPU-2�. A second approach was proposed by Izrailev and
Chirikov �6�, who associated energy equipartition with

dynamical chaos and aimed at an analytical estimate of the
ET by computing the overlap of nonlinear resonances �7�,
which leads to strong dynamical chaos ensuring energy eq-
uipartition. Below the threshold, the dynamics is regular and,
thus, no equipartition should occur. It aimed mainly at �FPU-
3�. Several other analytical �8,9� and numerical �10–12�
threshold estimates have been published since, and will be
discussed below. Note that similar effects have been ob-
served in many other nonlinear discrete chain or field equa-
tions on a finite spatial domain; see, e.g., Ref. �13�.

In this work, we show that stable periodic orbits, which
are coined q-breathers �QB�, persist in the nonlinear FPU
chain and are exponentially localized in q-space of normal
modes. The existence of these orbits was first reported in
Ref. �14�. Stability of these periodic orbits implies that small
perturbations initially localized on a q-breather will stay lo-
calized in q-space as well. Thus these perturbations will
evolve in a nearly regular fashion for long times effectively
exciting only a small number of degrees of freedom. Recur-
rence times—to come close to an initial point again—will be
much shorter than the general Poincaré recurrence times es-
timate, which are derived from exciting all available degrees
of freedom �15�. Upon increasing the nonlinearity of the sys-
tem, QBs will turn from stable to unstable at certain thresh-
old values, allowing for low-dimensional chaotic evolution
of nearby trajectories on long time scales. The localization
length in q-space depends on these parameters as well, and at
critical parameter values QBs delocalize, possibly leading to
equipartition. The q-breather concept allows us thus to ad-
dress simultaneously all three FPU ingredients. At the same
time, it can be extended to completely different lattice sys-
tems and even to nonlinear field equations.

In the present work, we construct QBs continuing them
from the linear case and study their properties both numeri-
cally and by an analytical asymptotic calculation. We com-
pare the thresholds of QB localization and stability to the
various stochasticity thresholds mentioned above. Finally, we
show the persistence of QBs in thermal equilibrium and dur-
ing long transient processes.
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II. THE MODEL

The FPU system is a chain of N equal masses coupled by
nonlinear springs with the equations of motion containing
quadratic �the �-model�

ẍn = �xn+1 − 2xn + xn−1� + ���xn+1 − xn�2 − �xn − xn−1�2�
�1�

or cubic �the �-model�

ẍn = �xn+1 − 2xn + xn−1� + ���xn+1 − xn�3 − �xn − xn−1�3�
�2�

interaction terms, where xn is the displacement of the nth
particle from its original position, and fixed boundary condi-
tions are taken x0=xN+1=0. A canonical transformation

xn�t� =� 2

N + 1�
q=1

N

Qq�t�sin� �qn

N + 1
� �3�

takes into the reciprocal wave-number space with N normal
mode coordinates Qq�t�. The equations of motion then read

Q̈q + �q
2Qq = −

�

�2�N + 1�
�

l,m=1

N

�q�l�mBq,l,mQlQm �4�

for the FPU-� chain �1� and

Q̈q + �q
2Qq = −

�

2�N + 1� �
l,m,n=1

N

�q�l�m�nCq,l,m,nQlQmQn

�5�

for the FPU-� chain �2�. Here the coupling coefficients Bq,l,m
and Cq,l,m,n are given by

Bq,l,m = �
±

��q±l±m,0 − �q±l±m,2�N+1�� , �6�

Cq,l,m,n = �
±

��q±l±m±n,0 − �q±l±m±n,2�N+1� − �q±l±m±n,−2�N+1�� .

�7�

The sum in Eqs. �6� and �7� is taken over all four or eight
combinations of signs, respectively. The normal mode fre-
quencies

�q = 2 sin
�q

2�N + 1�
�8�

are nondegenerate.

III. A CROSSLINK TO DISCRETE BREATHERS

The system of equations �4� and �5� corresponds to a net-
work of oscillators with different eigenfrequencies. These os-
cillators are interacting with each other via nonlinear inter-
action terms, yet being long-ranged in q-space. Let us
discuss the relation of this problem to the well-known field
of discrete breathers �16–18�.

Neglecting the nonlinear terms in the equations of motion,
the q-oscillators get decoupled, each conserving its energy

Eq =
1

2
�Q̇q

2 + �q
2Qq

2� �9�

in time. Especially, we may consider the excitation of only
one of the q-oscillators, i.e., Eq�0 for q	q0 only. Such
excitations are trivial time-periodic and q-localized solutions
�QBs� for �=�=0.

This setting is similar to the case of discrete breathers
�DB�, which are time-periodic and spatially localized excita-
tions, e.g., on networks of interacting identical anharmonic
oscillators, which survive continuation from the trivial limit
of zero coupling �19�. Notably, DBs exist also in FPU lattices
�18� and existence proofs has been obtained as well �20–22�.
The reason for the generic existence of DBs is twofold: the
nonlinearity of each oscillator allows us to tune its excitation
frequency out of resonance with other nonexcited oscillators.
The case of a linear coupling on the lattice ensures a bound
spectrum of small-amplitude plane waves, and thus allows
for the escape of resonances of a DB frequency and its
higher harmonics with that spectrum. The spatial localization
of DBs in such a case is typically exponential for short-range
interactions �16�. Among the wealth of theoretical results, we
stress two here. First, if the coupling on the lattice is short-
ranged but purely nonlinear, the DB localizes in space su-
perexponentially �23�. Second, if the coupling is algebra-
ically decaying on the lattice, DBs localize only algebraically
as well �24�.

Let us compare these findings to the q-breather setting.
For zero nonlinearity the nonidentical q-oscillators �9� are
harmonic. For all cases, the following nonresonance condi-
tion holds �25�:

�q � n�q0
, �10�

where q0�q and n is any integer. That allows continuation
of a trivial QB orbit from zero nonlinearity into the domain
of nonzero nonlinearity, similar to the existence proof of dis-
crete breathers by MacKay and Aubry �19� by continuation
from the uncoupled limit of anharmonic oscillators. Their
proof, however, cannot be applied directly to the case con-
sidered here, because it requires the period of each oscillator
to depend on its energy.

But in fact that is not needed, since the mere persistence
of N periodic orbits under the nonresonance condition �10� in
a class of Hamiltonian systems, which includes the system
considered, was proved by Lyapunov in 1892 �26� �espe-
cially Chap. II, Sec. 45 starting on p. 174�. Note that this
proof operates at fixed nonzero nonlinearity, in some phase
space neighborhood of the stable equilibrium. We sketch the
main ingredients that allow us to construct a proof of persis-
tence of periodic orbits by tuning the nonlinearity in Appen-
dix A. That scheme can be used as well in computational
procedures. For that, one considers the map of all mode co-
ordinates and velocities with q�q0 onto themselves. The

map condition is to start with Qq0
�t=0�=A�0, Q̇q0

�t=0�
=0 and to measure the mode coordinates and velocities for

q�q0 after the time ��0 when Q̇q0
���=0 and Qq0

����0. A
fixed point of that map corresponds to a periodic orbit.
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As for their degree of localization in q-space �if any�, the
above results on DBs suggest that two mechanisms counter-
act: purely nonlinear interaction favors stronger than expo-
nential localization, while long-range interaction tends to de-
localize the QB. We also recall that the seemingly simple
problem of periodic motion of a classical particle in an an-
harmonic potential of the FPU type follows from the differ-
ential equation

ẍ = − x − �x2 − �x3. �11�

Bounded motion at some energy E yields a solution that is
periodic with some period T�E�=2� /	 and can be repre-
sented by a Fourier series

x�t� = �
k

Ake
ik	t, �12�

which leads to algebraic equations for the Fourier coeffi-
cients Ak,

Ak = k2	2Ak − ��
k1

Ak1
Ak−k1

− � �
k1,k2

Ak1
Ak2

Ak−k1−k2
.

�13�

Note that Eq. �13� have similar properties as compared to
Eqs. �4� and �5�—interaction between the Fourier coeffi-
cients is nonlinear but long-ranged. Yet it is well known that
the bounded solutions �12� to Eq. �11� are analytic functions
x�t� and thus the Fourier series coefficients Ak converge ex-
ponentially fast with k �27�.

Let us summarize this section by stating that from a math-
ematical point of view, q-breather existence and their prop-
erties can be treated in a similar way to the methodology of
discrete breather theory. The two different types of excita-
tions, localized in real space and localized in reciprocal
q-space, have much in common when represented in their
natural phase space basis choice. Both representations are
connected to each other by a simple canonical transforma-
tion, which is nothing but a rotation of the phase space basis.
In the following, we will use analytical and computational
tools developed for discrete breathers and analyze the prop-
erties of q-breathers.

IV. q-BREATHERS IN THE �-FPU SYSTEM

A. Numerical results

Let us consider the �-model and start with showing the
evolution of the original FPU trajectory for �=0.25, N=32,
and an energy E=0.077 placed initially into the mode with
q0=1. We plot the time dependence of the mode energies
Eq�t� in Fig. 1 for the first five modes. The period of the
slowest �q0=1� harmonic mode is T1=2� /�1
66.02. We
nicely observe slow processes of redistribution of mode en-
ergies, recurrences, and also even slower modulations of re-
currence amplitudes on time scales of the order of 105. Note
also that on time scales comparable to T1, all mode energies
show small additional oscillations, and it is easy to see that
they correspond to frequencies that are multiples of �1. The
localization in q-space is also nicely observed, with the

maximum of E5 being eight times smaller than that of E1.
In order to construct a q-breather, let us choose first

�=0, excite a normal mode with q=q0 to the energy Eq0
=E, and let all other q-oscillators be at rest. With that we
arrive at a unique periodic orbit in the phase space of the
FPU model. We expect that the orbit will stay localized in
q-space at least up to some critical nonzero value of � �and
similarly for the �-model �28��. We proceed with a series of
successful numerical experiments continuing periodic orbits
of the linear chain to nonzero nonlinearity. These orbits as
well as their Floquet spectra can be calculated using well
developed computational tools �16� for exploring periodic
orbits. We choose a Poincaré section plane �xs=0, ẋs�0�,
where s= �2�N+1� /q0� corresponds to an antinode of the
mode Qq0

. We map the plane y� �all phase variables excluding
xs� onto itself integrating the equations of motion �1� until

the trajectory crosses the plane again: y�n+1=F� �y�n�. A periodic
orbit of the FPU chain corresponds to a fixed point of the
generated map. As the initial guess, we use the point corre-
sponding to the q0th linear mode: ẋn�0�
=�2/N+1Q̇q0

�0�sin��q0n /N+1�, xn�0�=0. The vector func-

tion G� �y��=F� �y��−y� is used to calculate the Newton matrix
N=�G�y��i /�yj. We use a Gauss method to solve the equa-

tions G� �y��=N · �y� −y��� for the new iteration y�� and do final

FIG. 1. Evolution of the linear mode energies for the first five
modes on a large time scale for �i� the original FPU trajectory for
�=0.25, E=0.077, N=32 �1� �oscillating curves� and �ii� the exact
QB solution �almost straight lines�.
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corrections to adjust the correct total energy E. The iteration
procedure continues until the required accuracy 
 is ob-

tained: F� �y��−y� / y��
 �we have varied 
 from 10−5 to
10−8�, where y�=max��yi��. We also note that all periodic
orbits computed here are invariant under time reversal,
which means that there exist times t0 when Qq�t0+ t�=Qq�t0

− t� for all q. Since mode velocities vanish at these times, a
QB can also be computed, e.g., by initially choosing all

mode velocities to be zero, and integrating until Q̇q0
vanishes

again with the same sign of Qq0
as it was at the starting point.

Then the fixed point of the corresponding map of the mode
coordinates only suffices to obtain an exact periodic solution.

We have used one of the original parameter sets of the
FPU-� study �=0.25, E=0.077, N=32 �1� to find stable
q-localized QB solutions with most of the energy concen-
trated in the mode q0=1 �and added the cases q0=2 ,3 for
comparison; see Figs. 2 and 3�. Note that 2�N+1� is always
a multiple of 2, and in the particular case of N=32 it is also
a multiple of 3. Then, according to Eq. �6�, for q0=2 and
q0=3 only modes with q being a multiple of q0 are excited.
Let us discuss the properties of the found solutions in some
detail. In contrast to the original FPU trajectories, the QB is
characterized by mode energies being almost constant in
time. The straight lines in Fig. 1 compare the mode energies
on the QB with q0=1 with the FPU trajectory. The period of
the QB solutions is very close to the corresponding period
Tq0

=2� /�q0
of the harmonic mode, which is continued. Dur-

ing one QB period of oscillation, a relatively small energy
interchange between the modes �of the order of 2%� is ob-
served ��Figs. 4�a�–4�c��� with frequencies that correspond to
multiples of the QB frequency—just like the small fluctua-
tions of the mode energies for the FPU trajectory mentioned
above. There are well defined intervals during which the en-
ergy of nonlinear coupling energy Ec=Etot−�q=1

N Eq
�Etot being the full energy of the chain� increases sharply, yet

being overall very small �between 1 and 3% of the total
energy, see Fig. 4�d��. In Fig. 5, we show the time depen-
dence of the first five mode coordinates on the QB with
q0=1. The time reversal symmetry is nicely observed �al-
though not used for construction� at times t0
17,49. Note
also that while Q1 oscillates predominantly with the main
QB frequency 	QB, which is close to �1, the second mode
Q2 is dominated by 2	QB, the third one Q3 by 3	QB, etc.

We conclude the numerical results on the �-FPU case
with QB solutions for q0=1, E=0.077 and various values of
� up to �=0.8, which are shown in Fig. 6. We observe that
the localization length increases with increasing �, so there
is a clear tendency towards QB delocalization.

B. Estimating the localization length

To demonstrate localization of a QB solution in q-space
analytically, we expand the solution to Eq. �4� into an
asymptotic series with respect to the small parameter
�=� /�2�N+1�,

FIG. 2. Snapshots of the linear mode coordinates Qq �symbols�
along with analytical predictions �lines� for QBs with q0=1,2 ,3 for

�=0.25, E=0.077, N=32, at the moment when all velocities Q̇q

equal zero. Some modes have zero contributions and their corre-
sponding symbols are not plotted here.

FIG. 3. Distributions of the linear mode energies Eq in q-space
for QBs with q0=1,2 ,3 for �=0.25, E=0.077, N=32.

FIG. 4. Evolution of the linear mode energies �a� E1, �b� E2, �c�
E3, and the energy of nonlinear coupling �d� Ec �see the text for
definition� for the QB with q0=1, �=0.25, E=0.077, N=32.
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Qq�t� = �
n=0



�nQq
�n��t� . �14�

Inserting this expansion into Eq. �4�, we obtain equations for
the variables Qq

�n��t�. The equation for the zero order n=0
reads

Q̈q
�0� + �q

2Qq
�0� = 0, �15�

and for n�0

Q̈q
�n� + �q

2Qq
�n� = − �q �

l,m=1

N

�l�mBqlm �
n1,2=0

n1+n2=n−1

n−1

Ql
�n1�Qm

�n2�.

�16�

As the zero-order approximation, we take a single-mode
solution to Eq. �15� with Qq

�0��t��0 only for q=q0,

Qq
�0� = �q,q0

Aq0
cos �q0

t . �17�

Consider the first-order equations �case n=1 in Eq. �16��.
The right-hand part in Eq. �16� contains only one nonzero
term corresponding to l=m=q0, n1=n2=0. The coefficient
Bqlm here is nonzero only for q=2q0 �here we assume
2q0�N, so that the second Kronecker symbol in Eq. �6�
equals zero�. Thus, in the first order the only variable differ-
ent from zero is Q2q0

�1� �t�.
Similarly, for n=2, provided 3q0�N, we get Qq

�2��t��0
for q=q0 and 3q0 only; for n=3 and 4q0�N, we obtain
nonzero values at q=2q0 and 4q0, and so on.

The above allows us to formulate the following
proposition.

In the �k−1�th order of asymptotic expansion, provided
kq0�N, variables Qq

�k−1��t� differ from zero only for
q=�q0 , ��+2�q0 , . . . , �k−2�q0 ,kq0,

Qq
�k−1��t� = 0 " q � ��q0,�� + 2�q0, . . . ,�k − 2�q0,kq0� ,

�18a�

where �=1 for odd k and �=2 for even k.
It means that the first nonzero expansion term for a mode

q=kq0 is of the order k−1,

Qkq0

�m��t� = 0 " m � k − 1. �18b�

In Appendix B, we prove this statement by the method of
mathematical induction and approximate the first nonzero
term for a mode q=kq0 at kq0�N,

Qkq0

�k−1��t� = Akq0
�cos k�q0

t + O��kq0/N�2�� , �19a�

where

Akq0
=

Aq0

k

�q0

k−1 . �19b�

Ignored expansion terms lead to shifting the QB orbit fre-
quency and next-order corrections to its shape.

Multiplying Eq. �19� by �k−1 and inserting it into Eq. �9�,
we approximate the mode energies as

Ekq0
= k2�k−1Eq0

�1 + O��kq0/N�2���1 + O���� , �20a�

where

� =
�2�N + 1�3Eq0

�4q0
4 . �20b�

Note that although the mode energies are not strictly con-
served in time, their variation is small, being limited to the
orders of magnitude indicated in Eq. �20a� in parentheses �cf.
Fig. 4�. We arrive at an exponential decay in q-space dressed
with a power law,

FIG. 5. Evolution of the linear mode coordinates Q1,2,3,4,5 for
the QB with q0=1, �=0.25, E=0.077, N=32.

FIG. 6. Distributions of the linear mode energies Eq for �=0.1,
0.25, 0.4, and 0.8 for QBs with q0=1, E=0.077, N=32.
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ln�Eq� = 2 ln� q

q0
� +

q

q0
ln � + ln�Eq0

�
� �21�

with exponent q0
−1 ln � for the exponential part. The pre-

dicted decay �20� fits nicely with a computed QB with q0
=1 and �=0.025 as shown in Ref. �14�. In Figs. 2 and 3 we
compare Eq. �20� with the numerical results for �=0.25 and
q0=1 ,2 ,3. While q1 shows that the analytical results under-
estimate the degree of localization with increasing �, we
note that it does even at these values � better for larger
values of q0.

The calculation described is expected to fail at � close to
or greater than 1, when Eq. �20� does not support q-space
localization. At the same time the comparison with the nu-
merical results shows that higher-order corrections to the
analytical decay law extend the region of QB localization.
Thus we estimate a lower bound for the QB delocalization
threshold energy Eloc as

Eloc = �4�−2�N + 1�−3q0
4. �22�

The scaling behavior is in good agreement with an analytical
estimation of the resonance threshold in the �-model due to
second-order nonlinear resonance overlap, suggested in Ref.
�9�, which reads �2EN3
q0

4.
Finally, we stress an even closer relation between the lo-

calization of q-breathers within the used perturbation theory
and the Fourier series convergence of analytic periodic func-
tions �11�–�13�. One arrives from the QB problem to these
equations by simply assuming �q=const.

C. Stability of q-breathers in the �-FPU system

An important problem is the stability of QBs. For com-

puting linear stability of an orbit Q̂q�t�, the phase space flow
around it is linearized by making a replacement

Qq = Q̂q�t� + �q �23�

in the equations of motion �5� and subsequent linearizing the
resulting equations with respect to �q. Orbit stability is then
characterized by the eigenvalues of the Floquet matrix,
which defines the linear transformation of small deviations �q
by the linearized equations over one period of the orbit. If all
eigenvalues � j have the absolute value 1, the orbit is stable,
otherwise it is unstable �16,17�.

All QB solutions presented in this section are linearly
stable, i.e., all eigenvalues of the Floquet matrix which char-
acterize the linearized phase space flow around the QB orbits
reside on the unit circle. This is at variance with the case of
the �-FPU model, which will be discussed below �29�.

V. �-FPU SYSTEM

A. Numerical results

Launching an FPU trajectory by exciting a single low-
frequency mode leads to similar observations as for the
�-model. Again energy is localized in q-space on a few
modes, sometimes coined natural packets �30�, which again
persists for very long times.

It is possible to construct QBs in the �-FPU model, fol-
lowing the same way as described above for the �-model.

For numerical calculations, we use a modified scheme.
The section plane is defined in the q-space as �Qq0

=0 , Q̇q0

�0�. It is parametrized as r�	�Q̇q ,q�q0�. The even cou-
pling potential and fixed boundary conditions enable us to
introduce an additional constraint Qq�t=0�=0, and the veloc-

ity Q̇q0
is obtained using the condition of energy conserva-

tion Q̇q0
�t=0�=�2E−�q�q0

Q̇q
2�t=0�. As in the case of the

�-model, the QB is searched as a fixed point of the mapping
r�n+1=F� �r�n�.

We obtain QBs that are exponentially localized in q-space
�Fig. 7�. The smaller � is, the faster is the decay of the
energy distribution with increasing wave number q. Note that
due to the parity symmetry of the �-model �Eq. �2� is invari-
ant under xn→−xn for all n� only odd q-modes are excited by
the q0=3 mode and get coupled �31�. This follows also from
the coupling matrix �7�.

B. Estimating the localization length

In the analytical computation, the solution to Eq. �5� is
expanded in powers of a small parameter �=� /2�N+1�. In
the nth order of expansion, variables Qq

�n� differ from zero at
q=q0 ,3q0 , . . . , �2n+1�q0 only. Then the first nonzero expan-
sion term for a mode �2n+1�q0 is of the order n. Using the
same approach of mathematical induction as described in
Appendix B, mode energies in a QB are approximated as
follows:

E�2k+1�q0
= �kEq0

„1 + O���2k + 1�q0/N�2�…�1 + O���� ,

�24a�

where

FIG. 7. Energy distributions between q-modes in QBs for dif-
ferent nonlinear coupling coefficients � vs q in linear and log scales
with analytical estimations of the QBs exponential localization
�dashed lines�. Parameters are E=1.58, q0=3, N=32. Only odd
modes are shown �see text�. The symbols for q�3,9 ,15,21,27
represent upper bounds, the real mode energies might be even less.
Note that QBs persist even far beyond the stability threshold �see
Fig. 8�.
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� =
9�2Eq0

2 �N + 1�2

64�4q0
4 . �24b�

Again, time variation of the mode energies is limited to the
orders of magnitude indicated in Eq. �24a�. We arrive at a
pure exponential decay

ln�Eq� = ln Eq0
+

1

2
� q

q0
− 1�ln � �25�

with the exponent �2q0�−1 ln �. The predicted decay �24� fits
nicely with the computed QBs in Fig. 7.

The QB delocalization threshold is then estimated as

Eq0
=

8

3
�2q0

2�−1�N + 1�−1. �26�

The scaling behavior is in good agreement with an analytical
estimation of the resonance threshold in the �-model due to
second order nonlinear resonance overlap, obtained in Ref.
�9�, which reads �EN
q0

2.

C. Stability of q-breathers for the �-FPU model

First, we study QB stability by computing the Floquet
matrix numerically and diagonalizing it. In Fig. 8, we plot
the absolute values of the Floquet eigenvalues of the com-
puted QBs versus � for different system sizes N. QBs are
stable for sufficiently weak nonlinearities �all eigenvalues
have absolute value 1�. When � exceeds a certain threshold,
two eigenvalues get absolute values larger than unity �and,
correspondingly, another two get absolute values less than
unity� and a QB becomes unstable. Remarkably, unstable
QBs can be traced far beyond the stability threshold, and,
moreover, they retain their exponential localization in
q-space �Fig. 7�. As � is increased further, new bifurcations
of the same type are observed.

To study QB stability analytically in the first-order ap-
proximation, we write down the QB solution in the form

Q̂q�t� = �qq0
A cos �̂t + O��� , �27�

where �̂ is the QB frequency, slightly shifted from �q0
due to

nonlinearity. The residual term O��� includes corrections to
the QB orbit shape by expansion terms of order 1 and higher.

The first-order correction to the QB frequency is deter-
mined by secularity caused by resonant nonlinear self-
forcing of the mode q0 in the first order of expansion,

Q̈q0

�1� + �q0

2 Qq0

�1� = − 3�q0

4 Qq0

�0�3. �28�

This equation is identical to that of an isolated oscillator with
cubic nonlinearity �Duffing oscillator�. The well-known ex-
pression of nonlinear frequency shifting in the Duffing oscil-
lator then yields

�̂ = �q0
�1 +

9�Eq0

8�N + 1�
+ O��2�� . �29�

Linearizing equations of motion �5� around Eq. �27� ac-
cording to Eq. �23�, we arrive at a Mathieu equation �see
Appendix C�, which finally leads to an estimation of the
Floquet multipliers, which leave the unit circle due to a pri-
mary parametric resonance and cause instability,

�� j1j2
� = 1 ±

�3

4�N + 1�2�R − 1 + O� 1

N2� , �30�

where

R = 6�Eq0
�N + 1�/�2. �31�

The bifurcation occurs at R=1+O�1/N2�. This instability
threshold coincides with the criterion of transition to weak
chaos reported by De Luca et al. �8�. Note that Eq. �30� does
not contain the principal mode number q0. Below the stabil-
ity threshold �except for possible small high-order resonance
zones�, a set of stable QB modes exists. In the thermody-
namical limit N→, however, the energy of stable QBs
tends to zero. Note that according to our analytical �Appen-
dix C� and numerical results, the instability modes corre-
spond to q�=q0±1 and are even modes if q0 is odd and vice
versa. The observed instability is thus connected to a lower-
ing of the symmetry compared to the higher symmetry QB.
That has been also observed to be the driving pathway for
the onset of low-dimensional stochasticity in the FPU trajec-
tory at the weak chaos transition �8,32�, when the FPU tra-
jectory acquires chaotic components in the time evolution,
while still being localized in q-space.

The result �30� is plotted in Fig. 8 with solid lines for
N=32, 64, and 128, demonstrating good agreement with the
numerical results. The agreement improves with increasing
N �33�.

Driscoll and O’Neil studied the instability of a single soli-
ton in the continuum mKdV limit of the �-FPU model �34�
with periodic boundary conditions. A stability threshold ob-
tained within the mKdV equation will qualitatively or semi-
quantitatively agree with the correct value obtained for the
discrete chain, if the instability sets in for QBs that do not
contain significant short-wave-length components. The rela-
tion between the stability of a single soliton and a QB is less

FIG. 8. Absolute values of Floquet multipliers ��i� of QBs with
the energy E=1.58 and q0=3 and different N vs �. Symbols: nu-
merical results, lines: analytical results.
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clear, since in the limit of vanishing nonlinearity QBs in
chains or field equations with periodic boundary conditions
correspond to standing waves, while single solitons trans-
form into plane �running� waves.

We conclude this section with the observation that the
stability �31� and delocalization �26� threshold estimates for
QBs contain a unique parameter �EN where E is the total
energy, at variance with scaling estimates for the transition
times to equipartition �35�, which obtain �E /N instead.

VI. QBS AND THE FPU-TRAJECTORY
FOR THE �-FPU MODEL

Departing from the QB orbit in phase space in the direc-
tion of the initial condition of the FPU trajectory implies
adding to the QB solution �which is localized in q-space� a
perturbation, which is localized in q-space as well. The per-
turbed trajectory will evolve essentially on a low-
dimensional torus in phase space, whose dimension will cor-
respond to the number of modes excited on the QB orbit,
e.g., for �=0.25 and q0=1 about four or five. In Fig. 9, we
compare snapshots of displacements at different times ob-
tained for the original FPU trajectory in Ref. �1� and for the
numerically exact QB solution from Fig. 2 for �=0.25 and
observe similar evolution patterns �see also Ref. �12��. More-
over, we took a series of points on a line that connected
initial conditions of the FPU trajectory �Eq�1=0� with the
numerically exact QB solution from Fig. 2. For each of these
points, we integrated the corresponding trajectory and mea-
sured the average deviation � from the QB orbit. The depen-
dence of � on the line parameter turns out to be an almost
linear one, starting from zero when being very close to the
QB orbit, and ending with a maximum value when being
close to the FPU trajectory. That supports the expectation
that the FPU trajectory is a perturbation of the QB orbit. The
FPU recurrence is gradually appearing with increasing � and
is thus directly related to the regular motion of a slightly

perturbed QB periodic orbit, which we tested also numeri-
cally. In Fig. 10, we plot the mode energies E1 and E2 during
integration of the FPU trajectory for �=0.25 and q0=1 after
consecutive periods of the q-breather solution. The regular
pattern indicates regular motion, and the thick dot, which
corresponds to the q-breather solution itself, resides inside
the quasiperiodic cloud of the FPU trajectory, indicating
once more that the FPU trajectory is a perturbation of the
q-breather and evolves around the QB in phase space. Zoom-
ing the time dependence of the mode energies for the FPU
trajectories on time scales comparable to the QB period
shows very similar nearly periodic fluctuations as in Fig. 4
that are generated by the QB period. Using the linearized
phase space flow around a QB, we can estimate an effective
recurrence time, which for the original FPU case is two times
smaller than the recurrence time for the FPU trajectory. We
tracked the change of the recurrence time with increasing �.
When coming closer to the FPU trajectory, simply every sec-
ond recurrence as observed for small deviations from the QB
is suppressed, leaving us with the FPU recurrence time. That
effect may be due to additional nonlinear contributions to the
phase space flow around a QB.

Finally, we note that extremely long computations of the
FPU trajectory have been reported recently �36�. The trajec-
tory localizes in q-space �and thus stays close to a
q-breather� for times up to 1010. Only after that is a mixing
of mode energies observed, possibly due to Arnold diffusion.
Notably, the critical time has been estimated by numerical
scaling analysis for shorter transition times �12�.

VII. TOWARD TRANSIENT PROCESSES
AND THERMAL EQUILIBRIUM

Once the existence and stability of QBs as exact solutions
are established, it is interesting to analyze the contribution of
these trajectories to the dynamics of transient processes and
thermal equilibrium. It is well known that in states corre-

FIG. 9. Snapshots of displacements �a� of the original FPU tra-
jectory for �=0.25, E=0.077, N=32 �1� and �b� of the correspond-
ing exact QB solution from Fig. 2 taken at different times.

FIG. 10. �Color online� Map of the mode energies E1 and E2 on
the FPU trajectory after consecutive periods of the corresponding
q-breather for N=32, �=0.25, and q0=1. The thick dot is the results
for the QB orbit.
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sponding to energy equipartition between degrees of freedom
�or thermal equilibrium�, energy distribution demonstrates
strong statistical properties, with no energy concentrations on
average in some subparts of phase space. This circumstance,
however, does not preclude the existence of finite-time en-
ergy localizations whose lifetime may substantially exceed
the characteristic period of plane waves. We recall the stud-
ies of discrete breather contributions to the dynamics of non-
linear lattices in thermal equilibrium and transient processes
�37�.

Here we present results of numerical simulations of the
�-FPU chain �N=100, fixed boundary conditions� with two
types of initial conditions: �i� all energy is located in a single
mode Etot=E3=1.58, Eq�3=0, �ii� all energy is randomly dis-

tributed among all modes: Qq�0�=�k /�q, Q̇q�0�=�k, where
�k ,�k are random numbers, uniformly distributed in �−c ,c�, c
taken to ensure Etot /N=0.2.

In the first case, we take three values of �=0.6,1.25,5.0,
for which energy delocalizes and essentially redistributes
among the degrees of freedom after some transition time Ttr
�Fig. 11�. We note that with the chosen values of q0 , E0 , N
our previous results suggest that the QB becomes unstable at
�
0.01 and delocalizes at �
1.6. The figures show a time
window width 105, which is much larger than the largest QB
periods, which are of the order of 400.

We observe that stochastic motion and energy flow to
higher modes lead the system into a possibly long transient
regime, in which QB-like objects �finite-lifetime single-mode
excitations� are observed for all q �Figs. 11�a� and 11�b��;
note that at different Ttr, qualitatively the same picture is
observed�. These objects survive for up to a hundred periods
of phonon band oscillations. Since the smallest chosen val-
ues for � exceed the QB instability threshold value, we con-
clude that the QB instability is of local character in q-space
and does not carry a perturbed trajectory far away. When � is

increased, the lifetime of higher-frequency QBs drops down
and they disappear in the high- and middle-frequency re-
gions �Fig. 11�c�, �=1.25� and then remain observable only
in the few lowest modes �Fig. 11�d�, �=5.0�. Note that for
these values of � we already exceed the delocalization
threshold estimate for QBs. The observation of surviving
low-q QB-like structures suggests that the energy flow be-
tween low- and high-q modes is sufficiently weak, so that
some excess of energy is transferred into the large-q domain,
allowing for long-time energy localization in the low-q do-
main.

Similar effects can be observed for the second type of
initial conditions �Fig. 12�, which mimics thermal equilib-
rium. At low �, QBs can be observed in the whole phonon
band frequency domain �Figs. 12�a� and 12�b�, �=0.05�. As
� is increased, high- and medium-frequency QBs disappear
�Figs. 12�c� and 12�d�, �=0.1,0.4�. Note that by rescaling
coordinates and momenta �and hence energies�, the set of
total energies and nonlinear coupling strengths for both types
of initial conditions practically coincide, so one may directly
compare all subfigures from Figs. 11 and 12.

VIII. CONCLUSION

We report on the existence of q-breathers as exact time-
periodic low-frequency solutions in the nonlinear FPU sys-
tem. These solutions are exponentially localized in the
q-space of the normal modes and preserve stability for small
enough nonlinearity. They continue from their trivial coun-
terparts for zero nonlinearity at finite energy. The stability
threshold of QB solutions coincides with the weak chaos
threshold in Ref. �8�. The delocalization threshold estimate
of QBs shows identical scaling properties as the estimate of
equipartition from second-order nonlinear resonance overlap
�9�. Persistence of exact stable QB modes is shown to be

FIG. 11. Space-time plots of
mode energies Eq evolving from
the initial localization in the third
mode for N=100, E3�0�=1.58,
and �a� �=0.6, Ttr=106; �b�
�=0.6, Ttr=107; �c� �=1.25,
Ttr=107; �d� �=5.0, Ttr=107.
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related to the FPU observation. The FPU trajectories com-
puted 50 years ago are perturbations of the exact QB orbits.
Remarkably, localization in q-space persists even for param-
eters when the QBs become unstable. The QB concept—
tracing time-periodic and q-space localized orbits together
with their stability and degree of localization—allows us to
explain qualitatively and semiquantitatively many aspects of
the 50-year-old FPU problem. Moreover, we show that dy-
namical localization in q-space persists for transient pro-
cesses and thermal equilibrium remarkably well. Note that
for certain cases, specific symmetries allow us to obtain
q-breathers with compact localization �31,38�, where they
have been interpreted as anharmonic plane-wave solutions.

The concept of QBs and their impact on the evolution of
excitations in the FPU system is expected to apply far be-
yond the stability threshold of the QB solutions reported in
the present work. Generalizations to higher-dimensional lat-
tices and other Hamiltonians are straightforward, due to the
weak constraint imposed by the nonresonance condition
needed for continuation. QBs can also be expected to con-
tribute to peculiar dynamical features of nonlinear lattices in
thermal equilibrium, e.g., the anomalous heat conductivity in
FPU lattices �3�. Another interesting problem is the change
from fixed to periodic boundary conditions. In most cases
such as the above-considered FPU chain, this will cause two-
fold degeneracies of the normal mode spectrum. Conse-
quently, both standing and traveling waves can be considered
as potential QB candidates when adding nonlinearity. Yet one
has to cope with the above-mentioned degeneracy and under-
stand its impact.

A quantization of QBs will lead straightforwardly to
quantum QBs, which will not differ much from their classi-
cal counterparts, due to the absence of discrete symmetries
that may lead to tunneling effects. Thus a quantum QB state
will be localized in q-space pretty much as a classical QB,

allowing for ballistic-type excitations in the low-q domain.
Finally, we remark that the QB concept is not even con-

strained to an underlying lattice in real space. What we need
in order to construct a QB is a discrete spectrum of mode
energies, and nonlinearity that induces mode-mode interac-
tions. Thus QBs can be constructed in various nonlinear field
equations on a finite spatial domain as well, since one again
obtains in the limit of small amplitudes a discrete mode spec-
trum, with the only difference from a finite lattice being that
the number of modes is infinite.
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APPENDIX A: CONTINUATION OF QBS
FROM ZERO TO NONZERO �

We introduce a Poincaré section S �39� defined by
�Pq0

=0 ,Qq0
�0�. Let S be parametrized by a vector s, whose

components are all variables of state except Pq0
. We denote

the coordinates and momenta of all oscillators except q0 as a
vector r of length 2N−2,

r = �Q1,P1, . . . ,Qq0−1,Pq0−1,Qq0+1,Pq0+1, . . . ,QN,PN� .

Then s consists of all components of r and the coordinate
Qq0

.

FIG. 12. Space-time plots
of mode energies Eq evolving
from random initial conditions
for N=100, Etot /N=0.2, and �a�
�=0.05, Ttr=105; �b� �=0.05,
Ttr=106; �c� �=0.1, Ttr=2�105;
�d� �=0.4, Ttr=2�105.
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In the trivial case of decoupled modes ��=0� at any given
q0, there exists a family of periodic orbits corresponding to
various values of the amplitude A of the q0th oscillator with
all the others being at rest. Each of these orbits crosses S at a
point sA with r=0, Qq0

=A�0. Let us pick one of these orbits
by choosing a value of A and consider the Poincaré mapping
�39� of a vicinity of sA into S. Then sA is a fixed point of this
map. Taking into account the dependence of the mapping on
�, we write it down in the form of a vector function

s̄ = F�s;�� = F�r,Qq0
;�� . �A1�

We recall that a Poincaré mapping is C1 �39�.
In order to apply the implicit function theorem to continue

the fixed point �and thus the periodic orbit� to the case of
nonzero �, we need to eliminate the degeneracy caused by
energy conservation. For this we consider a mapping of the
space R2N−2 of vectors r onto itself obtained by fixing the
value of Qq0

in the map �A1� at the constant quantity A,

r̄ = G�r;��, where Gj�r;�� = Fj�r,A;��, j = 1,2N − 2.

�A2�

Note that a fixed point of the mapping �A2� can be
uniquely associated with a fixed point of the Poincaré map-
ping �A1� and, thus, with a periodic orbit. Indeed, the coor-
dinate Qq0

in the end point of the mapping trajectory can be
expressed as a function of r using the energy conservation
condition H��Qq , Pq��=E, where E is the energy in the start-
ing point and H is the Hamiltonian, since �H /�Qq0

�0 in this
point. So, if r is a fixed point of Eq. �A2�, then the corre-
sponding vector s �including the coordinate Qq0

=A� is a
fixed point of Eq. �A1�.

A fixed point of Eq. �A2� is a root of the equation

Z�r;�� = 0, where Z�r;�� = G�r;�� − r . �A3�

Since sA is a fixed point of Eq. �A1� at �=0, we get
Z�0,0�=0. As the map F is C1, Z is also C1, and we can
apply the implicit function theorem to express r as a function
of � in some finite vicinity of the point �=0, if the Jacobian
��Z /�r� at r=0, �=0 is nonzero. Let us show that this is the
case, provided the nonresonance condition �10� is fulfilled.

For the Jacobian, we obtain

� �Zi

�rj
� = � �Mi

�rj
− �ij� = � �Fi

�rj
− �ij�, i, j = 1,2N − 2.

�A4�

Here ��Fi /�rj� is the monodromy matrix of the orbit, from
which the row and the column corresponding to Qq0

are re-
moved. For �=0, r=0, it consists of N−1 noninteracting
blocks

� cos �q
1

�q
sin �q

− �q sin �q cos �q
� �A5�

aligned along the diagonal, each describing a rotation in the
plane Qq , Pq. Here �q=2��q /�q0

. The determinant of the

matrix ��Zi /�rj� is then the product of the determinants of the
difference of �A5� and the identity matrix.

As long as Eq. �10� is fulfilled, none of �q equals 2�n,
thus none of the mentioned determinants equals zero, and the
whole Jacobian ��Zi /�rj� is nonzero.

Then, finally, the conditions of the implicit function theo-
rem are fulfilled, and the solution to Eq. �A3� �and, thus, the
QB orbit� is continued to nonzero �. Note that the same
procedure is easily extendable to the �-model and other
cases.

APPENDIX B: QB LOCALIZATION
IN THE �-FPU MODEL

First, we note that Eqs. �18� and �19� are true for k=1,
according to Eq. �17�. Further, we assume it is true for
k=1, . . . ,n−1 and prove that it is then true for k=n as well.

Equation �16� for the order n−1 can be written as

Q̈q
�n−1� + �q

2Qq
�n−1� = − �q �

n1,2=1

n1+n2=n

n−1

�
l,m=1

N

�l�mBqlmQl
�n1−1�Qm

�n2−1�.

�B1�

Consider for which mode numbers q the right-hand part
in Eq. �B1� is nonzero. As n1,2�n, we obtain from
Eq. �18a� Ql

�n1−1��0 for l=�1q0 , . . . , �n1−2�q0 ,n1q0 only,
and Qm

�n2−1��0 for m=�2q0 , . . . , �n2−2�q0 ,n2q0 only, where
�1,2 equals 1 or 2 for n1,2 being odd or even, respectively.

According to the definition of Bqlm �6� and taking into
account that nq0�N, we obtain Bqlm�0 for q= l+m and
q= �l−m�. Then, the maximal mode number q, for which the
right-hand part in Eq. �B1� is nonzero, equals qmax=n1q0
+n2q0=nq0. The set of nonzero modes in this order of ex-
pansion is q=�q0 , . . . , �n−2�q0 ,nq0, where � equals 1 or 2
for odd or even n, respectively. This is equivalent to Eq.
�18a� at k=n, which concludes the induction for Eq. �18�.

To prove Eq. �19�, we write down Eq. �B1� for q=nq0,

Q̈nq0

�n−1� + �nq0

2 Qnq0

�n−1� = − �nq0 �
n1,2=1

n1+n2=n

n−1

�n1
�n2

Qn1q0

�n1−1�Qn2q0

�n2−1�.

�B2a�

Here we have taken into account that the only nonzero term
of the sum over l and m corresponds to l=n1q0, m=n2q0, and
that Bnq0,n1q0,n2q0

=1.
As n1,2�n, the variables Qn1

�n1−1� and Qn2

�n2−1� are expressed
via Eq. �19a�. Then Eq. �B2a� becomes a forced harmonic
oscillator equation with a set of cosinusoidal harmonics in
the right-hand part,

Q̈nq0

�n−1� + �nq0

2 Qnq0

�n−1� = �
m=0

n

Cm cos m�q0
t , �B2b�

where Cm are amplitudes of the harmonics.
Omitting the free-motion part of the solution, we write

down the expression for the forced oscillations of Qnq0

�n−1�,
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Qnq0

�n−1� = �
m=0

n
Cm

�nq0

2 − m2�q0

2 cos m�q0
t . �B3�

Note that the resonance denominator in Eq. �B3� is
minimal at m=n. In other words, driving frequency n�q0

is
the closest to the resonance among all the harmonics. Ex-
panding the sine function in Eq. �8� into a Taylor series as
sin x=x−x3 /6+O�x5�, we approximate the mode frequencies
as

�q
2 = 4��q��2 −

1

3
�q��4 + O��q��6�� , �B4�

where

� =
�

2�N + 1�
→ 0.

The mentioned minimal denominator is then expressed at
nq0 /N→0 as follows:

�nq0

2 − n2�q0

2 = −
1

12
n2�n2 − 1��q0

4 + O��nq0

N
�6� . �B5�

At the same time, the relation of this denominator to any
other one with m�n is estimated as

�nq0

2 − n2�q0

2

�nq0

2 − m2�q0

2 = O��nq0

N
�2�, m � n . �B6�

It means that the harmonic m=n dominates in the solution
�B3�, while all the other harmonics are small values of the
order O��nq0 /N�2� with respect to this dominating one.

Thus, Eq. �B3� can be rewritten as

Qnq0

�n−1� =
12Cn

n2�n2 − 1��q0

4 cos n�q0
t�1 + O��nq0

N
�2�� .

�B7�

Inserting Eq. �19a� �valid as n1,2�n� into Eq. �B2a�, we
obtain the following expression for the nth harmonic ampli-
tude Cn in Eq. �B2b�:

Cn = − �nq0 �
n1,2=1

n1+n2=n

n−1

�n1
�n2

1

2
An1q0

An2q0�1 + O��nq0

N
�2�� .

�B8�

Inserting Eq. �B8� into Eq. �B7� and taking into account
Eq. �B4�, we arrive at

Qnq0

�n−1� = Anq0�cos n�q0
t + O��nq0

N
�2�� , �B9�

where

Anq0
=

6

n2�n2 − 1��q0

�
n1,2=1

n1+n2=n

n−1

n1n2An1q0
An2q0

. �B10�

Expressing An1q0
and An2q0

via Eq. �19b� �valid because
n1,2�n� and taking into account that

�
n1,2=1

n1+n2=n

n−1

n1n2 	
1

6
n2�n2 − 1� ,

we obtain

Anq0
=

Aq0

n

�q0

n−1 . �B11�

Equations �B9� and �B11� coincide with Eqs. �19a� and �19b�
at k=n, thus concluding the induction.

APPENDIX C: QB STABILITY IN THE �-FPU MODEL

Making a replacement �23� in the equations of motion �5�
and keeping only linear in �q terms, we obtain an equation
describing the dynamics of infinitesimal deviations from the
QB orbit,

�̈q + �q
2�q = − 3�Q̂q0

2 �t��q0

2 �
r=1

N

bqr�r + O��2,�l� , �C1�

where bqr=�q�rCq0,q0,q,r, and O��2 ,�l� denotes a linear form
of ��l� with small coefficients of the order O��2�.

Inserting here Q̂q0
�t� from Eq. �27�, we obtain the follow-

ing Mathieu equation:

�̈q + �q
2�q = − h�1 + cos 	t��

r=1

N

bqr�r + O�h2,�l� , �C2�

where h=3�Eq0
, 	=2�̂.

In the vector-matrix form it can be rewritten as follows:

�̈ + A� + h�1 + cos 	t�B� = O�h2�� , �C3�

where �= ��q� is a vector, A= �aqr� is a diagonal matrix with
elements aqr=�qr�q

2, and B= �bqr� is the coupling matrix.
Further, we analyze parametric resonance in Eq. �C3�,

treating h and 	 as independent parameters, and then recall
their dependence.

In the limit h→0, the equilibrium point �=0 is strongly
stable for all values of 	 except for a finite number of values
	nkl which satisfy

�k + �l = n	nkl, �C4�

where n is a natural number, and the modes k and l belong to
the same connected component of the coupling graph whose
connectivity is defined by the matrix B. Strong stability im-
plies that this point is also stable for all Hamiltonian systems
close enough to the considered one.

Each point �	nkl ,0� on the plane of parameters �	 ,h� is
associated with a zone of parametric resonance. Restricting
ourselves to the case of primary resonance, which necessar-
ily requires n=1 in Eq. �C4�, we specify the frequency 	 as

	 = ��k + �l��1 + �� , �C5�

where the detuning parameter � is assumed to be the order
�=O�h�. We seek for a solution to Eq. �C3� in the form
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� = �
m=−

+

fme�i�̃1+z+im	�t + c.c., �C6�

where �̃1=�k�1+��, fm= �fq
m� are unknown complex vector

amplitudes, and z is a small unknown complex number. We
make an assumption z=O�h�, which is confirmed further in
the course of the calculation.

Inserting Eq. �C6� into Eq. �C3�, we obtain a system of
algebraic equations for the amplitudes fq

m,

�2iz��̃1 + m	� − ��̃1 + m	�2 + �q
2�fq

m

+ �hBfm�q + �h

2
B�fm+1 + fm−1��

q

= O�h2���� . �C7�

Note that if the coefficient in square brackets in Eq. �C7�
is not a small value of the order O�h�, then the corresponding
amplitude fq

m is itself a small value of the order O�h����. Let
us find out for which values of the indices m and q the
mentioned coefficient is small. As we assume z=O�h�, the
difference −��̃1+m	�2+�q

2 needs to be a small value. It will
be so if the absolute value ��̃1+m	� is close to one of the
eigenfrequencies �q. According to the definition of �̃1 and
the expression for 	 �C5�, this implies ��m+1��k+m�l�
=�q. Generically, due to the incommensurate eigenfrequen-
cies spectrum, this condition is only fulfilled for m=0, q=k
or m=−1, q= l.

It follows that all amplitudes fq
m except for fk

0 and f l
−1 are

small values of the order O�h����. Then we are able to write
down a closed system for fk

0 and f l
−1 accurate to O�h2����,

�2iz�̃1 + 2�k
2�h − ���fk

0 +
h

2
bklf l

−1 = O�h2���� , �C8a�

h

2
blkfk

0 + �− 2iz�̃2 + 2�l
2�h − ���f l

−1 = O�h2���� , �C8b�

where �̃2=	− �̃1=�l�1+��. Note that for a primary reso-
nance, the coupling coefficient bkl must be nonzero, which
means that the mode oscillators k and l are directly coupled.

A nontrivial solution to this system exists if the determi-
nant of the left-hand part �with an error O�h2� allowed for in
each element� equals zero. From this condition, we derive

z1,2 = − i
�h − ����l − �k�

2

±
1

2
�h2

4
�k�l − �h − ��2��k + �l�2 + O�h3� + O�h2� .

�C9�

In the initial problem, both h and 	 depend on the non-
linearity magnitude �Eq0

. This dependence defines a line
starting from the point �2�m0

,0� on the �	 ,h� plane. The
intersections of this line with the resonance zones are the
regions of the QB orbit instability.

The nearest primary resonance corresponds to k=m0−1,
l=m0+1, n=1. In this case, we can derive a simpler expres-
sion for z1,2 in the vicinity of the bifurcation point �near the
edge of the resonance zone� if we let N→ at the same time
assuming q0 / �N+1�=const, which means �q0

=const.
From Eq. �B4�, we obtain

�q0+1 − �q0−1 = 2 cos q0��1 + O��2�� , �C10a�

�q0+1�q0−1 = �q0

2 �1 + O��2�� , �C10b�

�q0+1 + �q0−1 = 2�q0
�1 + O��2�� . �C10c�

Then we express � from Eq. �C5�,

� =
	

�q0+1 + �q0−1
− 1 =

3

4
h +

1

2
�2 + O��4� . �C11�

Inserting Eqs. �C10a�–�C10c� and �C11� into Eq. �C9� and
taking into account that if we are close to the bifurcation
point �the expression under the square root in Eq. �C9� is
close to zero� then h=O��2�, we find

z1,2 = ±
1

2
�q0

�2�R − 1 + O��2� + iO��3� , �C12�

where R=h /�2=6�Eq0
�N+1� /�2.

According to Eq. �C6�, the absolute values of the Floquet
multipliers involved in the resonance are calculated as

�� j1j2
� = exp�2�Rez1,2

	
� , �C13�

which finally leads to Eq. �30�.
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