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In this study, we employ the interfacial operator approach to compute surface plasmon modes as well as
band structures �including longitudinal modes� for plasmonic crystals in one and two dimensions. In particular,
we consider the free-electron model for the metal. It is shown that the localized feature of surface plasmon
modes can be resolved near the interface by introducing interfacial variables. For a one-dimensional array of
metal, convergence of two branches of surface plasmon modes is studied by varying the filling fraction of the
metal. For two-dimensional metallic structures, band flattening, band broadening, and plasmonic band gaps are
observed and discussed. The highly degenerate nature and infinite number of surface plasmon modes can be
explained by employing the Rayleigh quotient for the TE modes. The cutoff behavior in the TM modes is made
clear by considering the energy density of the electromagnetic fields. The transverse electric fields, surface
charges, and polarization currents are visualized to help understand various properties of surface plasmon
modes. Moreover, the effect of plasma frequency and the transition from dispersive metals to perfect conduc-
tors are also explored. Finally, the contribution of Drude damping is considered by perturbation analysis.
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I. INTRODUCTION

Periodic structures with dielectric materials have been ex-
tensively studied since 1987 �1,2�. Their optical properties
mainly depend on the dielectric constant of the material, the
geometry of the structure, and the direction of the polariza-
tion. If the structure contains metallic components, then the
motion of the electrons will drastically alter the optical prop-
erties. In general, there are three levels to model the metal
property. The first one is to assume metals to be perfect con-
ductors. The second one is to model metals as dispersive
materials with the simple free-electron form of the dielectric
function. The third one is to model metals as dissipative
materials with the Drude type of dielectric function. The
most significant feature of periodic metallic structures is the
existence of surface plasmon modes. And for this reason,
periodic structures made of the latter two types of metals are
also named plasmonic crystals �3,4�. Surface plasmon modes
are highly localized around the interface of the metal and the
surrounding dielectric. Also, intensive gathering of the sur-
face plasmon modes around the surface plasma frequency
�sp gives rise to high density of states and field enhance-
ments. These features of surface plasmons may find various
applications in optical data storage, miniaturized photonic
circuits, surface-enhanced Raman scattering, biosensing,
light generation, and solar cells �5–10�.

It has been a difficult issue to compute surface plasmon
modes and band structures for frequency-dependent materi-
als, in particular for the TE modes. The free-electron model,
though simple, enables us to investigate some very important
optical properties of dispersive metallic structures. On the

one hand, the highly localized nature of surface plasmon
polaritons requires very-fine-resolution schemes. On the
other hand, the eigensystem for frequency-dependent mate-
rials no longer has a standard format that can be solved by
standard eigenvalue solvers. In fact, it is referred to as one
type of nonlinear eigenvalue problem �11�, which is nonlin-
ear in eigenfrequency. Besides, the change of type of the
eigensystem across the interface of the metal and the dielec-
tric material �with the dielectric constant positive in the di-
electric and negative in the metal� makes the problem non-
definite, which adds further difficulty to compute the band
structures. Nevertheless, a few methods have been applied
for this frequency-dependent nonlinear eigenvalue problem.
In the most commonly used plane-wave expansion method,
the field is expanded by a series of Fourier components. The
wave equation is then converted to a quadratic eigensystem
�12�. In the finite-difference time-domain method, an oscil-
lating dipole is introduced in the structure to excite the sur-
face plasmon modes. The eigenfrequencies are obtained by
Fourier transforming the time series of the resultant fields
�13�. In the multiple-multipole method, the field is expanded
as a linear superposition of analytical functions based on
different expansion centers. A carefully designed cost func-
tion is used to test for the eigenfrequencies �14�.

In one previous paper �15�, we studied the effect of me-
tallic components modeled as perfect conductors as well as
dispersive metals for TM modes. Recently, we further pro-
posed an interfacial operator approach to compute band
structures for dispersive metals with the free-electron model
�16�. In this study, we employ the interfacial operator ap-
proach to compute band structures for plasmonic crystals in
one and two dimensions as shown in Fig. 1. For the layered
structure �Fig. 1�a��, it will be shown that the frequencies of
two surface plasmon modes converge to the surface plasma
frequency �sp at large off-line wave numbers. Mode splitting
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and the convergence rate are related to the interaction of the
modes from both sides of the metal as well as the dielectric.
For two-dimensional structures �Figs. 1�b�–1�d��, very sharp
feature of surface plasmon modes can be resolved in detail.
In particular, surface plasmon polariton (SPP) modes and
localized surface plasmon (LSP) modes are identified regard-
ing their extending characteristics along the interface. The
transverse electric fields, surface charges, and polarization
currents for a typical surface plasmon mode are illustrated to
study the properties of surface plasmon modes, as well as the
active response of dispersive metals. For TE modes, we ob-
served the phenomenon of a band flattening, the origin of
which is explained through the help of the Rayleigh quotient
for the eigensystem. In addition to band flattening, we also
observed band broadening, which is more obvious for thin
structures, due to lifting of the degeneracy by effective inter-
action of the modes. For moderately thick structure, a bal-
ance of band flattening and broadening may result in a pos-
sible plasmonic band gap around �sp.

Another aspect of metallic structures is the cutoff behav-
ior in the TM modes. In general, a larger fraction of metallic
components may produce a higher cutoff frequency. This can
be made clear by considering the energy density of the elec-
tromagnetic field for dispersive materials. For very high frac-
tions of the metal, all the TM bands may lie above �p and
coincide with the TE bands there, while the other TE bands
below �p reduce to a few flatbands. Appearance of the cutoff
frequency also implies that no static modes ��=0� are al-
lowed for any wave vectors in the TM bands. However, static
modes do appear in the TE bands. The reason is explained on
a unified basis by examining different types of boundary
conditions for the TM and TE modes, respectively. It is
found that a full or partial band of static modes with zero

frequency for TE modes may exist if the metallic compo-
nents are connected. The same phenomenon is also observed
for the one-dimensional layered structure. As a result, large
full band gaps between the first few frequency bands are
opened. For isolated metallic structures, however, there is no
similar behavior. In the present study, we also investigate the
effect of the plasma frequency �p on surface plasmon modes
and band structures. First of all, �p is a measure of how
dispersive metals approach being perfect conductors. As �p
is increased, both the TM and TE bands move to higher
frequencies, for there is more energy contained in the metal.
In particular, static modes at the point � are illustrated to
explore the evanescent fields and related skin depths in the
metal. In the limiting case where �p approaches infinity, dis-
persive metals behave like perfect conductors and the surface
plasma frequency �sp goes to infinity as well, and therefore
no surface plasmon modes exist at finite frequencies. More-
over, longitudinal modes with eigenfrequency equal to �p
can also be obtained with the present approach. These modes
correspond to coherent oscillations at the bulk plasma fre-
quency and also to zero of the dielectric function. Finally, we
consider the effect of dissipation in terms of the Drude
damping by developing the first-order perturbation analysis
to correct the eigenfrequencies.

II. BASIC EQUATIONS

Based on the Maxwell theory, the wave equations for lin-
ear, isotropic, and nonmagnetic materials in two dimensions
are given by

−
1

�
�2E = ��

c
�2

E , �1�

− � · �1

�
�H� = ��

c
�2

H �2�

for the TM and TE modes, respectively, assuming that the
fields vary harmonically in time with frequency � as e−i�t.
The eigenmodes are solutions of the wave equations bound
by some constraints. In this study, the periodicity of the
structure serves as a constraint to the wave equations. For
periodic structures, it is sufficient to solve the problem on
one unit cell, along with the Bloch conditions

E�r + ai� = eik·aiE�r� , �3�

H�r + ai� = eik·aiH�r� , �4�

where k is the wave vector and ai �i=1,2� are the lattice
translation vectors.

In the present study, we consider the free-electron model
�17�

���� = 1 −
�p

2

�2 �5�

for the metal, where �p is the bulk plasma frequency. It is
noted that in the free-electron model, the dielectric function
of the metal is real and the conductivity is purely imaginary.

FIG. 1. �Color online� Plasmonic crystals made of dispersive
metals. �a� One-dimensional layered structure, �b� two-dimensional
�2D� array of square cylinders, �c� 2D array of circular cylinders,
and �d� 2D array of grid cylinders.
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That means the conductivity is 90° out of phase with the field
and there is no loss with this model. However, in the optical
range of frequencies, dissipation due to electron collisions
cannot be ignored. For this purpose, the Drude model �18�

���� = 1 −
�p

2

�2 + i��
�6�

is employed to consider the contribution of damping. The
appearance of the collision frequency � makes the dielectric
function complex, and the allowed frequencies of the elec-
tromagnetic field become complex as well, resulting in a
decay factor of the field in the time domain.

For the dielectric function �5�, the eigensystems �1� and
�2� can be written in the format

L���� = �� , �7�

where �=�2 /c2 is the eigenvalue and � is the eigenfunction,
which can be either the E or H field. Note that the eigenvalue
� itself appears in the solution operator L. If we discretize
Eq. �7� in a straightforward manner—for example, by a
finite-difference scheme—we will obtain a nonlinear discrete
eigensystem

B���y = �y , �8�

where B is the system matrix and y is the eigenvector. This is
one type of nonlinear eigenvalue problem—that is, nonlinear
in eigenfrequency. Equation �8� does not have a standard
format that can be solved by standard eigenvalue solvers
such as QR or inverse iteration �19�. However, for the TM
modes, Eq. �1� can be rearranged to yield

�− �2 + �p�E = �E , �9�

which is now a standard linear eigensystem, where �p
=�p

2 /c2. Equation �9� has been used to study the effect of
metallic components embedded in the dielectric structure
�15�. Nevertheless, this cannot be done for the TE modes
because the dielectric function lies inside the operator. Sur-
face plasmon modes may appear at the interface between the
metal and dielectric for the TE modes. The highly localized
nature of surface plasmon modes requires very fine resolu-
tion near the interface, across which the dielectric function
changes its sign. This is equivalent to the change of type of
Eq. �2� across the interface, adding further difficulty to ob-
tain the solutions numerically.

III. INTERFACIAL OPERATOR APPROACH

The present authors have developed the interfacial opera-
tor approach �16� to solve the band structures as well as
surface plasmon modes in one and two dimensions. This is a
direct approach to solve the eigensystem �2� within the
finite-difference framework. The basic idea is first to deal
with the eigensystem �2� in the regions of the dielectric and
metal separately so that the dielectric function can be moved
out of the Laplace operator to yield

−
1

�d
�2H = �H , �10�

�− �2 + �p�H = �H �11�

for points in the strict insides of the dielectric and metal,
respectively, where �d is the dielectric constant of the dielec-
tric medium. The two equations �10� and �11� are then joined
together with the interface condition

�1

�

�H

�n
�

S
= 0, �12�

where � /�n denotes the derivative in the surface normal di-
rection and � �S=0 denotes the jump across the interface S.
The interface condition �12� is obtained by integrating both
sides of the eigensystem �2� over a thin box located on the
interface and taking the limit as the box height goes to zero.
The crucial step of the interfacial operator is to introduce an
interfacial variable R into the discretized form of the interfa-
cial condition �12� and reformulate the eigensystem in terms
of the H field in the strict insides of the dielectric and metal,
along with this new variable R. Based on the finite-difference
formulation, the difference equation �12� is rearranged so
that the eigenvalue � only appears on the right-hand side to
fulfill the standard format of the eigensystem. Next, the H
field at the interface that appears in the difference equation in
the strict insides of the dielectric and metal is replaced by R.
Combining the discretization of Eqs. �10� and �11�, together
with the reformulation of Eq. �12�, we obtain a resultant
eigensystem

Ax = �x . �13�

The system matrix A differs from B in two ways: �a� the
eigenvalue � does not appear in the operator A, and �b� the
H field at the interface, being replaced by the interfacial vari-
able R, does not appear in x. However, the eigensystems �8�
and �13� are equivalent to each other in the discrete sense
that the eigenvalue � is the same for both eigensystems and
the eigenvector x can be converted to the original eigenvec-
tor y and vice versa. Nevertheless, the eigensystem �13� has
the great advantage of being a standard format that can be
solved by standard eigenvalue solvers. The detailed formula-
tion of the interfacial operator approach is referred to Ref.
�16�.

Having obtained the solutions of Eqs. �1� and �2� with the
free-electron model �5�, the contribution of Drude damping
can be considered by using the perturbation technique, ap-
plied with the interfacial operator approach. Ordinarily, the
collision frequency � is small compared to the frequency �
such that ���. This suggests to us to regard the solution
with damping based on the Drude model �6� as a perturba-
tion to the undamped solution based on the free-electron
model. Here, we refer to the standard perturbation theory
�20� to obtain the first-order correction of the eigenvalue.
First, the operator of the eigensystem L�=�� is split into
two parts as

L = L0 + L1, �14�

where L0 is the operator of the undamped eigensystem. As-
sume the eigenvalue � and eigenfunction � be expanded as

� = �0 + �1 + ¯ , �15�
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� = �0 + �1 + ¯ , �16�

where �0 and �0 are the eigenvalue and eigenfunction, re-
spectively, of the operator L0. The correction of the eigen-
frequency �1 is then given as

�1 = c�	�0 + �1 − 	�0� . �17�

Since the perturbed eigenvalues are in general complex, so
are the perturbed eigenfrequencies. The imaginary part of the
eigenfrequency results in a decay factor of the electromag-
netic field in the time domain, which tells the effect of Drude
damping.

IV. RESULTS AND DISCUSSIONS

Surface plasmons are waves that propagate along the sur-
face of a conductor, due to collective oscillation of electric
charges coupled with the electromagnetic fields �21�. Be-
cause of the hybrid or mixing nature, surface plasmons are
also named surface plasmon polaritons �22�. Under suitable
conditions, surface plasmons may appear at the interface
across which the dielectric constant changes sign. Ordinarily,
it is the interface between a dielectric and a metal at some
frequency range. It is noted that the electromagnetic field is
transverse in nature, for the electric field satisfies the diver-
gence free in a homogeneous medium �� ·E=0�. On the
other hand, the plasma or electron oscillation is longitudinal
in nature, which corresponds to zero of the dielectric func-
tion ��=0�. Basically, the two motions are not coupled with
each other. But the presence of the interface gives the field a
longitudinal component due to a discontinuity of the dielec-
tric function across the interface �� ·E=−E ·�ln��0� �23�.
Therefore, the motions of the electrons and electromagnetic
fields could be coupled at the interface. However, because
the fields inside the conductor have no longitudinal compo-
nents to couple with the plasma oscillations, they rapidly
decay away from the interface. Therefore, surface plasmons
are highly localized at the interface and evanescent other-
wise. It is also noted that only in the TE modes can surface
plasmon modes be sustained. This is because in the TM
modes the E field is always tangential to the interface and
continuous over there ��E�S=�=0�, and therefore no surface
charges exist to support surface plasmons. On the other hand,
in the TE modes the E field has a component across the
interface, which allows the surface charges to exist ��E�S

=��0�.
Due to the binding of electrons, surface plasmons have

larger momenta or, equivalently, larger wave numbers than
the light wave at the same frequency. Therefore, in order to
excite surface plasmons by light, some coupling mechanisms
have to be introduced to cover the momentum deficit �23�. In
the prism coupling technique, attenuated total reflection is
applied on a thin metal film to provide a larger wave number
by reducing the wave speed. In the grating coupling tech-
nique, the wave number is increased by an amount equal to
the Fourier component of the periodicity of the grating. An-
other way to excite the surface plasmons is using the lattice
coupling to supply additional dispersive modes. In this case,
multiple scattering of the fields within the periodic structure
is responsible for providing extra momenta.

A. One-dimensional layered structures

For the one-dimensional structures �Fig. 1�a��, there are
two surface plasmon modes in the TE bands. One has a
lower frequency with odd symmetry, and the other has a
higher frequency with even symmetry. However, they even-
tually converge to the same surface plasma frequency �sp at
large off-line wave numbers 	, where 	 is the wave number
parallel to the metal surface. Figure 2 shows the dispersion
relation at ka /2
=0.5 for the thickness ratio t /a=0.2 and
�pa /2
c=1. Splitting of the modes comes from the interac-
tion of surface plasmon polaritons on both sides of the metal
as well as the dielectric. The mode with even symmetry has
a higher frequency because the mode structure has a larger
area that effectively corresponds to a larger energy. For a
very thin structure, convergence of surface plasmon modes is
slow. This is due to the effective interaction of the modes
from both sides of the metal, which lifts the degeneracy.
Figure 3 shows the dispersion relation for thickness t /a
=0.1. In a range of medium fractions of the metal, conver-
gence of surface plasmon modes becomes faster. However,

FIG. 2. �Color online� The dispersion relation at ka /2
=0.5 for
a one-dimensional metallic layered structure �Fig. 1�a�� of thickness
t /a=0.2 with �pa /2
c=1.

FIG. 3. �Color online� The dispersion relation at ka /2
=0.5 for
a one-dimensional metallic layered structure �Fig. 1�a�� of thickness
t /a=0.1 with �pa /2
c=1.
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for a very high filling fraction, convergence is slow again, for
the degeneracy is also lifted by an effective interaction of the
modes from both sides of the dielectric. Figure 4 shows the
dispersion relation for thickness t /a=0.9. In the meanwhile,
the second TE branch has a higher frequency that approaches
the bulk plasma frequency �p at zero off-line wave number.
This is reasonable for the whole lattice is almost filled with
the metal. Another important fact in Fig. 4 is the negative
group velocity for the second TE branch, which occurs as the
dielectric portion becomes sufficiently small. This is consis-
tent with the property of left handedness for the waveguide
stack in Ref. �24�, which serves as an approach to making a
material with a negative index of refraction.

B. Surface plasmon modes

Surface plasmon modes are eigenmodes of surface plas-
mon polaritons bound by some constraints in the structure. In
this study, the periodicity provides such a constraint, which
is also a mechanism to excite surface plasmon modes. It is
known that

�sp =
�p

	1 + �d

�18�

is the asymptotic surface plasma frequency at the large-k
limit of the dispersion relation for a metallic flat surface �25�.
It is also a good approximation for several two-dimensional
structures �13,14�. Typically, these modes are widely ex-
tended through the interface between the dielectric and
metal, which are identified as surface plasmon polaritons.
The curved or edged interface does not change the frequency
of surface plasmon polaritons. Figure 5 shows the H field in
magnitude for three typical SPP modes at the point � near
the surface plasma frequency �sp for a square array of square
metallic cylinders of half width w /a=0.3 with �pa /2
c=1.
Note that in all the plots of the TE eigenmodes, the H field is
normalized to have maximum unity—that is, 
H
max=1. The
computed results show very localized patterns near the inter-
face as they should have. In some extreme cases, the surface

plasmon mode may be as sharp as a knife edge residing on
the interface. With the interfacial operator approach, it only
takes a few points to resolve this feature.

Here, the spatial extension of surface plasmon modes can
be estimated by the skin depths at both sides of the metallic
flat surface �25�:

�d =
�

2

��d + �m

�d
2 �1/2

, �m =
�

2

��d + �m

�m
2 �1/2

, �19�

where � is the wavelength of light in vacuum, the subscript d
denotes the dielectric side, and m denotes the metal side. The
skin depths of surface plasmons modes could be very small.
As the frequency approaches the surface plasma frequency
�sp, we have �d+�m�0. In fact, they can be much smaller
than the skin depths of the metal, which can be seen from
Fig. 5. For comparison, the skin depth for the metal is given
by ��1/ Im�k�, where k=�	� /c=2
	� /�. Based on the
free-electron model �5�, it is given as

�free =
�

2

� �2

�p
2 − �2�1/2

, � 
 �p. �20�

C. Localized surface plasmons

On a metallic flat surface, surface plasmons can be widely
extended along the surface. For a curved surface, especially
for an edged or cornered surface, surface plasmons may be
confined in local regions. And for that reason, they are
termed as localized surface plasmons �25�. In addition to
SPP modes, LSP modes also appear but with somewhat
lower frequencies. This is more obvious for structures with
sharp edges or corners, such as the square or grid cylinders.
Figure 6 shows the H field in magnitude for a typical LSP
mode at the point � for a square array of square metallic
cylinders of half width w /a=0.3 with �pa /2
c=1. Note that
the eigenfrequency �a /2
c=0.5585 is somewhat lower than
the surface plasma frequency �spa /2
c=1/	2 and the mode
structure is concentrated at local areas instead of widely ex-
tended along the interface between the dielectric and metal.
Besides, the frequencies of LSP modes may change some-
how for different geometries, and the bandwidths are a little
bit larger than those for SPP modes. However, there is no
clear-cut distinction between the modes of LSP and SPP.
They belong to different branches of the eigenmodes, pos-
sessing the same coupling mechanism but to different de-
grees. Discussions of localized surface plasmons—in par-
ticular, on grating structures—can be found in Refs. �26–28�.

In order to measure the degree of localized behavior of
surface plasmon modes, we define an extending factor fext as
follows:

fext =
A�

A
=

L�

L
, �21�

where L is the total length of the interface and L� is the
length of the portion of the interface where the magnitude of
the H field exceeds a reference value—for example, 0.5—
and A and A� are the corresponding areas with unit extension
along the off-plane direction. For a typical LSP mode, fext is

FIG. 4. �Color online� The dispersion relation at ka /2
=0.5 for
a one-dimensional metallic layered structure �Fig. 1�a�� of thickness
t /a=0.9 with �pa /2
c=1.
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usually small. For example, fext=0.33 for the LSP mode in
Fig. 6. On the other hand, fext has a larger value for a widely
extended SPP mode. In Fig. 5, the SPP mode has an extend-
ing factor fext=0.67.

D. Surface charges and polarization currents

Surface charge oscillation is the essential mechanism that
supports surface plasmons. For a source-free problem �� f

FIG. 5. �Color online� The H field in magni-
tude for three typical SPP modes with �a /2
c
=0.707 at the point � near the surface plasma
frequency �sp for a square array of square metal-
lic cylinders �Fig. 1�b�� of half width w /a=0.3
with �pa /2
c=1.
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=0�, surface charges come from discontinuity of the trans-
verse electric field across the interface between the dielectric
and metal. From Gauss’s law, we have �b=�=�0� ·E. For
the TE modes, in particular, the transverse electric field com-
ponents can be obtained from the H field,

Ex =
i

��

�Hz

�y
, Ey = −

i

��

�Hz

�x
. �22�

Therefore, we have

�b =
i�0

�
� �

�x
�1

�

�Hz

�y
� −

�

�y
�1

�

�Hz

�x
�� . �23�

Figure 7 shows the transverse electric fields in vectors along
with the electric charge strengths in color �online� for a typi-
cal surface plasmon mode with �a /2
c=0.7047. Note that
in the inset the electric field lines flow along the interface,
whose nodal points �Ex=0� located at the points where varia-
tion of the H field along the interface �the x direction� attains

its local maximum value. It is also obvious from the above
equation that in the strict insides of the dielectric and metal,
the electric charges are identically zero. Therefore, all
charges appear on the metal-dielectric interface.

The linear motion of the charges in the metal causes the
polarization currents Jp when the polarization field P
changes. According to the free-electron model �5�, we have

P = −
�p

2

�2 E, Jp =
i�p

2

�
E . �24�

Figure 8 shows the polarization currents in vectors and their
strengths in color �online� for the same surface plasmon
mode in Fig. 7. Note that the polarization currents, flowing in
the inside of the metal, also concentrate on the interface and
are 90° out of phase to the electric fields, as compared to
Fig. 7.

FIG. 6. �Color online� The H
field in magnitude for a typical
LSP mode with �a /2
c=0.5585
at the point � for a square array of
square metallic cylinders �Fig.
1�b�� of half width w /a=0.3 with
�pa /2
c=1.

FIG. 7. �Color online� The transverse electric fields in vectors
�the inset� along with the electric charge strengths for a typical
surface plasmon mode with �a /2
c=0.7047.

FIG. 8. �Color online� The polarization currents in vectors �the
inset� and their strengths for a typical surface plasmon mode with
�a /2
c=0.7047.
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E. Band flattening

The most distinguished feature of band structure for plas-
monic crystals is the flatten bands �12,29� associated with
SPP modes of small bandwidths, which is due to strong
electron-photon coupling that reduces the band dispersion
�30�. The band flattening also indicates that massive surface
plasmon polaritons are difficult to propagate in the metal.
Figure 9 shows the band structure for a square array of cir-
cular metallic cylinders of radius r /a=0.3 with �pa /2
c
=1. On the one hand, they are nearly dispersionless and in-
tensively gathered around the surface plasma frequency �sp.
On the other hand, they are highly degenerate in nature. A
very high density of states around �sp gives rise to strong
field enhancements. It seems that variations of the H field
along the interface between the dielectric and metal do not
alter the value of the eigenfrequency and the interface can
sustain as many stationary modes as it could. Consequently,
it is expected that there is an infinite number of surface plas-
mon modes around �sp, based on the free-electron model or
Drude model �13�. This can be addressed further in two as-
pects. First, the computed results show that the more field
points are placed on the interface, the more stationary modes
around �sp appear. They have almost the same frequency, but
with different variations along the interface. The number of
stationary modes increases linearly with the grid resolution
at the interface. Second, the resonant states of a single me-
tallic circular cylinder also show that there are infinite states

that converge to the same frequency �sp. Based on the de-
scription of linear combination of atomic orbitals �LCAO�, it
is a fairly accurate approximation to surface plasmon modes
�13�.

The highly degenerate nature and infinite number of sur-
face plasmon modes can be further explained through the
Rayleigh quotient for the operator in the eigensystem �2�,

RH =

H,LH�

H,H�

. �25�

It is known that the eigenfrequency corresponds to minimi-
zation of the Rayleigh quotient under a constraint that the
corresponding eigenfunction be orthogonal to all previously
obtained eigenfunctions. Substituting the interfacial operator
for L in Eq. �25� along with the Bloch condition �4�, we
obtain

RH =

�
Vd

1

�d

�H
2d� + �

Vm

�
�H
2 + ��p/c�2
H
2�d�

�
Vcell


H
2d�

,

�26�

where Vd and Vm denote the volumes of the dielectric and
metal, respectively, and Vcell the volume of the unit cell.
From Eq. �26� we know that variations in the tangential di-

FIG. 9. �Color online� The band structure for a square array of
circular metallic cylinders �Fig. 1�c�� of radius r /a=0.3 with
�pa /2
c=1.

FIG. 10. �Color online� The band structure for a square array of
grid metallic cylinders �Fig. 1�d�� of thickness t /a=0.1 with
�pa /2
c=1.
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rection along the interface will change neither the value of
the Rayleigh quotient nor the eigenfrequency. There can be
as many modes as possible if the variation of the field in the
normal direction to the interface remains unchanged. This is
also verified in Fig. 5, that the typical feature of the SPP
modes is similar except a different variation along the inter-
face. However, the eigenfrequency is almost identical. Nu-
merically, the modes can be resolved only when the grid
resolution is fine enough to tell the tangential variation.
However, this infinite degeneracy of the eigenmodes may be
removed if a more realistic model is considered, by taking
into account, for instance, the interband transition and the
spatial dispersion �13�.

F. Band broadening

In addition to the band flattening, we see another feature
of SPP modes—that is, the band broadening. For thin metal-
lic structures, SPP modes become more widely spread
around the surface plasma frequency �sp. The physical origin
of this broadening could be explained as an effective mode
interaction due to the geometry of the interface. In particular,
for thin grid structures, the interaction from both the normal
and lateral directions of the interface further lifts the degen-
eracy, making the bands spread even more widely. Figure 10
shows the band structure for a square array of grid metallic
cylinders of thickness t /a=0.1 with �pa /2
c=1. On the
other hand, for thick grid structures, there may be a balance

between band flattening and band broadening. As a result, a
plasmonic band gap between surface plasmon modes may
occur around �sp, although it is usually small. Figure 11
shows the band structure for a square array of grid metallic
cylinders of thickness t /a=0.3 with �pa /2
c=1. A plas-
monic band gap with a gap-to-midgap ratio of 3.9% and
midgap frequency of 0.738 is shown in the figure.

G. Cutoff behavior

For dielectric structures, there is an acoustic branch which
is linear at small wave vectors with zero eigenfrequency at
the point � for both the TM and TE modes. However, for
structures that contain metallic components either modeled
as perfectly conductors �31� or dispersive metals �15�, this
branch may disappear in the TM modes due to the cutoff
behavior. In other words, zero-frequency solutions do not
exist for all wave vectors. For one-dimensional layered struc-
tures, the greater the filling fraction of the metal, the smaller
the required threshold for the occurrence of the cutoff fre-
quency �11�. Also, the higher the fraction of the metal, the
larger the cutoff frequency. The cutoff frequency signifi-
cantly modifies the band structure for the TM modes by in-
troducing a zeroth-order band gap �31�. When the cutoff fre-
quency is large enough, the full band gap is solely
determined by the TE bands. A comparison of Figs. 10 and
11 shows that the cutoff frequency for a thick structure is
larger than for a thin structure. Besides, as the fraction of

FIG. 11. �Color online� The band structure for a square array of
grid metallic cylinders �Fig. 1�d�� of thickness t /a=0.3 with
�pa /2
c=1.

FIG. 12. �Color online� The band structure for a square array of
grid metallic cylinders �Fig. 1�d�� of thickness t /a=0.8 with
�pa /2
c=1.
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metallic components increases, the TE bands below �p tend
to be dispersionless. For very high fractions of metals, all the
TM bands may lie above �p and coincide with the TE bands
there, while the other TE bands below �p are reduced to a
few flatbands. Figure 12 shows the band structure for a
square array of grid metallic cylinders of thickness t /a=0.8
with �pa /2
c=1. On the other hand, for the same metal
fraction, dispersive metals with a larger plasma frequency �p
also exhibit a larger cutoff frequency �15�. Both cases indi-
cate that the density of free electrons contained in the metal
is responsible for the cutoff behavior. In another aspect, the
cutoff frequency is also related to the energy stored in the
electromagnetic field. The integrand �p

2 
H
2 in the Rayleigh
quotient �26� indicates that the free electrons in metallic ma-
terials are likely to raise the energy of the field, which is in
contrast to the situation in dielectric materials, where the
field tends to concentrate on the high-� region in order to
lower its frequency. This can be made clear by the energy
density u of the electromagnetic field for dispersive materials
�32�,

u =
1

2
Re�d����

d�
�E2 +

1

2
Re�d����

d�
�H2. �27�

Based on the free-electron model �5�, we have

u =
1

2
�0�1 +

�p
2

�2�E2 +
1

2
�0H2, �28�

which reveals that the energy may increase with increasing
the plasma frequency.

It is natural for us to consider that the cutoff behavior is
analogous to that in conventional waveguides. However, the
origin of the cutoff behavior in the TM modes for the metal-
lic structure is very different from that of conventional
waveguides. In the latter, the cutoff frequency originates
from sustenance of the transverse oscillations �33�, while in

the former, the electric fields are identically zero inside the
perfect conductors, or exponentially decay inside the disper-
sive metals. In particular, we consider the TM modes at the
symmetric point �. If the zero-frequency solution �without a
cutoff frequency� is allowed in the structure, the E field
should be constant everywhere outside the metal. By the

FIG. 13. �Color online� The static mode at the
point � for a square array of circular metallic
cylinders �Fig. 1�c�� of radius r /a=0.3 with
�pa /2
c=1.

FIG. 14. �Color online� The band structure for a hexagonal array
of grid metallic cylinders of thickness t /a=0.1 with �pa /2
c=1.
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continuity of the E field at the metal boundary for perfect
conductors ��E�S=0�, this constant must be zero, resulting in
a trivial solution. For dispersive metals, another continuity
condition of the E field at the metal boundary ���E /�n�S

=0� excludes the possibility of a constant solution outside

the metal and exponentially decay inside. In either case, the
TM modes with zero frequency do not exist, making the
appearance of the cutoff frequency.

On the other hand, the cutoff behavior is not observed in
the TE modes for metallic structures. This is because con-
stant solutions outside the metal �and zero inside� with zero
frequency are allowed in the structure without violating the
boundary condition for perfect conductors ���H /�n�S=0�.
For dispersive metals, the zero-frequency solution is also
valid, for the interface condition �12� allows a discontinuity
in the normal derivative of the H field across the metal
boundary, which is necessary for a solution to be constant
outside the metal and exponentially decay inside.

H. Static modes

Static modes are zero-frequency solutions mentioned in
the preceding subsection. Figure 13 shows the static mode at
the point � for a square array of circular metallic cylinders of
radius r /a=0.3 with �pa /2
c=1. They are eigenmodes cor-
respond to the long-wavelength limit, also the electrostatic
field for the TM modes or the magnetostatic field for the TE
modes. In dielectric structures, static modes appear in both
the TM and TE modes. For metallic structures, however,
only the TE modes sustain static modes. Besides, in isolated
metallic structures, static modes appear only at k=0 �point
��, but for connected structures, static modes may appear at
other and even all wave vectors. This is because connectivity
of the structure provides a degree of freedom to let static
modes accommodate themselves in the metal to any value of
k in the direction perpendicular to the connectivity, without
violating the Bloch condition at the cell boundary. For ex-
ample, the band structure for a square array of metallic grid
cylinders shown in Figs. 10–12 has a zero-frequency branch
in the TE bands along the �-X-M-� path in the first Brillouin
zone. We also observe the same feature in one-dimensional
layered structures. In fact, this is the extreme case of reso-

FIG. 15. �Color online� The band structure for a square array of
grid metallic cylinders �Fig. 1�d�� of thickness t /a=0.1 with
�pa /2
c=2.

FIG. 16. �Color online� The static mode at the
point � for a square array of circular cylinders
�Fig. 1�c�� of radius r /a=0.3 with �pa /2
c=8.
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nant modes in the cavities �33�. They are standing waves
confined in the metal, which are independent of the wave
vectors. For isolated structures, this does not occur.

If this phenomenon is true in both directions of lattice
translation—for example, a square array of metallic grid
cylinders—then a branch merely consisting of static modes
is formed. As a result, the first branch is a straight zero band
and a very large band gap is opened and solely determined
by the second branch. This is demonstrated in the band struc-
ture for a square array of metallic grid cylinders in Fig. 10. In
a sense, this band gap resembles the zeroth-order band gap
caused by the cutoff frequency in the TM modes. This ob-
servation also applies to the case of perfect conductors,

where all branches are indeed straight lines �34�. On the
other hand, if the structure exhibits connectivity in only one
lattice direction, then a partial zero band is observed. For
example, a hexagonal array of metallic grid cylinders will
have a zero-frequency branch in the TE bands along the
�-M path in the first Brillouin zone. Figure 14 shows the
band structure for a hexagonal array of grid metallic cylin-
ders of thickness t /a=0.1 with �pa /2
c=1.

I. Plasma frequency

The plasma frequency �p is the natural frequency of col-
lective oscillation of free electrons. It is a measure for the

FIG. 17. �Color online� The static mode at the
point � for a square array of circular perfectly
conducting cylinders �Fig. 1�c�� of radius r /a
=0.3.

FIG. 18. �Color online� The
longitudinal mode at the point �
for a square array of circular me-
tallic cylinders �Fig. 1�c�� of ra-
dius r /a=0.3 with �pa /2
c=1.
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number density of free electrons �17�. The higher the plasma
frequency, the more free electrons contained in a metal.
Based on the free-electron model �5�, the plasma frequency
�p has several effects on the skin depth of the metal �20�, the
Rayleigh quotient of the eigensystem �26�, the energy den-
sity of electromagnetic fields in the metal �28�, and most
important, the surface plasma frequency �sp, through relation
�18�. Besides, the surface plasmon band structures are no
longer scale invariant because of the appearance of �p. That
means solutions with different �p cannot be scaled with each
other. Figure 15 shows the band structure for a square array
of grid metallic cylinders of thickness t /a=0.1 with
�pa /2
c=2. Note that the detailed structure is different
from the case of �pa /2
c=1 in Fig. 10, although the overall
pattern is similar. Besides, surface plasma frequency �sp
switches to a higher value �spa /2
c=	2.

As �p increases to a higher value, the energy density of
the electromagnetic field �28� becomes larger and the group
velocities of surface plasmon polaritons become even
smaller. In another aspect, dispersive metals behave more
like perfect conductors at large �p. The transition from dis-
persive metals to perfect conductors can be illustrated
through the changes of static modes. Figure 16 shows the
static mode at the point � for a square array of circular
metallic cylinders of radius r /a=0.3 with �pa /2
c=8. The
skin depth �20� for static modes is given by

�free =
c

�p
,

where c is the speed of light in vacuum. As �p becomes
larger, the skin depth becomes smaller and the field more
evanescent. In the limiting case where �p approaches infin-
ity, dispersive metals behave like perfect conductors. Figure
17 shows the static mode at the point � for a square array of
circular perfectly conducting cylinders of radius r /a=0.3.
There is an unlimited supply of free electrons �35�, and all
fields are expelled out from the metal and vanish inside.
Consequently, there are no bound states to support surface
plasmons. This can also be explained through relation �18�

between �sp and �p. When �sp approaches infinity, surface
plasmon modes with finite frequencies disappear. Neverthe-
less, surface plasmons may be mimicked on a perfectly con-
ducting surface with a structured array of holes much smaller
than the wavelength �36�.

J. Longitudinal modes

The electromagnetic fields are transverse in nature. How-
ever, longitudinal modes may exist in a material when the
dielectric constant becomes zero. According to the free-
electron model �5�, a longitudinal mode exists when its
eigenfrequency is equal to the plasma frequency �p. That
also means that oscillation of the electric field coincides with
coherent motion of the electrons. Like surface plasmon
modes, longitudinal modes appear only in the TE modes, for
the transversality condition of the E field �� ·E=0� is always
met for the TM modes. However, longitudinal modes are
difficult to obtain due to the singularity of the operator in Eq.
�2�. Nevertheless, with rearrangement of the interfacial op-
erator approach in Eq. �2�, based on the free-electron mode
�5�, the singularity is removed and longitudinal modes can be
solved. Figure 18 shows the static mode at the point � for a
square array of circular metallic cylinders of radius r /a
=0.3 with �pa /2
c=1. Note that the longitudinal mode is
constant in the metal, which is the typical feature of longitu-
dinal oscillation.

Static and longitudinal modes are two unique features in
the TE modes for metallic structures. In a sense, they are
dual to each other; static modes have constant solutions out-
side the metal, while longitudinal modes have constants in-
side. In another aspect—for example, in one-dimensional
layered structures—both the static mode and the longitudinal
mode eventually converge to two surface plasmon modes at
sufficiently large off-line wave numbers. These unique fea-
tures originate from the fact that the dielectric function lies
inside the operator for the TE modes �2�. On the other hand,
they do not exist in the TM modes because the interface
condition for the E field ���E /�n�S=0� excludes such solu-
tions. That also means that surface charges are responsible
for static and longitudinal modes as they are for surface plas-
mon modes.

K. Drude damping

Using the perturbation technique, we can study the effect
of Drude damping, provided that the collision frequency � is
small compared to the eigenfrequency �. The imaginary part
of the first-order correction �1 in Eq. �17� gives rise a decay
factor eIm��1�t of the mode structure in the time domain. Note
that Im��1� is negative for an e−i�t dependance of the fields.
Figure 19 shows the imaginary part of �1 of the first few
bands for a square array of square metallic cylinders of half
width w /a=0.3 with �pa /2
c=1 and � /�p=0.01. In gen-
eral, Im��1� is smaller than the collision frequency � by
about one order of magnitude. Even bands have larger dissi-
pation at the zone center, while odd bands have larger dissi-
pation at the band edges. Moreover, the dissipation becomes
even smaller for higher bands.

FIG. 19. �Color online� The imaginary part of �1 of the first few
bands for a square array of square metallic cylinders �Fig. 1�b�� of
half width w /a=0.3 with �pa /2
c=1 and � /�p=0.01
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V. CONCLUDING REMARKS

In this paper, we compute surface plasmon modes and
band structures for plasmonic crystals based on the free-
electron and Drude models. By using the interfacial operator
approach, surface plasmon band structures can be solved di-
rectly in the frequency domain. In particular, the introduction
of interfacial variables enables resolution of the highly local-
ized nature of surface plasmon modes near the interface of
the dielectric and metal. The above two features facilitate
greatly investigation of the optical properties of plasmonic
crystals. For one-dimensional layered structures, we study
the mode splitting and convergence of surface plasmon
modes, as well as the negative group velocity for the second
TE branch. For two-dimensional problems, we study the
typical mode structure of surface plasmon modes, along with
identification of SPP and LSP modes. The transverse fields,
surface charges, and polarization currents are visualized to
study various properties of surface plasmon modes. The lo-
calized nature of SPP modes around the surface plasma fre-
quency provides the theoretical basis for plasmonic circuit.

In addition, the band flattening, band broadening, and
possible plasmonic band gaps are presented for thin and
thick metallic structures. The Rayleigh quotient for the TE
modes is employed to understand the highly degenerate na-
ture of surface plasmon modes and the possibility of infinite
degrees of degeneracy. The cutoff behavior for TM modes
�but not for TE modes� is explained on a unified basis by

examining different types of boundary conditions for TM
and TE modes and which is further clarified by considering
the energy density in the electromagnetic fields for dispersive
metals. The band broadening for thin metallic structures al-
lows a wide range of absorption and therefore may find po-
tential applications in solar cells. An interesting discussion
has being also devoted to the relationship of the existence of
static modes and connectivity of the metal. The related skin
depth for the dispersive metal and the transition to the per-
fect conductor are also discussed. Moreover, longitudinal
modes, which appear only in the TE bands, are also obtained
in the present study. Finally, the effect of Drude damping is
studied by a perturbation technique to the undamped solu-
tions. Nevertheless, in the wide range of energy spectrum,
0—2��p, the effect of interband transitions is not negligible
�37,38�. This proposes a further challenge for the present
methodology because the contribution of the interband tran-
sitions lacks a simple functional form in frequency. This
topic is now under investigation, and the results will be re-
ported elsewhere.
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