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The interaction of regular nonlinear structures �such as subcycle solitons, electron vortices, and wake
Langmuir waves� with a strong wake wave in a collisionless plasma can be exploited in order to produce
ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by
the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic
pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear
structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-
plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.
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I. INTRODUCTION

Present day laser technology allows us to generate ultrain-
tense laser pulses with intensities approaching 1022 W/cm2

�1�. The quiver energy of the electrons in the electromagnetic
�e.m.� fields of such intense pulses is equal to, or greater
than, their rest energy. This regime is achieved for 1 �m
wavelength pulses when the pulse intensity exceeds
1018 W/cm2. In this regime the relativistic dynamics of the
electrons in the plasma inside which the pulse propagates
introduces new types of nonlinear phenomena �see, e.g., the
review articles �1� and �2� and the literature quoted therein�
that arise from the nonlinearity of the Lorentz force and of
the relationship between particle momentum and velocity
and, at very large intensities, from nonlinear quantum elec-
trodynamics effects such as electron-positron pair creation
�3�. It was soon realized that such nonlinear processes can be
harnessed �“relativistic engineering,” as introduced in Ref.
�4�� in order to concentrate the e.m. radiation in space and in
time and produce e.m. pulses of unprecedented high intensity
or short duration that can be used to explore ultrahigh-
energy-density effects in plasmas. The new possibilities that
are made available by nonlinear relativistic optics in plasmas
were emphasized by the results presented in �5�, where it is
shown that synchronized attosecond e.m. pulses and attosec-
ond electron bunches can be produced during the interaction
of tightly focused, ultrashort laser pulses with overdense
plasmas. The property of nonlinear systems to respond an-
harmonically to a periodic driving force was exploited in
Ref. �6� where the propagation of a high-intensity short laser
pulse in a thin wall hollow channel was shown to produce an
ultrashort pulse with very short wavelength that propagates
outward through the channel walls.

Recently, a different method of generating ultrashort e.m.
pulses was proposed in Ref. �7�. This method uses the inter-
action between a relativistic electromagnetic subcycle soliton
and the density modulations of a Langmuir wakefield in a

plasma. The mechanism envisaged is based on the results of
Ref. �4�, where it was shown that when a laser pulse interacts
with a breaking wake plasma wave, part of the pulse is re-
flected in the form of a highly compressed and focused e.m.
pulse with an upshifted carrier frequency due to the Doppler
effect. The pulse enhancement of the pulse intensity and the
pulse compression arise because the electron density modu-
lations in the wake wave act as parabolic relativistic mirrors.
In the approach introduced in Ref. �7� the role of laser pulse
is taken by a subcycle soliton produced by another laser
pulse in the plasma.

Relativistic e.m. subcycle solitons are formed during the
interaction of a high-intensity laser pulse with a plasma and
a significant fraction of the pulse energy can be trapped in
these structures, up to of 30–40 %, as was shown in Ref. �8�.
This trapping occurs because, as the laser pulse propagates in
the plasma, it loses part of its energy. Since the number of
photons in the pulse is approximately conserved, the loss of
pulse energy leads to the downshift of the pulse frequency
�8,9� below the electron plasma frequency �Langmuir fre-
quency� �pe= �4�nee

2 /me�1/2, where ne is the electron den-
sity, and e and me the electron charge and mass. As a result,
part of the pulse energy becomes trapped inside electron den-
sity cavities in the form of low-frequency radiation. The typi-
cal size of these solitons is of the order of the collisionless
electron skin depth de=c /�pe. The e.m. fields inside the soli-
tons consist of synchronously oscillating electric and mag-
netic fields plus a steady electrostatic field which arises from
charge separation as electrons are pushed outward by the
ponderomotive force of the oscillating fields �10,11�. The
development of the analytical theory of intense e.m. solitons
in collisionless plasma can be traced in Refs. �8–13�. On a
long time scale, the effects of the ion motion become impor-
tant and the ponderomotive force forms quasineutral cavities
in the plasma density, named postsolitons in Ref. �13�. Post-
solitons were observed experimentally in Ref. �14� with the
use of the proton imaging technique �15�.However, for sim-
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plicity, in the present paper we shall consider conditions
when the effects of the ion motion can be neglected.

On the basis of one-dimensional �1D� analytical calcula-
tions, in Ref. �7� it was shown that the e.m. field of the
subcycle soliton is partially reflected by the electron density
modulations of the wake wave and that the frequency of the
reflected pulse is upshifted by a factor 2�ph

2 as compared to
the soliton frequency and its intensity is proportional to �ph

3 ,
where �ph is the Lorentz factor corresponding to the phase
velocity vph of the wake wave. It was thus proven that at-
tosecond pulses can in principle be generated by exploiting
the soliton-wakefield interaction.

The aim of the present paper is twofold: first, we confirm
and qualify the analytical results of Ref. �7� on the basis of
two-dimensional �2D� particle-in-cell �PIC� simulations of
the interaction of a breaking wake plasma wave with a sub-
cycle soliton; second, we extend the analytical results of Ref.
�7� to other types of regular nonlinear structures, an electron
vortex and a wakefield, and these two cases are also illus-
trated with 2D PIC simulations. The parameters of the simu-
lations presented here are deliberately chosen so as to reveal
unambiguously the effect of the reflection and the frequency
upshift, thus providing a proof-of-principle numerical experi-
ment. Nevertheless, one can see that these effects should
occur in present day experiments or can be deliberately real-
ized with contemporary terawatt laser systems.

The paper is organized as follows. The interaction of a
wake wave with a soliton is discussed in Sec. II. In the first
part of, Sec. II A, we briefly recall the main properties of the
reflected pulse, as obtained analytically for a soliton in the
1D approximation. The results of the 2D numerical simula-
tions are presented in Sec. II B, together with the comparison
with the 1D analytic results. In the two following Secs. III
and IV we present two other possible mechanisms of ul-
trashort pulse generation which are due to the interaction of
a breaking wake plasma wave either an electron vortex or
another wake plasma wave oriented in the perpendicular di-
rection. Each of these sections is subdivided into two parts;
the first contains the 1D analytical model and the second the
results of 2D PIC simulations. Finally, in Sec. V the main
results and conclusions are listed.

II. REFLECTION OF THE ELECTROMAGNETIC FIELD
OF A SOLITON

A. One-dimensional theory

In this section we recall the 1D results on the form of the
e.m. pulse reflected in the soliton-wakefield interaction ob-
tained analytically in Ref. �7�.

When an intense short laser pulse interacts with a plasma,
it induces a wakefield �16� consisting of nonlinear Langmuir
waves with a phase velocity vph=�phc equal to the group
velocity of the laser pulse. If the laser pulse propagates in a
low-density plasma, the group velocity is close to the speed
of light in vacuum. The nonlinearity of the strong wakefield
leads to the steepening of its profile and to the formation of
sharply localized maxima �spikes� in the electron density
�17�. At wave break �see Ref. �2� and references therein� the
electron density in the spikes tends to infinity,

ne�X� =
ni0�ph

�ph − �e�X�
, �1�

but remains integrable. Here X=x−vpht, ni0 is the ion density
�equal to the unperturbed electron density ne0�, and the ratio
�e between the speed of the electrons and the speed of light
varies from −�ph to �ph. Close to the wave-breaking condi-
tions, we can write

ne�X� � ne0�1 + �p��X��/2, �2�

where �p is the plasma wavelength in the wave-breaking
regime and ��X� is the Dirac delta function. This density
spike partially reflects a counterpropagating e.m. wave, as
shown in Refs. �2,4�.

In Ref. �7� the reflection of a 1D, circularly polarized
soliton was considered. The soliton was described by the
dimensionless vector potential eA / �mec

2�=A�x , t�(ey + iez)
�see �10��,

A�x,t� =
2	�
S� cosh�	�
S��pex/c�ei
St

cosh2�	�
S��pex/c� − 	2�
S�
, �3�

where 
S��pe is the soliton frequency, and 	�
S�= �1
−
S

2 /�pe
2 �1/2.

The properties of the reflected pulse were derived by per-
forming a Lorentz transformation to the reference frame
where the wake plasma wave is at rest. In this frame the
reflection coefficient

����� = −
q

q − i��
, �4�

where q=2�pe�2�ph�1/2, derived in Ref. �4� was used for the
frequency components obtained by Fourier expanding the
soliton amplitude. The form and amplitude of the reflected
pulse in the moving frame were then obtained by an inverse
Fourier transform followed by the inverse Lorentz transfor-
mation of the vector potential. The explicit form of the re-
flected pulse is presented in Ref. �7� by Eqs. �22�–�28� and
by Figs. 2 and 3.

The main conclusion of this analysis is that the ampli-
tudes of the electric and magnetic fields in the reflected pulse
are increased by the factor �ph

3/2, i.e., the pulse intensity is
proportional to �ph

3 , while its frequency is upshifted by 2�ph
2 .

This scaling indicates that in a tenuous plasma the frequency
upshift of the reflected pulse, and its related compression,
would be so large that it could lead to the generation of
attosecond pulses. The Lorentz factor �ph of the wakefield
generated by a laser pulse in plasma is of the order of �ph
��d /�pe, where �d is the frequency of the laser pulse
�driver� that generates the wake plasma wave �see Ref. �16��.
The frequency upshift is 2�ph

2 
S�2�ph
2 �pe�2�ph�d. Thus,

for a 1 �m wavelength laser pulse, corresponding to the
critical plasma density ncr=me�d

2 /4�e2�1021 cm−3, the fac-
tor 2�phthat would be required to generate an attosecond
reflected pulse is of order 103, i.e., the density of the plasma
must be order of 41015 cm−3. Denoting by aS the dimen-
sionless amplitude of the soliton �defined in terms of the
soliton frequency in the laboratory frame�, the intensity of
the e.m. field in the soliton is given by IS��aS /�ph�2

BULANOV et al. PHYSICAL REVIEW E 73, 036408 �2006�

036408-2



1018 W/cm2. Then, the intensity of the reflected e.m. pulse
is Iref ��ph

3 IS=aS
2�ph1018 W/cm2. According to Ref. �4�

the paraboloidal shape of the breaking wake plasma wave
focuses the reflected e.m. pulse, further increasing its ampli-
tude. In the case of the soliton, the enhanced scaling of the
reflected wave intensity Iref ��ph

5 IS, which leads to �aS
2�ph

3

1018 W/cm2.

B. Two-dimensional PIC simulation

In Ref. �7� the generation of single-cycle electromagnetic
pulses during the interaction of the wake Langmuir wave
with a relativistic soliton �and in the present paper with other
nonlinear structures� is predicted with the help of a one-
dimensional model. In order to take into account the effects
of multidimensional geometry and strongly nonlinear plasma
dynamics, as well as the influence of kinetic effects, we per-
formed 2D PIC simulations using the code REMP based on
the PIC method and “density decomposition scheme” �18�.

In the simulations presented here, the grid mesh size is
�d /20; space and time unit is �d and 2� /�d, respectively.
Here �d and �d are the driver laser wavelength and fre-
quency, respectively. In the figures, the electric and magnetic
field components are normalized to me�dc /e and the electron
density is normalized to the critical density ncr=me�d

2 /4�e2.
The ions are assumed to form an immobile neutralizing

background and thus only the electron motion is taken into
account. This approximation is applicable because the typical
interaction period is much shorter than the ion response time,
e.g., in a hydrogen plasma. In the simulations, the boundary
conditions are absorbing for the e.m. field and the quasipar-
ticles. The absorbing condition for the e.m. fields is imple-
mented using the scheme �19� at the cost of an additional
�absorbing� edge in the simulation box.

The interaction of a wake wave with a soliton is simulated
in a box with size 60�d40�d, including the absorbing
edges of thickness 3�d. The results are shown in Figs. 1–3. A
single relativistic e.m. subcycle soliton is generated by an
auxiliary laser pulse with wavelength �a=2�d and dimen-
sionless amplitude aa=0.5, corresponding to the peak inten-
sity aa

2 I1, where I1=1.371018 W/cm2 �1 �m/�d
2�. The

pulse is Gaussian with full width at half maximum �FWHM�
size �lengthwaist� 4�d6�d. The auxiliary laser pulse is
linearly polarized with its electric field along the z axis; it is
generated at the bottom boundary at t=0 and propagates
along the y axis at x=20. The plasma wakefield, which in-
teracts with the soliton, is formed by a Gaussian laser pulse,
the driver pulse, with amplitude ad=1.5 and FWHM size
2�d12�d, starting at time t=45 from the left boundary and
propagating along the x axis. The driver laser pulse is lin-
early polarized, its electric field is directed along the y axis.
The plasma slab occupies the region 5�x�35, 5�y�35; it
is homogeneous in the direction of the y axis and it has
convex parabolic slopes along the x axis from x=5 to 11 and
from 29 to 35. This plasma-vacuum interface profile is cho-
sen so as to make the laser pulse entrance into the plasma
smoother and to avoid a fast wake wave breaking that could
happen in the case of a sharp plasma boundary. The electron
density at the center of the plasma slab is ne=0.09ncr, corre-

sponding to the Langmuir frequency �pe=0.3. The number
of quasiparticles is 3.24106.

The phase velocity of the wakefield when it starts to in-
teract with the soliton is vph�0.925, corresponding to the
Lorentz factor �ph�2.63. The Lorentz factor �ph is substan-
tially smaller than the ratio between the driver laser fre-
quency and the plasma frequency because, in the case of
short pulses, the laser pulse group velocity strongly depends
on the pulse size �20�. We note that the characteristic size
and time period of the considered regular structures are suf-
ficiently large so that even rather large Lorentz factors lead
to relatively low frequencies which can be easily resolved in
our simulations.

Figure 1 shows a portion of the simulation box shortly
before the interaction. The auxiliary laser pulse has already
gone through: in its wake we see a single s-polarized rela-
tivistic e.m. subcycle soliton and remnants of a broken wake-
field at the bottom of the window. The soliton frequency is
well below the unperturbed plasma frequency, 
S�0.25�d
��pe. The soliton appears as a region of low electron den-
sity, as consistent with the fact that the electrons are pushed
outward by the ponderomotive force of the oscillating e.m.
fields inside the soliton. Since the driver and the auxiliary

FIG. 1. �Color online� The electric field components Ez �a� and
Ey �b� and the electron density ne �c� before the interaction between
the wake wave and the soliton, t=612� /�. The soliton is gener-
ated by the auxiliary laser pulse which has already left the simula-
tion box. The dashed circle in �b� and �c� denotes the soliton
location.
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laser pulses have different polarizations and the soliton in-
herits its polarization from the auxiliary laser, it is easy to
distinguish the e.m. field reflected from the soliton in the
distribution of the Ez component. The driver laser pulse in-
duces a strong wakefield which is seen in the electron den-
sity distribution as a series of wide regions of rarefaction
alternating with thin horseshoe-shaped regions of compres-
sion. This is the typical pattern of the wake of a Gaussian
intense short laser pulse. Regions of compression correspond
to spikes �cusps� in the longitudinal profile of the electron

density, which is well explained by the one-dimensional
theory �17�. These density cusps play the role of semitrans-
parent mirrors, moving with relativistic velocity.

Figures 2 and 3 show the interaction of the density cusps
in the wake of the driver pulse with the soliton. In Fig. 2 the
z component of electric field and the electron density are
shown. The wake wave of the driver is close to the wave-
breaking regime. Each electron density maximum �each
cusp� in the wake acts as a fast moving semitransparent para-
bolic mirror that partially reflects the e.m. fields of the soli-
ton as it propagates through the soliton. The process is re-
peated when the subsequent cusps of the electron density
propagate through the soliton. Thus a set of short e.m. pulses
is formed. We note that individual electrons perform an os-
cillatory motion, while the electron density cusps exhibit a
progressive motion. According to Maxwell equations this
electric charge density, and the associated electric current
density, determine the e.m. field evolution and reflection.
Even though the electron density cusp is substantially dis-
torted as it moves through the soliton, it recovers after leav-
ing the soliton. Surprisingly, this transient distortion of the
cusp when crossing the soliton does not prevent the forma-
tion of well pronounced single-cycle pulses, and one can see
the process of their generation even inside the soliton. We
also note that the single-cycle pulses move faster than the
electron ridge.

The frequency of the fields in the reflected single-cycle
e.m. pulses is upshifted and their longitudinal size is much
smaller than the size of the soliton, as it can be clearly seen
from Fig. 3. These simulation results confirm the physical
mechanism investigated analytically in Ref. �7�, as summa-
rized in Sec. II A. Since the soliton is not exactly positioned
at the crossing of laser pulse axes, the reflected pulse is not
exactly directed along the x axis. This is a consequence of
the parabolic profile of the wakefield: as the pulse is reflected
by the upper wing of parabola it propagates at an angle with
respect to the x axis.

Let us now estimate the parameters of the reflected single-
cycle pulse according to the results of the 1D analytic calcu-
lations, using the initial conditions of the numerical simula-
tions. In this case �ph�2.63. The intensity of the soliton is
IS= �aS
S /�d�2I1�0.016I1, where aS�0.5 is the soliton am-
plitude. The reflected pulse intensity according to the 1D
analytic prediction is Iref

1D =�ph
3 IS�0.28I1. The reflected pulse

amplitude, as seen from the results of numerical simulations,
is aref �0.14. Then Iref = �2�ph

2 aref
S /�d�2I1�0.23I1, which
is in reasonable agreement with the 1D theoretical analysis
and reproduce well the predicted scaling.

III. REFLECTION OF THE ELECTROMAGNETIC FIELD
OF THE ELECTRON VORTEX

A. One-dimensional theory

Ultrashort electromagnetic pulses can also be generated in
the interaction of a breaking wake plasma wave with differ-
ent types of regular structures besides solitons, such as elec-
tron vortices, wake fields, etc. In this section we consider the
interaction of a wakefield with an electron vortex. For the
sake of illustration, in the following we will employ a sim-

FIG. 2. �Color online� Interaction of the wake wave with the
soliton. The electric field component Ez �a�, �c� and electron density
ne �b�, �d� at t=76 �a�, �b� and 782� /� �c�, �d�. Dashed line �:
see next figure.

FIG. 3. �Color online� Reflection of the soliton electromagnetic
field by the electron density cusps. The electric field component Ez

and electron density ne at t=76,782� /� along the dashed line �
on the previous figure. The first and second reflected pulses are
marked with “1” and “2,” respectively.
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plified representation of their spatial structure.
An electron vortex is characterized by a quasistatic mag-

netic field generated by the current of electrons circulating in
a plasma with steady ions. Contrary to hydrodynamic vorti-
ces in ideal fluids, electron vortices in a plasma have a char-
acteristic spatial scale that is given approximately by the
plasma collisionless skin depth de=c /�pe. The generation of
electron vortices, together with their associated magnetic
field, by ultraintense laser pulses in plasmas is observed rou-
tinely in computer simulations �21� �see also �2,22� and
�23��.

For the sake of simplicity we consider a 1D configuration,
which corresponds to magnetic “ribbons” as discussed, e.g.,
in �21,22�, take the magnetic field to be perpendicular to the
direction of the wake wave, and assume its profile to be
Gaussian, i.e.,

B = B0exp�− x2/de
2� . �5�

Following the procedure proposed in Ref. �7�, we perform
the Lorentz transformation to the reference frame where the
wakefield is at rest and the magnetic field of the electron
vortex appears as an incident e.m. pulse. Then, we Fourier
transform the incident pulse and use the reflection and tran-
sition coefficients derived in Ref. �4�. By inverting the Fou-
rier transform and by performing the Lorentz transformation
back to the laboratory frame, we obtain that the shape of the
reflected pulse is given by �see Fig. 4�

Eref

�ph
3/2B0

= �8��1/2exp��2 − ���1 − erf�� −
�

2�
	
 , �6�

where

� = 21/2/�ph�ph
1/2,

�=4�2�ph
3/2�pe�t−x /c�and erf�x�= 2

��
�0

xexp�−t2�dt is the error
function. As expected, the field of the reflected pulse scales
for large �ph as �ph

3/2, and thus its intensity scales as �ph
3 .

However the reflected pulse width has a more complicated
scaling. As can be clearly seen from Fig. 4, where the electric
and magnetic fields of the reflected pulse are shown, we have
two different scales 1 /�ph

2 and 1/�ph
3/2, and the front of the

reflected pulse is much steeper than its tail. This behavior
can also be deduced from Eq. �6� since the width of the front
of the pulse is determined by the expression in square brack-
ets where the argument of the error function scales as 1 /�ph

2 .
On the contrary, the form of the tail is determined by the
factor exp�−��where � is proportional to �ph

3/2.

B. Two-dimensional PIC simulation

The interaction of a wake wave with an electron vortex,
associated with a quasi-stationary transverse magnetic field,
is simulated in a box with size 50�d80�d, including ab-
sorbing edges of thickness 2�d. The results are shown in
Figs. 5–7. The electron vortex is prepared by introducing a
magnetic field Bz which increases gradually from t=0 to 10.
After t=10, a self-consistent quasistationary electron fluid
vortex is formed with its corresponding magnetic field dis-

FIG. 4. The electric Eref and magnetic Bref fields of the reflected
pulse in the vortex-wakefield interaction as obtained from the one-
dimensional theory vs the spatial coordinate x at t=0, for �ph=10.
The fields are measured in units of the initial vortex field and x is
measured in units of c /�pe.

FIG. 5. �Color online� The electric field component Ez �color
scale� and contours of the magnetic field component Bz for values
Bz= �1,2 ,3 ,4 ,5 ,6�10−2 �a� and the electron density ne �b� at t
=272� /�. The dashed circle denotes the electron vortex
location.
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tribution Bz=0.066 exp�−�x−20�2 /4−y2 /4�; Fig. 5. The
shape of the plasma slab is the same as in the previous simu-
lation �Sec. II B� except that its transverse size �along the y
axis� is 70�d and the maximum electron density is ne
=0.04ncr. The number of quasiparticles is 3.4106. A
Gaussian, linearly polarized �E in the z direction�, driver la-
ser pulse with amplitude ad=1.2 and FWHM size 2�d
30�d, starts from t=10 from the left boundary, propagates
along the x axis, and induces a plasma wakefield which in-
teracts with the electron vortex. The phase velocity of the
wakefield is vph�0.965, so that the Lorentz factor is �ph
�3.81. A large waist of the driver laser pulse is chosen to
make the interpretation of the reflection easier.

Figure 6 shows the z component of magnetic field and the
electron density during the interaction. The wake wave itself

has a transverse magnetic field Bz� which arises due to the
wake wave curvature. The wake wave bending implies that,
in addition to the longitudinal oscillatory motion, electrons
move toward the wake wave axis, thus inducing a weak
transverse magnetic field which is maximum on the periph-
ery, in the regions of the electron density compression. Even-
tually, this effect results in a so-called transverse wave break
of the wakefield �24�. Although the magnetic field of the
wake wave does not prevent us from distinguishing the e.m.
pulses reflected from the vortex easily, nevertheless, in order
to improve the presentation, in Fig. 6 we show the quantity
Bz−Bz�, where Bz and Bz� are the magnetic field components
seen, respectively, in two simulations—one as described in
this section, and the other performed with the same param-
eters but without the vortex �i.e., with no initial magnetic
field�. Thus a “pure” reflection of the e.m. field of the vortex,
resulting in formation of single-cycle pulses, can be seen. In
Fig. 7 the magnetic field component Bz and electron charge
density ne are shown along the x axis at y=0, where the
magnetic field of the wake wave is exactly zero.

As in the case of the interaction of the wake wave and a
soliton, the electron density cusp is substantially distorted as
it moves through the vortex and it recovers after passing the
vortex �Figs. 6 and 7�. As in the soliton case this transient
distortion of the cusp does not affect the shape of the result-
ing single-cycle pulses. We also note that the electron vortex
is distorted due to modulations of the electron density in the
wake wave. The size of the vortex and the magnitude of
corresponding magnetic field change so that the angular mo-
mentum and vorticity of the electron fluid are preserved.

IV. REFLECTION OF THE ELECTROMAGNETIC FIELD
OF THE PLASMA WAKE WAVE

A. One-dimensional theory

Let us now consider the interaction of two wake plasma
waves which are oriented perpendicularly with respect to
each other. We assume that the amplitude of one of the two
waves �the first� is much smaller than that of the other �the
second� and thus neglect the action of the first on the second
wave. In this scheme the first wake wave provides the elec-
tric field which is �partially� reflected by the relativistic mir-
rors represented by the electron density spikes of the second
wake wave.

We assume that the electric field of the first wake wave is
directed along the y axis and its spatial dependence along the
x axis, i.e., along the propagation direction of the electron
density spikes of the second wave �the mirrors�, can be mod-
eled as a two-step function with a constant amplitude plateau
in between. We can choose the parameters of the e.m. pulse
that generates the first wake wave in such a way that the
wavelength of the latter at breaking is much larger than its
transverse size �the size of the amplitude plateau� which is
assumed to be given by the characteristic scale of nonlinear
plasma structures de=c /�pe, i.e., such that 2�2�phc /��pe
�de=c /�pe. In this case the electric field of the first wave
during its reflection from the second wake wave can be taken
to be essentially a function of x only and to be of the form

FIG. 6. �Color online� Interaction of the wake wave with the
electron vortex, t=472� /�. �a� The difference between the mag-
netic field component Bz and Bz�, where Bz� is obtained from the
simulation without the vortex. �b� The electron density.

FIG. 7. �Color online� Reflection of the electromagnetic field of
the electron vortex by electron density cusps. The magnetic field
component Bz and electron density ne at t=47,502� /� along the
x axis at y=0. The first and second reflected pulses are marked with
“1” and “2,” respectively.
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Ew = E0��x���c/�pe − x� . �7�

Following the same procedure as in the previous section, we
obtain for the electric field of the reflected pulse

Eref = 2�ph
2 E0��t − x/c��1 − exp�− ��

− �1 − exp� 2�2
��ph

− �	
���t − x/c� −
1

2�pe�ph
2 	


�8�

�see Fig. 8�. Here we also see the interplay of two scales
1 /�ph

2 and 1/�ph
3/2 as in Fig. 4. The first one is connected with

the width of the reflected pulse front and follows from the
distance between the arguments of the two theta functions.
The second one determines the tail width and arises from the
exp�−�� term in Eq. �8�. The reflected pulse field strength
reaches its maximum value

Emax = 2�ph
2 �1 − exp� 2�2

��ph
	
E0 �9�

at t−x /c=1/ �2�ph
2 �pe�. For large values of �ph we obtain

Emax = 4�2�ph
3/2E0. �10�

Thus the amplitude of the e.m. field scales as �ph
3/2, similarly

to the case of the reflection of the soliton and of the electron
vortex from a breaking wake plasma wave. This scaling can
be explained as follows. First, the e.m. field after reflection
by the moving mirror acquires a factor proportional to �ph

2

due to Doppler effect. This can be easily shown with the two
Lorentz transformations—to the proper reference frame of
the mirror and back—to the laboratory reference frame �the
vector potential representing the e.m. field is perpendicular
to the direction of propagation of the mirror and thus remains
unchanged while the frequencies and wave numbers are up-
shifted by a factor �ph

2 �. Second, the reflection coefficient of
the electron density spike is proportional to �ph

−1/2. These two
facts result in the overall �ph

3/2 factor. Actually, as discussed in
the description of Figs. 4 and 8, the spatial scaling of the
reflected pulse is not simply accounted for by the frequency
and wave number upshift. In these two figures we observe
two scales 1 /�ph

2 and 1/�ph
3/2. The first scale is a consequence

of the Doppler effect and is connected with the frequency
and wave number upshift. It manifests itself in the frequency
of the reflected pulse from a soliton and in the scale of the
front parts of the reflected pulses from a vortex and a wake-
field. The second scale manifests itself, in the case of the
soliton, in the size of the reflected pulse envelope and, in the
case of the vortex and of the wakefield, in the decay length
of the reflected pulse tail. This second scale is due to the
preferential reflection of the low-frequency part of the field,
i.e., to the fact that the reflectivity of the mirror increases and
tends to unity for e.m. radiation with frequency of the order
of �ph

1/2�pe in theproper frame of the mirror �or �ph
3/2�pe, in the

laboratory frame�.
Finally, we should also note that ultrashort e.m. pulses can

be generated when a wake wave interacts with plasma in a
self-focusing channel �25� �see also, e.g., �26� and references
therein�. In a self-focusing channel, an electric field is
present due to charge separation and can be transformed into
an ultrashort e.m. pulse, similarly to the soliton, vortex, or
wake wave.

B. Two-dimensional PIC simulation

In order to show the interaction of a wake wave with
another �weak� wake wave, we performed a simulation with
the same simulation box and plasma distribution as in the
previous cases �Sec. III B� except for the maximum electron
density which is now ne=0.01ncr. The results are shown in
Figs. 9–11. Two laser pulses, which are linearly polarized �E
along the z-axis� and propagate in perpendicular directions,
induce two plasma wakes, Fig. 9. The first, auxiliary, laser
pulse with Gaussian shape, amplitude aa=0.7, wavelength
�a=�d, and FWHM size �lengthwaist� 2.5�d10�d, starts
at t=0 from the bottom boundary, propagates in the direction
of the y axis at x=20 and induces a weak wakefield with a
longitudinal electric field directed along the y axis. In Fig. 9
this weak wake wave is seen as a vertical periodic structure.
The second laser pulse �driver� is switched on at t=70 on the
left boundary. Its amplitude is ad=2 and size is 2�d50�d.
The driver pulse has a Gaussian profile in the direction of the
x axis; along the y axis its shape is a smooth centrosymmet-
ric, piecewise polynomial with sizes of adjacent parts
8 ,34,8. The central part is constant; the profile of the first
slope is defined by �3−2���2, �=y /8. We chose such the
shape of the driver laser pulse so as to ensure the transverse
homogeneity of the induced wakefield in the region −17

FIG. 8. The electric Eref and magnetic Bref fields of the reflected
pulse in the wakefield-wakefield interaction vs the spatial coordi-
nate x at t=0 for �ph=10. The fields are measured in units of the
initial field strength of the first wakefield; x is measured in units of
c /�pe.
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�y�17, and thus to obtain a plasma wake with zero trans-
verse electric field in this region. In other words, the quasi-
one-dimensional part of the driver induces the wakefield
which is also quasi-one-dimensional. With such a configura-
tion, in the distribution of the Ey component inside the region
−17�y�17, we see, in principle, only the electric field of
the weak wakefield, induced by the auxiliary laser pulse. The
wakefield from the driver has phase velocity vph�0.982 and
the Lorentz factor �ph�5.32.

Figure 10 shows the y component of electric field and
electron density at three moments of time with period ap-
proximately equal to the period of the plasma wake wave
induced by the driver laser pulse. The driver is represented
by contours of the z component of electric field. In Fig. 11
the electric field component Ey and electron charge density
ne are shown along the x axis at y=0.

Again we note that, as in the case of the interaction of the
wake wave with a soliton and vortex, the electron density
cusp is distorted inside the weak wake wave, but is almost

restored when it moves outside �Figs. 10 and 11�. Even
though the electron density cusp seems curved when it is
under the influence of the weak wake wave, the single-cycle
pulse reflected by this cusp appears to be flat.

As in the cases of other nonlinear structures described
above, each density cusp reflects single-cycle e.m. pulse
whose frequency is upshifted and whose intensity is in-
creased due to the Doppler effect. A complication that is not
included in the presented 1D theory arises from the fact that
the weak wake wave, which is �partially� reflected by the
“mirrors” of the wake from the driver, has almost the same
phase velocity as these mirrors.

V. CONCLUSION

Our analytical model and two-dimensional particle-in-cell
simulations show that during the interaction of regular non-

FIG. 9. �Color online� �a� The electric field component Ey

�color-scale� and contours of the component Ez for values Ez=
−0.5 �dashed� and +0.5me�c /e �solid� and �b� the electron density
ne at t=852� /�. Here and in the following figures all quantities
are given in dimensionless units. The weak wake wave, seen as a
vertical periodic structure, is generated by the auxiliary laser pulse
which has already left the simulation box. In the wake from the
driver laser pulse, the Ey is zero in the region −10�y�10, which
corresponds to the homogeneous part of the driver.

FIG. 10. �Color online� Interaction of the wake wave with the
weak wave, shown in the portion of the simulation box −10�y
�10 corresponding to the quasi-one-dimensional part of the wake-
field from the driver. The electric field component Ey �a�, �c�, �e�
and electron density ne �b�, �d�, �f� at t=100 �a�, �b�, 110 �c�, �d�,
and 1202� /� �e�, �f�. The driver laser pulse is represented by
contours of the electric field component Ez in the same way as in
the previous figure.
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linear structures �such as subcycle solitons, electron vortices,
and wake Langmuir waves� with a strong wake wave in a
collisionless plasma a train of single-cycle intense electro-
magnetic pulses is generated. This effect can be exploited in
order to produce ultrashort intense e.m. pulses with presently
available lasers. The results presented here confirm and ex-
tend the analytical results obtained in Ref. �7�.

The modulations of electron density in the strong wake
wave, which is close to the wave-breaking regime, have the
shape of spikes. Each spike acts as a semitransparent mirror
moving with a relativistic velocity, corresponding to the
phase velocity of the wake wave. Such a mirror partially

reflects the electromagnetic field of a nonlinear structure and
thus generates an electromagnetic pulse. As predicted in Ref.
�7�, the reflected pulse consists of a single-cycle oscillation
and, as compared to the e.m. field of the nonlinear structure,
the reflected pulse has an upshifted frequency and an in-
creased intensity. The reflected pulse intensity occurs as a
result of frequency upshift, due to Doppler effect, and be-
cause of the parabolic profile of the wake wave.

Using an analytical approach, we have shown that in the
three cases considered here of nonlinear structures—a sub-
cycle soliton, an electron vortex, and a wake wave—the am-
plitude of the e.m. pulse, reflected by a relativistic flying
mirror, scales as �ph

3/2, due to a similarity of the reflection
process in all three cases. The reflection leads to a frequency
and wave number upshift which scales as �ph

2 and to the
formation of an additional spatial scale proportional to
1/�ph

3/2.
Since in all the above cases of wakefield interaction with

nonlinear regular structures in a plasma, single-cycle e.m.
pulses are emitted with a characteristic frequency, duration,
and polarization, their emission represents an important pro-
cess to be used for diagnostics of laser-plasma interactions.
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