
Parametric instability in the formation of plasma waveguides

J. H. Cooley
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

T. M. Antonsen
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA

H. M. Milchberg and J. Fan
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

L. Margolin* and L. Pyatnitskii
Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

�Received 18 March 2004; revised manuscript received 15 November 2005; published 7 March 2006�

Plasma waveguides generated by focusing a moderate intensity laser into neutral gas with an axicon lens can
be unstable to the generation of axial modulations in the channel parameters. A model is proposed in which the
modulations are due to the nonlinear coupling between the axicon field and a scattered mode in the evolving
channel. Good agreement is found with experimental measurements of these modulations.
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I. INTRODUCTION

Plasma waveguides for guiding intense laser pulses have
applications in particle accelerators and x-ray generation
schemes �1,2�. Waveguides can be formed using a variety of
methods �3–6�. One method is to create a plasma channel by
ionizing a gas with a moderate intensity laser pulse focused
through an axicon. The axicon focuses the laser pulse to a
line where gas is ionized and expands, creating a shock, and
leaving an electron density profile with an off-axis maximum
that defines the channel. Ideally, the plasma channel will be
axially symmetric and allow for guiding of high-intensity
light over distances of many Rayleigh lengths, Zr=�w2 /�,
where w is the vacuum focal spot size and � is the laser
wavelength. Axially symmetric channels have been produced
using axicon focusing of �100 ps laser pulses in low-
pressure gas, and their evolution is well understood �7–9�.
However, as the gas pressure is raised, the plasma channel
affects the propagation of the axicon pulse and new and in-
teresting phenomena occur. For example, at specific values
of initial gas pressure the axicon field couples strongly to
guided modes in the resulting plasma channel and linear
resonant absorption occurs �9�. This linear absorption still
yields axially smooth channels. As pressure is increased fur-
ther, axial modulations with definite periodicity begin to ap-
pear on a time scale comparable to the �100 ps laser pulse.
This is distinct from previous observations �10–12� of axial
modulations at even higher pressures and at pulse durations
significantly longer than a typical channel expansion time
scale �3� of w /cs�1 ns, where w is the laser spot size and cs
is the plasma sound speed. In those experiments, modula-
tions appear due to interference between the incoming and
outgoing rays of the heating pulse. In this paper we present

evidence of axial modulations that occur at intermediate
pressures and on much faster time scales and argue that these
modulations result from a distinct form of nonlinear resonant
absorption that has the character of a parametric instability.
Further, we present a model of this instability and describe
the growth of the unstable perturbations.

In the experiment, a 100 ps �FWHM� laser pulse of wave-
length 1.064 �m was focused through an axicon lens into
uniform ambient argon gas of variable pressure, with a peak
vacuum intensity of 5�1013 W/cm2. Axicons with base
angles from 10° to 30° were used. However, the axial modu-
lation results varied weakly with the axicon angle, and the
results presented below are for the 25° base angle axicon. A
delayed probe pulse, split from the main pulse, is incident
perpendicular to the axis of the evolving channel and imaged
into a charge coupled device �CCD� camera. The probe pulse
can be imaged directly into the camera, generating a shad-
owgram, or it can be passed through a glass wedge, generat-
ing an interferogram. When the channel is azimuthally sym-
metric the interferograms have been used to deduce time
evolving radial profiles of electron density �7,8�. These pro-
files compare well with those predicted from a one-
dimensional hydrodynamic code �9� that we will use in this
work.

Figure 1 shows a set of shadowgrams taken for a series of
background pressures of argon: �a� 200 torr, �b� 280 torr, �c�
300 torr, �d� 340 torr, �e� 370 torr, and �f� 420 torr taken at a
pump-probe delay of 330 ps. The figure shows an 0.8 mm
axial section of the channels. The total length of the channel
is about 15 mm. The channel is seen to be relatively axially
uniform on the scale of the image for pressures 300 torr and
less. This is not the case for the channels formed in higher
pressure, 340 torr and greater. Here a distinct axial modula-
tion of the channel is evident. The density variations in the
highest-pressure case are of the order of 10% based on inter-
ferograms. The wavelength of the modulation, calculated by
Fourier transforming the image intensity along the axis of the*Deceased.
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channel and finding the wave number peaks, is approxi-
mately 0.14 mm and 0.09 mm in the 340 and 370 torr cases,
respectively. Note that there is a relatively large change in
wavelength that accompanies a relatively small increase in
pressure. Our model of the modulations explains this obser-
vation.

According to our explanation, the modulations are the re-
sult of a nonlinear absorption process that involves a cou-
pling between the incident axicon field, a guided mode of the
channel, and the axial modulations of the channel param-
eters. Specifically, the axicon focuses the formation pulse
rays at an angle � to the axis of the axicon, which we take to
be the z axis �cos �=0.967 in the experiment�. Thus, the
axicon field has an axial wave number ka=k0

�1+4�� cos �,
where k0=�0 /c is the laser vacuum wave number and � is
the susceptibility of the gas �for argon under the conditions
of the experiment, 4��=1.36�10−4, for P=200 torr�. The
axicon creates a plasma channel that after time can support
guided modes with axial wave number kg, which is a func-
tion of the channel density profile as well as the azimuthal
and radial mode indices of the mode in question �8�. Linear
resonance absorption �9� occurs when the axicon and guided
mode wave numbers match, ka=kg. In this case the axicon
field can tunnel through the wall of the channel and excite a
quasi-guided mode. This occurs at specific values of initial
gas density and time for a given mode. Nonlinear absorption
occurs as the result of a parametric instability. If there is a
small axial modulation of the channel parameters with wave
number km=kg−ka�0, then the axicon field will be scattered
into the guided mode. The local heating rate in the channel,
which is proportional to the laser intensity, will then have an
axial modulation at km due to the beating of the axicon field
and the guided mode. This modulated heating rate will rein-
force the initially small modulation of channel parameters
and result in exponential growth of the channel modulations
and increased absorption of the axicon field. The previously
mentioned insensitivity of the modulation wave number to
axicon base angle follows from the fact that for small angles
cos ��1, and consequently km is a weak function of �.

The organization of the remainder of this paper is as fol-
lows. In Sec. II we develop a linear theory for the formation
of modulations in an expanding channel based on fluid equa-
tions. This leads to an eigenvalue equation for the growth
rate of perturbations with a specified axial wave number. We

then give an approximate analytical solution to this eigen-
value problem in the case in which the channel is deep. We
also discuss the space-time evolution of perturbations and
show that the instability is absolute in the lab frame. In Sec.
III we present numerical solutions for the growth rate of the
modulations based on channel profiles that are predicted by
the hydro-code. We then integrate the growth rate over time
during the formation of a channel to arrive at a value of the
cumulative growth of the instability as a function of modu-
lation wave number. We then compare this prediction with
the images in Fig. 1. In Sec. IV we present a modified model
to examine the effect of high electron thermal conductivity
and assess the importance of thermal relaxation on the insta-
bility growth. In Sec. V we discuss and summarize our re-
sults.

II. LINEAR THEORY OF MODULATION GROWTH

To lend support to our picture of the development of
modulations we investigate the linear stability of the forma-
tion of an axially symmetric channel to perturbations with
axial modulations. In our model, the electric field consists of

a symmetric axicon pulse Ea and a small, scattered wave, Ẽs,

E�r,t� = Re�Ea�r�exp�i�kaz − �0t��

+ Ẽs�r,z,t�exp�i�ksz + m� − �0t��	 . �1�

Similarly, the electron density is written as the sum of a
symmetric part and a small perturbation with modulations,

ne�r,t� = n0�r� + Re�ñ�r,t�exp�ikmz + im��� , �2�

where km=ks−ka. The axicon field amplitude, which we as-
sume to be linearly polarized, satisfies a radial differential
equation of the form

���
2 + �2�r,�0,ka��Ea�r� = 0, �3�

where �2=k0
2�1+4���−ka

2−4�ren0�r��1+ i	 /�0�−1 �9�, 	 is
the electron-ion collision rate, and re is the classical electron
radius. The amplitude of the incoming axicon wave at r
→
 is specified. The electron density profile, n0�r�, is deter-
mined self-consistently along with the amplitude of the axi-
con field, Ea, by the previously mentioned one-dimensional
hydrodynamic code �9� that includes the relevant formation
processes such as ionization, Joule heating, and thermal con-
duction. The beating of the axicon field and the density
modulations drives the scattered wave,


��
2 + 2i

�0

c2

�

�t
+ �2�r,�0,ks��Ẽs�r,t� = 4�reñe�r,t�Ea,

�4�

where the scattered wave is polarized in the same direction
as the axicon field.

The density perturbation is determined by the linearized
equations of continuity, momentum balance, and energy bal-
ance,

FIG. 1. Shadowgrams of channels formed in argon for different
pressures: �a� 200 torr, �b� 280 torr, �c� 300 torr, �d� 340 torr, �e�
370 torr, and �f� 420 torr. Laser pulse: 100 ps FWHM, �
=1064 nm, and peak intensity 5�1013 W/cm2; and axicon base
angle 25°.
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ñ + � · 	̃n0�r� = 2n0ñS�Te� + n0

2T̃e
�S

�Te

+ n0�ñsTa
* + na

*T̃s�
�S

�Te
, �5a�

min0�r�
�

�t
	̃�r,t� = − ��p̃ −

1

2

n0e2

mec
2���Ẽs�r,t�Ea

*� , �5b�

3

2

�

�t
p̃ =

n0e2

me

	

	2 + �0
2 Ẽs�r,t�Ea

*. �5c�

Here we have neglected convective terms on the left-hand
side of the fluid equations under the simplifying assumption
that the growth time is less than the channel evolution time.
By the same reasoning, we neglect perturbations in the heat-
ing rate due to perturbations in density and temperature. We
also have neglected thermal conduction in the present model.
We will assess the effects of thermal relaxation in Sec. IV.

The terms on the right-hand side of Eq. �5a� represent the
linearization of the collisional ionization rate, n2S�Te� where
S=�iSi�Te�ni /n, nniSi�Te� is the rate of collisional ionization
of the ith ionized stage of the working gas, and Si�Te� is
given by Si�Te�=9�10−6�Te /Ui exp�−Ui /Te� /Ui

3/2�Te /Ui

+4.88� �13�, where Ui is the ionization potential for the ith
electron, in eV. The first two terms in �5a� represent modifi-
cations to the ionization rate due to low-frequency perturba-
tions in electron density and temperature. In the linearization
of these terms we have assumed for simplicity that the ratios
ni /n remain fixed for low-frequency perturbations. This
eliminates the need to follow the perturbations in the indi-
vidual ionization stage densities. The last term represents the
modification of the ionization rate due to the beating of high-
frequency perturbation of the electron density and tempera-
ture. These perturbations arise if the electron quiver motion
in the axicon field and the scattered field carries the electrons
across temperature and density gradients. Specifically,

ña,s

n0
=

qẼa,s · �n0

��� + i	�mn0
,

and

T̃a,s

T0
=

qẼa,s · �T0

��� + i	�mT0
.

Finally, we have neglected motion in the z direction under
the assumption that the channel radius is much less than the
axial wavelength of the modulations. This is well satisfied
for pressures below 370 torr, but marginally satisfied at
higher pressures.

On the right-hand side of Eqs. �5a�–�5c� we have three
nonlinear terms allowing coupling of the scattered mode
field to the density perturbation in the presence of the axicon
field. These are the nonlinearly modified ionization rate in
Eq. �5a�, the ponderomotive force in Eq. �5b�, and the Joule
heating rate in �5c�.

We assume perturbations grow exponentially in time with
a complex growth rate �. Thus, each of the perturbed quan-

tities in Eqs. �5� is expressed in terms of a complex ampli-
tude and a time dependent exponential factor, viz. ñ
= n̂ exp��t�. We also assume the pressure satisfies the ideal

gas law, p̂=n0T̂+ n̂T0. With these assumptions we can com-
bine Eqs. �5� to obtain an expression for the complex ampli-
tude of the density modulation,

n̂

n0
=

c2

�p
2� ���

2 
�0
3

�3usua
*� + �� · 
�p

2

�2��usua
*�

+
�p

2

c2 
�I
2

�2 +
�s

�
�usua

*� , �6�

where we have introduced the following notation. The quan-
tity � in the denominator of �6� is given by

� = 1 +
	I�
 − 2�

�
, �7�

where 	I=n0S is the radially varying ionization rate and 

=d ln S /d ln Te. Other quantities in Eq. �6� are the growth
rates

�0
3 = �2/3�kp

2�me/mi�	Vosc
2 ,

�p
2 = �0

3/�3	� ,

�I
2 = �2/3�	I
�me/Te�	Vosc

2 ,

and

�s = 	I
Vosc
2 /��2rnrT� ,

where Vosc
2 = �e /me�2
Ea0
2 / ��0

2+	2� is the oscillation velocity
based on the axicon field amplitude Ea0, ua�r�=Ea�r� /Ea0

and us�r�=Es�r� /Ea0 are the normalized axicon and scattered
field profiles, and rn,T

−1 =d log�n ,T� /dr are the inverse scale
length for density or temperature. Terms involving �0 origi-
nate from the nonlinear perturbation of the heating rate in
�5c�. Terms involving �p originate from the ponderomotive
force in �5b�, and terms involving 	I, �I, or �s originate from
the perturbations of the ionization rate in �5a�.

Equations �4� and �6� can be combined into an eigenvalue
equation for the scattered field profile and growth rate,

���
2 + 2i

�0

c2 � + �2�r,�0,ks��us

=
ua

� ���
2 
�0

3

�3usua
*� + �� · 
�p

2

�2 ��usua
*�

+
�p

2

c2 
�I
2

�2 +
�s

�
�usua

*� . �8�

This equation can in turn be put in the form of a second-
order ordinary differential equation for the radial profile
ûs�r�, where us�r�= ûs�r�exp�im��,

M�r�
d2

dr2 ûs + N�r�
d

rdr
ûs + Q�r�ûs = 0. �9�

The coefficients in �9� are defined as
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M�r� = 1 + 	I

 − 2

�
−

�0
ua�r�
2

2��0 + i	�

�0

3

�3 +
�p

2

�2� , �10a�

N�r� = 1 + 	I

 − 2

�
−

�0ua

2��0 + i	�� rd

dr

�0

3

�3ua
*� +

d

dr

 r�0

3

�3 ua
*�

+
d

dr

 r�p

2

�2 ua
*� +

r�p
2

�2

d

dr
ua

*� , �10b�

and

Q�r� = 
1 + 	I
2 − 


�
�
�2 −

m2

r2 � +
�0
ua
2

2��0 + i	�
�p

2

c2

�I
2

�2

−
�0ua

2��0 + i	� � d

rdr

rd

dr

�0

3

�3ua
*� −

m2

r2 
�0
3

�3ua
*�

+
d

rdr

r

�p
2

�2

d

dr
ua

*� −
m2

r2 
�p
2

�2 ua
*�� . �10c�

Equation �9� is to be solved for the eigenvalue ��ks , t� �the
growth rate� subject to the conditions that ûs is regular at the
origin and corresponds to outgoing waves as r→
. The ei-
genvalue � depends parametrically on time and scattered
wave number ks. We will be interested in the cumulative
growth ��ks�=�dt��ks , t� which determines the growth in
perturbations with different modulation wave numbers km
=ks−ka. The observed modulations are presumably the ones
that correspond to the largest value of �. Numerical solutions
of Eq. �9� will be presented in the next section. Here we will
discuss qualitatively the types of solutions that can be found.
First it is necessary to describe the physics of the channel
formation. Figure 2 shows radial profiles of electron density,
electron temperature, and ionization rate at three different
times t=88, 138, and 188 ps, during the formation of the
channel. These are obtained from our one-dimensional
hydro-code �9� and correspond to the illumination of 380 torr
of argon by a 100 ps, 5�1013 W/cm2 vacuum intensity
1.064 �m wavelength laser pulse. The basic process of chan-
nel formation is evidenced in Fig. 2�a� where the density
profiles are shown. Initially the gas is broken down and the
electron density peaks on axis. The electrons are collisionally
heated to a temperature in the range of 70 eV as shown in
Fig. 2�b�, and thermal expansion begins to drive an outward
propagating shock wave. By 90 ps the electron density pro-
file has become inverted. At later times the channel broadens
further and the temperature drops as electron thermal energy
is used to drive the shock wave. The shock front is visible in
Fig. 2�c� where the local ionization rate peaks. The example
shown in Fig. 2 corresponds to a relatively high pressure for
which the channel electron density is high enough to modify
the axicon field profile. This is shown in Fig. 3 where the
magnitude of the axicon field is plotted at the first two times
shown in Fig. 2. As can be seen, early in the pulse the axicon
field reaches the axis, while as the channel forms and ex-
pands the axicon field is excluded from the central region of
the channel.

We now discuss the general features of the modes that are
described by Eq. �9�. The first type of mode is associated
with the singular points of the equation where the coefficient

FIG. 2. Simulation results at three different times during the
evolution from the 1D hydrodynamic code �9� for a simulation pres-
sure of 380 torr argon and a laser pulse with peak intensity 5
�1013 W/cm2. The figures present the �a� electron plasma density,
�b� electron temperature in electron volts, and �c� ionization rate
given by n2S�Te�. Notice that the channel is just starting to appear at
88 ps and that the interior parameters of this channel are relatively
stable once formed. Also notice that the ionization front moves
radially out as the channel expands.
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of the second derivative term vanishes, M =0. At any given
radial point the condition M =0 defines a local dispersion
relation that is cubic in growth rate. Two of the modes can be
associated with the nonlinear beating of the scattered and
axicon fields that act through the heating and ponderomotive
force to produce density modulations. The third mode exists
even in the absence of this beating and is given by �=	I�2
−
�. This mode, which we will refer to as the ionization
mode, arises because of the strong dependence of the colli-
sional ionization rate on electron density. Regions of space
with elevated electron density have elevated ionization rates
and in these regions the electron density grows even faster.
The stabilizing term involving the logarithmic derivative
with respect to temperature of the ionization rate results from
the fact that, at fixed pressure, as the density goes up the
temperature drops. During the course of the formation of the
channel the local instantaneous ionization rate varies consid-
erably as shown in Fig. 2�c�. Initially the ionization rate is
large on axis, but as the central region of the channel be-
comes ionized the local rate eventually drops. However, as
the channel expands outward there is a region of ionization
at the edge of the channel. We will find that there is usually
an ionization mode that can be found somewhere in the
channel.

The other two modes associated with the singular points
M =0 are driven by the beating of the axicon and scattered
fields. If we neglect the ionization rate, and consider these
modes to act separately, they would have growth rates given
by

�3 =
�0
ua�r�
2

2��0 + i	�
�0

3 �11a�

and

�2 =
�0
ua�r�
2

2��0 + i	�
�p

2. �11b�

Comparing these expressions, along with the definitions of
�0 and �p, we see �p

2 ��0
3 / �3	�. Thus, �p��0 as long as

�0�	, which turns out to be the case. Thus, the dominant
nonlinearity is the modulated heating that results from the
beating of the axicon and scattered wave fields.

A second basic type of mode is associated with the global
solution of Eq. �9� rather than the local solution M =0. This
mode is best understood as a weakly damped, quasi-bound
mode of the channel that is coupled to the density perturba-
tion through the axicon field. To analyze this mode we imag-
ine that the scattered field profile is close to that of the
guided mode, which satisfies

���
2 + 2i

�0

c2 �− �d� + �2�r,�0,kg��ug = 0, �12�

where kg is the axial wave number of the guided mode and
�d is the temporal damping rate of the guided mode due to
the combination of energy leakage through the wall of the
channel and collisional dissipation in the channel. The
guided mode will have an axial wave number that is close to,
but different from, the scattered wave number ks, which at
this point is a parameter to be specified. We obtain an ap-
proximate dispersion relation by inserting ûs� ûg in Eq. �8�,
multiplying by ûg

* and integrating over radius,

2
�0

c � ic �� + �d� − �ks − kg��� 2�rdr
ug
2

=� 2�rdr
uaug

*

� ���
2 
�0

3

�3ugua
*� + �� · 
�p

2

�2 ��ugua
*�

+
�p

2

c2 
�I
2

�2 +
�s

�
�ugua

*� . �13�

If we assume the growth rate is larger than the ionization rate
such that ��1, we may rewrite Eq. �13� as a fourth-order
polynomial in �,

2

k0
� i

c
�� + �d� − �ks − kg�� =

A

�3 +
B

�2 +
C

�
, �14�

where

A =

k0
−2� 2�rdruaug

*��
2 ��0

3ugua
*�

� 2�rdr
ug
2
, �15a�

B =

k0
−2� 2�rdruaug

*��� · ��p
2��ugua

*� +
�p

2

c2 �I
2ugua

*�
� 2�rdr
ug
2

,

�15b�

and

FIG. 3. Results of the self-consistent axicon field evolution as
calculated with the 1D hydrodynamic code �9�. Notice that even by
88 ps when the channel has just started to form, the axicon field is
beginning to be suppressed on the channel axis. This suppression is
complete by 138 ps.
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C =

k0
−2� 2�rdr

�p
2

c2 �s
ugua
*
2

� 2�rdr
ug
2
. �15c�

This dispersion relation �with A=C=0� is closely related to
that for the resonant instability of laser filaments in a plasma
�14�. In the case of Ref. �14�, a strong, self-guided, lowest-
order mode of a ponderomotively created channel becomes
unstable to the excitation of higher-order modes. In our case
the axicon field replaces the strong, lowest-order mode and

the unstable perturbation is the lowest-order mode of the
thermally created channel.

We anticipate that unstable modes will grow on the hy-
drodynamic time scale with wave number shifts on the order
of the mode damping rate, �k=ks−kg�kd=�d /c. This
growth rate is much smaller than the temporal damping rate
of a guided mode. Consequently we assume ���d and drop
� on the left side of Eq. �14�. Equation �14� is then a cubic
polynomial. The most unstable growth rate will depend on
the sizes of the coefficients A, B, and C. Roughly, we can say
that the most unstable mode will satisfy

� = max�Re�
 k0A

2�ikd − �k��
1/3�, Re�
 k0B

2�ikd − �k��
1/2�, Re�
 k0C

2�ikd − �k���� .

Since the coefficients A, B, and C are all proportional to the
axicon pulse intensity, as intensity is increased from zero the
mode depending on A will have the largest growth rate be-
cause it scales with the lowest power of intensity. We thus set
B=C=0 and focus on this mode. In this case Eq. �14� can be
recast,

D��,�k� = �3 + i sgn�A��0
3/�1 + i�k/kd� = 0, �16�

where �0
3= [
A
k0 / �2kd�] is the nominal growth rate. Instabil-

ity occurs for either sign of A. We estimate the magnitude of
A from �15a� as


A
 �
�0

2

k0
2rch

2 =
2

3

�p
2

�0
2 �heat

−1 �hydro
−2 ,

where �heat
−1 =me	
Vosc
2 /Te is the local heating rate and

�hydro
−2 = p0 / �n0mirch

2 � is the hydrodynamic expansion rate
where p0 is the equilibrium pressure and rch is the channel
radius. Based on this estimate, the nominal growth rate
scales as �0= [Q�p

2�heat
−1 �hydro

−2 / (3�0
2)]1/3 where Q=k0 /kd rep-

resents the waveguide quality factor. Growth can occur on a
time scale faster than the hydrodynamic time scale if the
quality factor is large enough.

Using the dispersion relation �16� we can evaluate the
space-time evolution of disturbances initiated at z=0 at t=0.
This is done following the procedure outlined in Ref. �15�.
Specifically we simultaneously solve D��-i�kz / t ,�k�=0 and
�D��-i�kz / t ,�k� /��k=0 to find � and �k as functions of z / t.
We then estimate the growth of the disturbance by evaluating
Re��t+ i�kz�. We find the density perturbation grows as


n̂
 � exp�− kdz + 2 cos��/8���0t�3/4�kdz�1/4� .

Thus, for fixed axial location disturbances grow slower than
exponentially. The rate of growth increases with axial dis-
tance. However, there is exponential damping with distance
due to losses of the guided mode. If we maximize the growth
over axial position we find the peak of the disturbance moves
with constant speed,

kdzpeak = 
 cos��/8�
2

�4/3

�0t .

The amount of growth at this moving location is proportional
to time,


n̂
peak � exp�3
 cos��/8�
2

�4/3

�0t� .

Thus, the growth rate �0 characterizes the instability. The
main conclusion is that the instability is absolute in the lab
frame, and the rate of growth can be estimated to be that
which maximizes ��ks�.

III. NUMERICAL SOLUTIONS TO MODE EQUATIONS

Now we turn our attention to numerical solutions of Eq.
�9�. As was pointed out previously, we must solve Eq. �9� for
the eigenvalue ��ks�, with requirements on the solution that it
is regular at the origin and corresponds to outward propagat-
ing waves for larger radius. The coefficients M, N, and Q
defined in �10� each depend on the unperturbed channel den-
sity and temperature distributions and the axicon field profile
either directly or through differential operators. These distri-
butions can be obtained using the 1D hydrodynamic code
�9�. This hydrodynamic code provides self-consistent plasma
densities and temperatures as well as the axicon fields at each
2.5 ps time interval during the formation of the plasma chan-
nel. The results of this code have been well characterized �9�
and agree with experiment. Sample profiles are illustrated in
Figs. 2�a�–2�c�, for the plasma density, electron temperature,
and ionization rate, and in Fig. 3, for the axicon electric field,
for three different times during the formation of a channel.

To begin, we examine the eigenvalue and mode structure
at one particular time, 88 ps, for a high-pressure case of
380 torr of argon to determine which type of mode discussed
previously is dominant. Figure 4 shows the real and imagi-
nary parts of the complex eigenvalue for the case of 380 torr
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of argon. Shown are normalized growth rates, �dt, where
dt=2.5 ps, for three different azimuthal mode numbers m
=0, 1, and 2, and for each m value there are several modes
that are distinguished by their radial profile. In this figure,
and subsequent figures, the scattered wave number ks was
chosen to correspond to the wave number that maximized
total �time integrated� growth for the parameters under con-
sideration, and this will be discussed subsequently. The ei-
genvalues and scattered mode solutions were determined us-
ing a shooting method to integrate Eq. �9� by starting from
rmax where the solution matched an outward propagating
wave; Hm

�1���rmax�, where Hm
�1� is an mth order Hankel func-

tion of first kind. Here rmax is taken to be well outside the
plasma region. We then searched for an eigenvalue such that
the solution was regular at the origin, r=0, e.g., dus /dr=0
for m=0 or us=0 for m�0. Several different modes were
identified, depending on the initial guess for the eigenvalue
in the search routine. We have also included as open symbols
solutions for the case where the ionization effects in Eq. �9�
have been removed, specifically, 	I=0. These solutions, with
no ionization effects, have lower growth rate, and all contain
nonzero frequency shifts. The importance of this last point
will be emphasized later.

Notice that the largest growth rate occurs for an m=1
mode with virtually zero frequency shift. There is also an
m=1 mode with slightly lower growth rate and a larger real
frequency, as well as what appears to be a marginally stable
m=1 mode. Figure 5 shows radial profiles for each of the
growing modes as well as the real part of the equivalent
potential, Q�r� /M�r� in Eq. �9�. In the case of the highest
growth mode, Fig. 5�a�, we see a pole of the potential is near
the real-r axis at approximately r=3 �m. This pole is asso-
ciated with a singular point, M =0, in Eq. �9� and is primarily
determined by the ionization, �� (2−
)	I�r�. The derivative
of the scattered field changes abruptly near the pole as is
expected for the solution near the singular point. The mode

profile and equivalent potential for the lower growth rate m
=1 mode of Fig. 4 is shown in Fig. 5�b�. This mode has a
greater radial extent than the highest growth mode. There
appears to be a slight well in the effective potential near
2 �m that contains the mode. In contrast to the high growth

FIG. 4. Location of the complex growth, �, during a 2.5 ps
interval, obtained by solving Eq. �9� at one particular time, 88 ps.
Solutions to Eq. �9� without ionization effects are included to em-
phasize the importance of the ionization process on the modes with
no frequency shift Im����0. Several modes have been identified
depending on the azimuthal mode number, m, and on the initial
search parameters.

FIG. 5. Solution functions for Eq. �9� for two of the m=1 modes
depicted in Fig. 4. Both the scattered mode 
us
2 and the real part of
the potential function, Q /M, are shown. �a� corresponds to the
mode that has negligible frequency shift and a growth of approxi-
mately 0.65. �b� corresponds to the mode with positive frequency
shift and a growth of approximately 0.5. �c� corresponds to the m
=0 mode at this time that is associated with the positive frequency
shift and growth of approximately 0.4. Notice in �a� that the poten-
tial function has a complex pole near the real axis. This pole corre-
sponds to a singular point in Eq. �9� when M�r�=0. This local
singular point appears to dominate the dynamics when this singular
point can be found.
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rate mode, this mode is not associated with a singularity in
Eq. �9�. We have also included the radial mode profile and
potential for the case with m=0. Here there is a well-defined
channel in the potential about r=0, which serves to contain
the guided mode.

Figure 6 shows the incremental growth �dt, where dt
=2.5 ps, as a function of time during the channel develop-
ment for two different pressures, 200 and 380 torr of argon.
The fastest growing mode for 200 torr argon has m=0 while
for 380 torr the fastest growing mode has m=1. We also
include in this figure the m=0 mode for 380 torr. The maxi-
mum growth rates appear to occasionally jump with time.
We believe that this is a consequence of our numerical solu-
tions of Eq. �9� and our procedure for finding roots. In par-
ticular for the m=1 modes, the modes that we seek have
singularities close to the real-r axis, making them sensitive to
the numerical grid. Further, we generate new profiles only
every 2.5 ps, and sometimes it is difficult to follow a root
from one time step to the next.

It is apparent from this figure that for the high-pressure
case the majority of the growth occurs early in the channel
evolution. This is in contrast to the low-pressure case in
which most growth occurs toward the end of the simulation.
This timing can be understood in terms of the dominant
mechanism for the unstable growth. For the m=1 mode in
the high-pressure case, the early growth is dominated by ion-
ization physics and modes are of the type shown in Fig. 5�a�.
To confirm this hypothesis we examined the mode for the
fastest growing period. Figure 7�a� shows the field 
Es
2 and
the potential Q�r� /M�r� for the fastest growing mode during
the pulse in the 380 torr case. This mode occurs at 75 ps, as
seen in Fig. 6, prior to the plasma channel formation at ap-
proximately 90 ps. This mode is clearly centered on the pole
in the effective potential. This mode is due to the singular
point in Eq. �9� and is dominated by the ionization rate. For

the 380 torr case the singular point in Eq. �9� continues to
dominate the dynamics until approximately 150 ps. After this
time the growth associated with this ionization mode is less
than the growth associated with the global solution within
the channel region. This change in behavior is apparent from
the kink in the growth curve at 150 ps. For the m=0 mode
plotted in Fig. 5�c�, the mode structure appears to be con-
trolled by channel confinement rather than ionization phys-
ics. However, it is apparent from Fig. 4 that there is still an
important effect of ionization on the scattered modes, since
the growth rates calculated with ionization included are
larger than those with no ionization present. For the high-
pressure case the axicon field is excluded from the central
channel by the plasma at later times. Thus, the majority of
the growth at high pressures occurs early in the channel evo-
lution compared with the low-pressure case.

The ionization mechanism is also active at very early
times for the low-pressure case, e.g., before the channel
forms and a well-defined resonant mode exists, prior to
100 ps. However, as the channel evolves for the low-pressure
case the growth associated with the singular point due to
ionization decreases and the coupling to quasi-guided modes

FIG. 6. Instantaneous growth versus time during pulse for both
the 200 torr case and the 380 torr �m=0 and m=1 mode�. Notice
the 380 torr cases have significant growth in the early part of the
pulse, while the 200 torr case has most of the growth after the
center of the pulse has passed, at 120 ps. This timing can be under-
stood in terms of the dominant mechanism, ionization in the high-
pressure case and mode coupling in the low-pressure case.

FIG. 7. �a� Scattered field 
Es
2 and potential function Q /M at
the fastest growing point during the calculation. This mode occurs
before the plasma channel has been formed due to electron density
inversion, which happens at approximately 90 ps. This mode is
clearly centered on the local singular point of the equation. This
singular point is driven by the ionization rate and corresponds to an
ionization mode. �b� Scattered wave 
Es
2 and potential function
Q /M for the low-pressure case, 200 torr. The scattered field is lo-
calized in the plasma channel with significant enhancement relative
to the outward propagating field in the outer radius.
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begins to dominate. This situation can be seen in Fig. 7�b�,
which presents results from the lower pressure calculation,
200 torr argon at 175 ps. Notice that 
Es
2 is localized on axis
in the potential well formed by the plasma channel. For this
type of mode the analysis leading to Eq. �14� is expected to
be valid. Here there is an enhancement at the scattered mode
wave number ks�ka. This mode is a global mode, which
depends on the solution to Eq. �9� rather then a local ioniza-
tion mode at a singular point of the equation. This type of
mode is not as prevalent in the high-pressure case, where the
axicon field is excluded from the axis as shown in Fig. 3.

We have repeated this numerical calculation for a wide
range of pressures and scattered modes wave numbers. Fig-
ure 8 presents a comparison of the total growth of the most
unstable mode for the case of 380 torr argon with m=0, 1,
and 2 and 200 torr argon m=0 for many values of scattered
wave number. Notice that for the 200 torr case, the growth
has a sharp peak at the resonant wave number ks=kg. For the
380 torr case the growth is less localized in scattered wave
number. This observation is consistent with the discussion
presented above since the low-pressure case is dominated by
a channel confinement, while the high-pressure case includes
modes dominated by local ionization effects. However, there
is still a scattered mode that maximizes growth even in the
high-pressure case.

Figure 9 shows the experimental modulation wave num-
ber versus gas pressure for several pressures. Also in Fig. 9
are the modulation wave numbers corresponding to the cal-
culated modes with the largest total growth. The calculated
modulation wave numbers agree well with experiment in-
cluding the rapid change as a function of pressure. Figure 10
compares the cumulative growth for the most unstable mode

for 380, m=1 �m=0� and 200 torr. The 380 torr case has six
�four� more exponentiations than the 200 torr case. Thus the
high-pressure case is more unstable to this modulation insta-
bility than the low-pressure case. Further, the high-pressure
case has significant growth by the middle of the simulation,
15 �13� exponentiations by 120 ps. The 200 torr case has
approximately six exponentiations by the middle of the
simulation. Thus, we would expect enhanced coupling of the
scattered mode to the plasma channel in the 380 torr case
compared to the values obtained, whereas for the 200 torr
case, the model calculation is likely valid over the duration
of the simulation since significant mode growth, e.g., 15 ex-
ponentiations, does not occur until near the end of the simu-
lation, 200 ps.

FIG. 8. Total instability growth for m=0,1 ,2 for 380 torr argon
and m=0 for 200 torr argon. The 380 torr cases are referenced to
the lower axis and the 200 torr case refers to the upper x axis. The
location of the maximum growth corresponds roughly to the scat-
tered wave number predicted using the linear theory. However, for
the high-pressure case there is little resonance since the local dis-
persion created by the ionization process dominates. For the low-
pressure case there is more resonant behavior; however, the growth
in this mode is less pronounced.

FIG. 9. �Color online� Modulation wave number, in �m−1, ver-
sus pressure: the open circles are the measured data along with error
bars, the solid symbols are the calculated values for different modes
of the channel.

FIG. 10. Cumulative growth of the unstable mode for both the
200 torr, m=0 mode and the 380 torr, m=0 and m=1 mode. Notice
that by the middle of the laser pulse, 120 ps, the high 380 torr
modes have nearly 15 exponentiations while the 200 torr mode does
not achieve this milestone until nearly 200 ps, near the end of the
pulse.
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IV. HIGH THERMAL CONDUCTIVITY LIMIT

The preceding analysis was carried out in the limit that
electron thermal conduction was negligible. However, during
the channel evolution, particularly early when the electron
temperature is high and the channel radius is small, heat
conduction is likely to be important. This limitation in the
previous analysis is particularly relevant to modes with azi-
muthal mode m�0, since in this case thermal conduction
will eliminate any temperature variation across the plasma
channel. For m=0 modes, temperature fluctuations can still
be maintained due to the large barrier to thermal conduction
at the channel edge, apparent in Fig. 2�b�. Therefore, the
previous analysis is still expected to describe the m=0
modes.

Electron thermal conduction is included in the hydrocode
results that give rise to the profiles in Figs. 2�a�–2�c�. The
coefficient of thermal conduction used is given by the Spitzer
value. When the electron mean free path exceeds the gradient
scale length a thermal flux limit is imposed. Such a scheme
is difficult to linearize, and this is one reason thermal con-
duction was ignored in our initial studies. To examine the
effect of high electron thermal conductivity we will present a
modified model where the thermal relaxation rate is taken to
be large compared to the instability growth rate.

We begin by modifying Eq. �5c� to include thermal con-
duction,

3

2

�

�t
p̃ − n0D�

e�2T̃e =
n0e2

me

	

	2 + �2 Ẽs�r,t�Ea
*, �17�

where, for simplicity, we have ignored gradients in the equi-
librium density and thermal diffusivity, D�

e=3.2�eTe /me, and
�e=3.44�105Te

3/2 / �n�� is the electron collision time. When
thermal conductivity is large, temperature perturbations will
be suppressed. Thus, we must modify the source terms in Eq.
�5a�:

�

�t
ñ + � · 	̃n0 = 2n0ñS�Te� + n0�ñsTa

* + na
*T̃s�

�S

�Te
. �18�

This modification has the effect of changing the quantity �
that appears in Eq. �7�, which now becomes ��=1−2	I /�.
Further, the modification eliminates the term proportional to
�I

2 in Eq. �6�.
The perturbed pressure given by Eq. �17� enters Eq. �6�

for the perturbed density through terms proportional to
�0

3 /�3. With the addition of thermal conduction, one of the
�’s in the denominator must be replaced as follows: 1 /�
→ ��− �2/3�D�

e��
2 �−1. Thus, the perturbed density is now

given by

n̂

n0
=

c2

�p
2��

���
2 
� −

2

3
D�

e��
2 �−1�0

3

�2usua
* + �� · 
�p

2

�2 ��usua
*�

+
�p

2

c2 
�s

�
�usua

*� .

In the limit of high electron thermal conductivity we can
assume ��D�

e��
2 . Thus the expression for the perturbed

density simplifies and the new equation, to replace Eq. �8�,
for the scattered wave becomes


��
2 + 2i

�0

c2 � + �2�r,�0,ks��us

=
ua

��
�−

3

2D�
e
�0

3

�2usua
*� + �� · 
�p

2

�2 ��usua
*�

+
�p

2

c2 
�s

�
�usua

*� . �19�

In the same way we analyzed Eq. �8� in terms of a quasi-
guided mode, we can examine the solutions of Eq. �19� with
high thermal conductivity. This process yields modified co-
efficients for Eq. �14� with, A=0,

B =

1
k0

2��2�rdr
uaug
*��·�p

2��ugua
*− 3

2D�
e�0

3
ua
2
ug
2��
�2�rdr
ug
2 ,

and C=C.
The dispersion relation in this case becomes

D��,�k� = �2 +
i sgn�B��2

1 + i�k/kd
= 0

with �2= �
B
k0 /2kd�. This dispersion relation will in general
yield one stable and one unstable mode with the growth rate
dependent on �. Notice that in this case B depends on both
the ponderomotive force and heating rate. With �p

2 =�0
3 /3	

we find that the ratio of the two terms in B varies as the laser
radiation scale size rm

2 divided by the electron thermal mean
free path �mfp

2 , i.e., rm
2 /�mfp

2 . For the parameters that apply
early in the channel evolution, this ratio is of order unity,
implying that the contribution from the ponderomotive force
is comparable to the contribution from Joule heating. This is
in contrast to the low thermal conductivity case where the
growth was dominated by Joule heating.

We now turn to numerical solutions to Eq. �19� to deter-
mine ��ks�, again with boundary conditions outside the
plasma requiring the scattered field to match to Hm

�1��ksr� and
requiring the solution is regular at r=0. Figure 11 shows the
scattered field for conditions comparable to those giving rise
to the scattered field in Fig. 5. In Fig. 12, we show the
calculated total growth, �=���ks�dt, for a range of scattered
wave numbers ks. Notice that although the system is still
unstable, the growth in the high thermal conductivity limit is
reduced, as expected. Also notice that the dependence on
axial wave number is less significant than in the case of no
thermal conductivity with the dominant mode coinciding
with the axicon field. Therefore, the modulation period
would be infinite, as is the case for resonant coupling, Ref.
�9�. Therefore, the overall effect of thermal conductivity may
be to reduce the m�0 modes and lead to an instability domi-
nated by the m=0 modes.

V. CONCLUSIONS

We have presented experimental evidence of an instability
in the generation of plasma channels using axicon field
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breakdown at moderate gas pressures and pulse duration. We
have described a model to describe this instability and shown
that the instability is parametric in nature. This instability is
associated with the nonlinear coupling of a scattered mode to
the incident axicon field through ionization, heating, and
ponderomotive physics. We examine solutions to this model
in two limiting conditions, for negligible and for high elec-
tron thermal conductivity. We expect the actual solutions to
lie somewhere between these limiting cases. However, since
the m=0 modes are not as affected by thermal conduction,
we expect the unstable growth to be attributable to m=0
modes. We show that this model accurately predicts the un-
stable scattered wave number and accounts for the strong
pressure dependence of the instability wavelength.

The onset of this instability may preclude use of axicon
formed plasma channels for pressures above the resonant
coupling pressure. However, it might be possible to design
plasma channels to provide efficient coupling to either high
harmonics or predetermined wave number by allowing tight
control of axially periodic structures in plasma channels.
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FIG. 11. m=1 scattered field mode structure at 88 ps in the case
of high thermal conductivity. FIG. 12. The cumulative growth for the m=1, 2, and 3 modes in

the case of high thermal conduction. Notice that the overall growth
is greatly reduced from the case where thermal conduction was
neglected �Fig. 8�. Also notice that the fastest growing modes coin-
cide with the axicon field wave number, thus leading to an infinite
modulation period.
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