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Light-induced deformation and instability of a liquid interface. II. Dynamics
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We study the dynamics of the deformation of a soft liquid-liquid interface by the optical radiation pressure
of a focused cw Gaussian laser beam. We measured the temporal evolution of both the hump height and the
hump curvature by direct observation and by detecting the focusing effect of the hump acting as a lens.
Extending the results of Yoshitake et al. [J. Appl. Phys. 97, 024901 (2005)] to the case of liquid-liquid
interfaces and to the Bo= 1 regime [Bo=(wy/{,)?, where w is the beam waist and €, the capillary length], we
show that, in the Bo<<1 and Bo==1 ranges, the small-amplitude deformations are correctly described by a
linear hydrodynamic theory predicting an overdamped dynamics. We also study the dynamics of the large-
amplitude interface deformations at the onset of optohydrodynamic instability [Phys. Rev. Lett. 90, 144503
(2003)]. Using a simple, phenomenological model for the nonlinear evolution of the hump height, we interpret
the observed interface dynamics at the instability onset as the signature of an imperfect subcritical instability.
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I. INTRODUCTION

First attempts at the observation of measurable liquid in-
terface deformations by laser waves were performed with
fairly high-energy laser pulses [1-3] because the transfer of
photon momentum to a dielectric interface is intrinsically
weak and the corresponding pressure, which is proportional
to the index contrast and the beam intensity, pushes against
the Laplace pressure associated with interfacial tension. For
example, Ashkin and Dziedzic [1] performed an experiment
using a frequency-doubled Nd:YAG laser (wavelength in
vacuum A\g=0.53 um) strongly focused on the water free
surface (beam waist value wy=2.1 um). Due to the large
value of the water-air surface tension (=73 mJ m™2), they
worked with laser pulses (pulse duration 60 ns and peak
power between 1 and 4 kW) to increase radiation pressure
effects by compensating the weakness of the index contrast
by the beam intensity. The interface bending was still very
weak (typically a few hundreds of nanometers in height).
Similarly, to observe interface disruption, Zhang and Chang
[2] considered the incident radiation from a flashlamp-
pumped dye laser emitting at A=0.6 um with a spot diam-
eter of ~200 wum, a pulse duration of 400 ns and an energy
varying between 100 and 200 mJ. Both examples raised an
important property of radiation pressure effects. With classi-
cal fluids, the time scale associated with the growth rate of
the interface deformation is of the order of a few hundreds of
nanoseconds (typically 400 ns and 4 us, respectively, for the
Ashkin-Dziedzic and Zhang-Chang conditions). Since inter-
face deformation also means lensing [ 1,4], these experiments
strongly suggest a way to build adaptive optical blocks with
fast switching response such as microlenses. That is why
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radiation pressure effects produced by pulsed lasers were ex-
tended to the recording of dynamic holograms [3]. Compared
to thermally driven surface relief distortions caused by sur-
face tension gradients (also called Marangoni or thermo cap-
illary deformations [5,6]), which are used for infrared imag-
ing [7] and hologram writing too [8], nonthermal
deformations produced by the radiation pressure have two
main advantages: (i) energy is not dissipated and (ii) the
recording and the erasure rate are not determined by mass
and thermal transport over the entire fluid layer (i.e., the rates
do not depend on the thickness of the sample). However,
even if all these experiments clearly illustrate the potentiali-
ties of radiation pressure effects in terms of adaptive optical
addressing, they present a major drawback. The high radia-
tion intensities needed to noticeably deform interfaces re-
quire reasonably short pulses, typically less than or of the
order of a few hundreds of nanoseconds as in the experi-
ments presented above. Consequently, the response time of
the fluid interface is always much longer than the pulse du-
ration. This prevents investigations of the entire dynamics of
a fully developed deformation; this dynamics is always trun-
cated. Moreover, to reach high beam intensities, Q-switched
lasers were commonly used. The resulting amplification of
the irradiance leads to pulses of complex shape which are
difficult to characterize while the spatio temporal profile of
the wave is crucial for the calculation of the radiation pres-
sure and the resulting interface deformation. That is why
recent investigations of interface deformations by the radia-
tion pressure considered instead continuous laser waves
which were further modulated temporally. The main draw-
back is that interface deformations become too weak to be
directly observed. This is certainly the reason why so few
works were dedicated to radiation pressure, even if the
Ashkin-Dziedzic adaptive lensing method offers sufficiently
valuable sensitivity for the detection of the induced nanomet-
ric bulge and further quantitative measurements. However,
the 1980s have seen the emergence of so-called soft matter

Bruyeres-le-Chétel, France. Electronic address: physics, which brought a sort of renewal to the concept of
alexis.casner@cea.fr laser radiation pressure by opening new horizons beyond the

*Electronic address: jp.delville@cpmoh.u-bordeaux1.fr optical physics area. For example, Sakai er al. [9] showed
1539-3755/2006/73(3)/036315(14)/$23.00 036315-1 ©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.036315

WUNENBURGER, CASNER, AND DELVILLE

how periodic radiation pressure can control the excitation of
capillary waves and how the characterization of their dynam-
ics can be used to deduce surface or bulk properties such as
surface tension and low-amplitude shear viscosities. The key
point here is the contactless property of the method which
allows for in situ measurements and prevents mechanical
contact with fluid surfaces as well as possible chemical con-
tamination by these mechanical disturbances. This dynamical
approach was further extended to the difficult problem of the
quantitative measurements of high-viscosity systems [10].
The advantage here is the rapidity of measurements (typi-
cally a few seconds) associated with the fact that the viscous
motion of the fluid is limited to the microscopic volume
excited by the laser beam.

Improvements in these applications, for instance, require
an experimental confrontation to the different dynamic re-
gimes that are expected to depend on the competition be-
tween capillary waves and overdamped modes resulting from
viscous dissipation. While now the efficiency of the tech-
nique is well established in several conditions, the demon-
stration of its versatility still deserves further developments
because it appears that there are several regimes in interface
deformation that have not been studied yet. For example,
buoyancy effects were neglected in the experiments pre-
sented above. If such an assumption is realistic for the usual
fluids, for which the surface tension of the free surface is
generally large, it is not necessarily true when surfactants are
present at the interface between two fluids as in complex
fluids. As illustrated in the following, the equation describing
the dynamics of laser-induced interface deformations in-
cludes both properties of the fluids used (the density contrast
at the interface in the hydrostatic pressure term, the surface
tension in the Laplace pressure, and the shear viscosity in the
dynamic viscous pressure) and external optical parameters,
such as the beam power and the beam waist. This gives us
the opportunity to build new dimensionless quantities, such
as an optical Bond number Bo which takes into account the
coupling and competition between the characteristic length
scale of the optical excitation and that of the fluid interface.
We showed that stationary deformations can be described by
a universal function of Bo [11]. This function presents two
asymptotic regimes. Depending on whether Bo<<1 (case of
usual fluids) or Bo>1 (when surface tension effects are
dominated by buoyancy), we showed in the preceding com-
panion article [12] that stationary deformations are described
by different universal behaviors.

In the present investigation, we extend this approach to a
description of the dynamics of interface deformations driven
by the radiation pressure. Moreover, beyond our analysis of
the linear regime (deformations of small amplitude) in terms
of scaled behavior, our knowledge of nonlinear interface de-
formations, which appear at high laser irradiance, is scarce.
Since the publication, more than 15 years ago by Zhang and
Chang [2] of impressive pictures of the dynamics of droplet
disruption driven by laser pulses, almost nothing has been
presented in this direction, except three theoretical descrip-
tions of the weakly nonlinear regime of deformation [13-15].
Based on linear-wave theory, they cannot, nevertheless, ex-
plain giant deformations as well as the subsequent droplet
disruption. In the preceding companion article [12], devoted
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to an investigation of stationary behaviors, we showed that
deformations of large amplitude may become unstable above
a beam power threshold, leading to the formation of a long-
beam centered jet. We also proposed an instability mecha-
nism based on total reflection of light within the induced
deformation. From a fundamental point of view, the investi-
gation of the corresponding dynamics would obviously bring
new insights into the mechanism of this “optohydrodynamic”
instability which illustrates the subtle nonlinear couplings
between laser propagation and interface deformation. As the
instability leads to the formation of liquid microjets, this is
also of practical interest for the development of optically
driven applications analogous to electrospraying [16] or ink-
jet printing [17].

Our aims are thus the following: (i) to identify the char-
acteristic time scales of the interface motion in the linear
regime, (ii) to evidence a slow dynamics just beyond the
instability threshold that is characteristic of a subcritical in-
stability, and (iii) to study whether the interface dynamics at
instability onset is compatible with our model of total inter-
nal reflection induced instability. In Sec. II, we summarize
the main results of the preceding companion article [12],
which constitute an indispensable background to the present
study of the dynamics of interface deformations. Section III
is dedicated to a theoretical description of the linear dynam-
ics of the interface when suddenly submitted to the radiation
pressure of a Gaussian cw laser beam. In Sec. IV, we present
our measurements of the characteristic time scale of the
overdamped hump height and curvature dynamics for small-
amplitude interface deformations and compare them to the
prediction of the linear theory. Finally, in Sec. V we model
our measurements of the interface dynamics at instability
onset and link them to the model of total internal-reflection-
induced instability.

II. OVERVIEW ON STEADY LASER-DRIVEN
INTERFACE DISTORTION

Let us assume a liquid interface intercepted by a continu-
ous laser wave propagating vertically along the z axis. The
amplitude of the resulting steady distortion of the flat liquid
surface induced by the optical radiation pressure depends on
the combined effects of gravity and surface tension. Assum-
ing cylindrical coordinates and denoting r the radius, the
surface height h(r) is given by [12]

oo )\ _qioa
(p1 = p2)gh(r) - rﬁ}ﬁ(\’m) =11(r,6,), (1)

where p; and p, are the densities of the two superposed
liquids, o is the surface tension, and II(r, 6;) is the optical
radiation pressure for an incidence angle 6, In the linear
regime of deformation, one has |h'(r)| <1 and the value of
the radiation pressure can be taken at normal incidence (6;
=0) [see, for instance, Eq. (9) of Ref. [12]]. Then, for an
incident beam in the TEM,, mode, the solution for A(r) can
be calculated by use of a Fourier-Bessel, or Hankel, trans-
form.

By comparing the relative effects of the hydrostatic pres-
sure (buoyancy) to that of the Laplace pressure (surface ten-
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sion), one can define an optical Bond number as Bo
=(wy/€,)* where wy is the beam waist of the incident beam

and €.=\/o/g(p,—p,) is the capillary length associated with
the interface. When Bo<< 1, gravity turns out to be negligible
for the surface distortion. The height of the deformation is in
this case inversely proportional to the surface tension o and
is thus considerably enhanced when o is small. That is why
our experiments are performed in a water-in-oil microemul-
sion (stable suspension of surfactant-coated water nanodrop-
lets, called micelles, dispersed in an oil-rich continuum). The
composition and some of the characteristics of the chosen
microemulsion have already been described [12]. For a tem-
perature 7>T,, where T.=308 K is the critical temperature,
the mixture separates into two micellar phases ¢; and ¢, of
different micellar concentrations. As the density (index of
refraction) of water is larger (smaller) than that of oil, the
micellar phase ¢; with the larger concentration is located
below the low-micellar-concentration phase ¢,, whereas its
refractive index n; is smaller than n, of ¢,. The main advan-
tages of this type of medium are (i) the intrinsically weak
surface tension of the liquid meniscus separating the two
phases (due to the presence of surfactant molecules), (ii) the
ability to even reduce this surface tension by approaching the
critical point (surface tension is typically 10° times smaller at
T-T.=3 K than that of the water-air free surface), and (iii)
the universality of the phenomena observed in the vicinity of
a critical point, because our mixture belongs to the univer-
sality class (d=3,n=1) of Ising model [18].

Low residual optical absorption at the wavelength used is
also required to prevent disturbing thermal heating. This last
condition is fulfilled for our micellar phases since the optical
linear absorption is ap=3X10"* cm™' and the propagation
distance is of the order of I mm. As a consequence, continu-
ous laser waves can easily create interface deformations
without inducing thermal coupling or optical bulk nonlinear-
ity. Critical universality also allows us to evaluate the experi-
mental parameters of our system according to the following
universal scaling laws for surface tension and the density
contrast between the two phases: o=0y[(T-T,)/T.]*", with
v=0.63 and o0,=10"*Tm™>2, and Ap=p,—p,=Ap,[(T
—-T.)/T.]P, with 8=0.325 and Ap,=284 kg m~>. Since the
two phases ¢; and ¢, are of similar composition, we as-
sumed the Clausius-Mossotti relation An= (dn/dp);Ap to be
valid for the refractive-index contrast An=n;—n,, with
(dnldp)r=—1.22X10"* m3 kg

The experimental setup is described in Ref. [12]. The
mixture is enclosed in a thermoregulated spectroscopic cell,
and the temperature is chosen above 7, to reach the two-
phase equilibrium state. The bending of the liquid-liquid me-
niscus is driven by a linearly polarized TEM, cw Ar* laser
(wavelength in vacuum Ay=514.5 nm) propagating either
upward or downward along the vertical axis. The beam is
focused on the interface by a microscope objective (Leitz;
10X; N.A., 0.25). In what follows, P is the beam power. We
adjust the beam waist wy (evaluated at 1/¢?) by changing the
distance between a lens and the focusing objective. The focal
length used is f=0.3 m (1 m) for the upward (downward)
propagating beam. Interface deformations are illuminated by
a white light source and observed using a standard or a high-
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FIG. 1. Variation of the height 2(r=0) of the interface deforma-
tion versus the incident beam power P when the laser propagates
upward (A) and downward (V). Lines are just guides for the eye.
The bottom set of pictures illustrates the evolution of the deforma-
tion for an upward excitation with the emergence of a tetherlike
shape; from left to right: P=270, 410, 590, and 830 mW. The top
set of pictures shows the evolution of the deformation for a down-
ward excitation with the interface disruption and the formation a
liquid jet which appear above the threshold power P; schematized
by the dash-dotted line; from right to left: P=310, 370, and P
=P;=400 mW at instability onset and P=400 mW at steady state
(picture not on scale). wy=5.3 um, T-7T.=3 K.

speed charge-coupled-device (CCD) video camera.

Typical interface deformations induced at 7-7,.=3 K and
wp=5.3 um are presented in Fig. 1 for both upward- and
downward-directed beams. As n; <n,, the radiation pressure
acts downward toward the less-refractive medium, regardless
of the direction of propagation of the laser [ 12]. Figure 1 also
shows the variation of the height 4(r=0) versus beam power
P in both cases. As expected and already discussed [12],
h(r=0) is proportional to P at low beam power. In the pre-
sented example, this regime corresponds to P<225 and
300 mW, respectively, for upward and downward beam ex-
citation. With further increase in P, h(r=0) gradually devi-
ates from linearity. The deformation switches from the clas-
sic bell shape to a stable tether shape in the upward-directed
case (see the three last pictures at the bottom of Fig. 1). The
behavior is radically different for downward excitation. The
deformation suddenly loses stability and diverges above a
well-defined threshold power P=P;=400 mW (see the sec-
ond picture on top of Fig. 1) which corresponds to the insta-
bility onset. This instability gives birth to a stationary liquid
jet emitting droplets (see the first picture on top of Fig. 1).
Guiding of the beam by the jet is also clearly evidenced.
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More insights into the underlying physics can be found from
the investigation of the interface dynamics leading to these
stationary regimes of deformation. This is the purpose of the
next section, where the theoretical background required to
analyze experimental data is presented.

III. THEORY OF THE INTERFACE LINEAR DYNAMICS
A. Scaling approach

The dynamics of the interface can be first analyzed using
a simple scaling approach. Considering the small size of the
hump induced by the laser beam of typical waist wy
~107° m [12], we assume that the characteristic velocity V
of the flow associated with the hump formation can be de-
duced from the creeping flow approximation. Thus, V is set
by the balance of the radiation pressure II and the viscous
stresses, which scale as 7V/w, (7 is the dynamic viscosity).
Consequently, V~Ilwy/ 7 and the characteristic time scale 7
of formation of a hump of height & is 7~h/V.

Two asymptotic regimes can be analyzed. In the Bo<<1
regime, where gravity effects are negligible, 7 ~ Hwé/ o[12],
so 7~ nwy/ o. In the Bo> 1 regime, where interfacial effects
are negligible, h~11/(gAp) [12], where Ap is the density
contrast between the two liquids, so 7~ 7/(gApwy).

B. Linear one-fluid model

The dynamics of a small amplitude deformation of the
free surface of a liquid of density p and refractive index n
when submitted to the electromagnetic radiation pressure of
a laser beam was theoretically described first by Ostrovskaya
[19]. This dynamics was analyzed by solving the unsteady,
linearized Navier-Stokes and mass conservation equations in
cylindrical coordinates with the linearized boundary condi-
tion at the free surface detailed in the following. In the un-
steady linear model, the small-amplitude deformation hy-
pothesis allows one to linearize the pressure continuity
condition at the free surface in the same manner as Eq. (9) of
the first companion article [12]:

Jv.,
%2 (1,1) = T(r 1, 0.(r,1) = 0),

Jz
(2)

where 7=pv is the liquid dynamic viscosity, v (r,?) is the
vertical velocity field of the liquid, and

1d
pgh(r,t) —o=—[rh'(r,)] - 27
rdr

2P 2n(n-1)

e—r2/2w%H(t) (3)
n+1

I1(r,t,6,(r,1)=0) =

2
Tw,HC

is the radiation pressure field acting on the free surface at
normal incidence. We assume interface excitation by a cylin-
drical Gaussian beam of waist w, and power P, switched
on at time =0 (H is the Heaviside function). This linear set
of equations was solved using the Hankel transform $)
with respect to coordinate r, defined as $H{f}(k)
= [¢7rJo(kr)f(r)dr, and the Laplace transform £ with respect
to time, defined as £{g}(s)=/{"e *g(¢)dt. The evolution of
the surface deformation is finally obtained using the approxi-
mation h(r,t)= [(v.(r,z=0,¢")dt' with
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P nn-1) ™ J()(ICI')e"‘2“’<2>/8

v,(r,z=0,1)=

meny n+l J vk?
x g 1 dk,
[A2%(k,s) + 1]* — 4A(k,s) + A(k)
(4)
where
S
A(k,s)=1+ et (5)
k+ ok
ak+ T
Ak) = (sz)’j (6)

Since £7{1/£(s)}(t)==,e%"/f'(s;) when the function f(s) has
only simple, isolated poles s; [20], the time scales of the
motion of a deformation characterized by the wave number k
are the roots of the denominator of the last term of the inte-
grand in Eq. (4), which is precisely the dispersion relation
for plane surface waves of wave number k at a free surface
of a viscous liquid [21]. The physically acceptable roots of
the dispersion relation have to support Re[A%(k,s)]=0 in
order to satisfy the boundary condition v.(r,z,7) ——— 0

[19,22]. o

C. Characteristic time scales obtained
from the dispersion relation

The one-fluid model can be adapted to the interface be-
tween two liquids 1 and 2 by applying to Egs. (4)—(6) the
following transformations [23]:

ok pi-p o
p< pr+prghk+—— < gk +
p p1+p2 p1+p2

K,n e i+ ).

Thus, a realistic order of magnitude of the characteristic time
scales of the evolution of the interface deformations ob-
served in our experiment should be obtained by solving the
dispersion relation of interfacial viscous waves of wave num-
ber k:

2
+
(s + 2uk2> + Qk)?
p1+p2
2
+
=4( 7 ﬂzkg) -
p1tp2
Q=P T 43 (8)
p1t+p2 p1t+p

with
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-1

+

Re(l +s<uk2> ) ~0.
p1+p2

As the interface is excited by a laser beam of waist w,, we
assume the characteristic length scale of interface deforma-
tion to be wy—i.e., k= wal.

This dispersion relation is often handled for “low-
viscosity” liquids—i.e., for Q(k)>[(7,+ 1)/ (p,+p,) Jk>—
resulting in propagative damped gravitational capillary
waves of approximate pulsation (k) and damping time
scale {2[(m;+7,)/ (p;+p2)JK*~! [9,19]. Given the small val-
ues of wy~10>m, of o~107Im™, and of p,—p,
~50 kg m™ encountered in our experiments and given p,
=p,~1000 kgm™>, 7 =n=(p)~103kgm's!, we
find instead Q(k) <[(7,+ 1,)/ (p; + p,) ]k*. Thus, the interface
dynamics falls in the so-called regime of overdamped surface
waves [24,25]. In the Q(k) <[ (5, + 1,)/(p, + p,) Jk* limit, Eq.
(7) has (i) two complex, conjugate roots s;,(k)=[(7,
+ 1)/ (py+py) Jk*(=1.77+1.11i) that are to be rejected since
Re[A%(k,s5,,)]<0 and (ii) two real roots s3(k)=-0.91[(,
+ 7/ pi+p) K and s4=-Q()*2[(7+7)/ (1 +po) I}
[21]. Consequently, the interface motion is not oscillatory but
just damped. Finally, assuming k=w;',we find |s;]
=10 s7! and |s,|=10? s~'—i.e., |s4| <|s5| in our experi-
mental conditions. Consequently, the interface motion char-
acterized by s3, corresponding to the viscous diffusion of
momentum over the length scale wy, is damped very rapidly,
and the interface motion should be mainly damped on the
time scale 7=—s;' which can be expressed as

20K A

"W op TR O)
Using k=w61, 7 can be written as
4
ﬁw;):.ﬁ%?ﬁ(1+soru (10)

with (9 +7,)/2=()=127X 1073 Pas [26] and (p,
+py)/2={p)=871.6 kg m~>. The dispersion relation of the
plane interfacial waves predicts that the characteristic time
scale of the hump relaxation should scale as wy')=17,
=4(np)wy/o in the Bo<1l regime and as 7(w61)=7m
=4(n)/gwyAp in the Bo>1 regime, as suggested by the
scaling approach.

D. Overdamped dynamics of the hump height and curvature

As we measured the dynamics of both the hump height
h(0,¢) and the hump curvature,

1d| dh
x(0,1) = . dr(rdr>(0,t)
in the Bo<<1 and Bo=1 regimes, here we study numerically
the actual behavior of these quantities with respect to the Bo
number. The major concern of this section is to determine
whether the prediction, Eq. (10), for the characteristic time
scale of evolution of both the hump height and curvature
obtained from the dispersion relation of plane interfacial
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waves is realistic in the case of an axisymmetric deformation
induced by a Gaussian laser beam.

Using the physically acceptable roots of the dispersion
relation presented in the last section and neglecting the rap-
idly damped motion characterized by s3;, we can transform
and integrate Eq. (4) to get

2 © 2
B0.1) = — g k ze_kag/S(l — 50Ny
2(p; +p2) Sy QUk)
(11)
and
2 w4
k(0.1) ~ — Hoywg k -kzngs(l — 50 g,

e
2p1+p) )y QUK

(12)
after a time long compared to |s4|~!. Here

4Pn;ny—n
Il, = _12#
mCWy Ny + 1y
is the radiation pressure along the beam axis [12], where the
index i refers to the incident fluid. The integrals appearing in
Egs. (11) and (12) are first made dimensionless:

{ Bo
b=
Myw? [ ; 2 | |dx
h(O,ﬂ:MJ e l—exp|—tx —,
20 Jy Bo 1+Bo/ | x
I+—
X
(13)
1 Bo
,—

I, (~ 1 B} X2
K(O,t)z——0 e I—exp|-tx xdx,
20/, Bo 1+Bo

I+
X
(14)

where t*=t/7'(w61) and x=kw, then computed numerically
using MATLAB.

In order to compare the time evolutions of A(0,7) and
k(0,1) computed at various values of Bo and when such an
approximation was found to be acceptable, we chose to fit
the reduced hump height #*(1)=h(0,7)/h(0,t,,,,) and the re-
duced curvature k" (£)=«(0,1)/k(0,t,,,) over the time inter-
val [0,f,,] with the experimentalist-friendly function 1
—e '™t 14 being the only free parameter of the fit.

1. Hump height behavior

The variations of 4” versus the reduced time ¢ are plotted
in Fig. 2 for several values of Bo, together with their best
exponential fit computed on the range [0, =100 w;")].
h*(f") is found to relax monotonously up to unity, qualita-
tively as its exponential fit. But 4"(f") is satisfactorily fitted
by an exponential only for Bo=10"2. In this range,
T/ T(w,") varies between 2.35 and 0.8 (some values are
given in the caption of Fig. 2). This means that in the Bo
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h =h (0,1t /h (0, t* = 100)

*

# C 1
t =t/r(;(o0)

FIG. 2. Variations of the reduced hump height #*(z)
=h(0,1)/h(0, 1007'((061)) as a function of the reduced time ¢
=t/ T(wal) [defined by Eq. (10)] for several Bo values. Solid lines
are best exponential fits 1—e™%if to h*(t). 7o/ wy')=(®) 4.73
(Bo=107%), (#) 2.15 (Bo=107?), () 1.06 (Bo=0.1), (V) 0.8
(Bo=1), (A) 1.36 (Bo=10), and (O) 2.35 (Box). Inset: time evo-
lution of the dimensionless hump height 204(0,")/TTyw?, defined
by Eq. (13), shown in log-linear scales, for several values of Bo.

=1072 regime, the prediction of the dispersion relation of
interfacial plane waves is realistic.

On the contrary, for Bo< 1072, h"(¢") relaxes rapidly, then
very slowly up to unity, and it is not satisfactorily fitted by an
exponential. As a matter of fact, the relaxation presents a
logarithmic behavior which is more pronounced as Bo de-
creases. The time evolution of the dimensionless height
20h(0,1°)/Tlyw} defined by Eq. (13) is shown in log-linear
scales in the inset of Fig. 2. A late-stage linear behavior is
indeed observed, which is longer as Bo decreases. This late-
stage logarithmic evolution of 2(0,¢) is linked to the fact that
the static hump height diverges as In(Bo) as Bo tends to zero
(by making g=0 or wy,=0) [12,28]; see Eq. (17) in Ref. [12].
Consequently, the temporal behavior of the hump height at
very small Bo number is more complex than predicted by the
dispersion relation of plane interfacial waves.

2. Hump curvature behavior

We first consider the behavior of «* versus ¢* without
gravity (Bo=0), presented in Fig. 3 together with its best
exponential fit computed on the range [0, 7,,,,=307(w,")]. As
shown in Ref. [10],

(1) o e Cerfe(\21Y). (15)

Its best exponential fit gives 7.4==0.487,. This means that in
the Bo<<1 regime and concerning the dynamics of the hump
curvature, the prediction of the dispersion relation of interfa-
cial plane waves is realistic. Furthermore, the effective wave
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*

FY

K =x(0,1) /% (0, t* = 30)
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FIG. 3. Variations of the reduced hump curvature «*(r")
=x(0,1")/k(0,30) as a function of the reduced time r"=1/(w;')
[defined by Eq. (10)] for several Bo values indicated nearby them.
Solid lines are best exponential fits 1—e~"7if to «*(¢). Inset: (0)
variation of the reduced characteristic time scale of evolution of
(1), reff/r(wal), versus Bo. (H) Asymtotic values of 7./ T(wal)
for Bo—0 and o°.

number to be used in the dispersion relation is ke;=2.1w, I

We now consider the behavior of «(t") without surface
tension (Bo=2), shown in Fig. 3. Its best exponential fit
gives T.;==3.627,. This means that in the Bo> 1 regime, the
prediction of the dispersion relation of interfacial plane
waves is also realistic. In this case, the effective wave num-
ber to be used in the dispersion relation is k= 3.6w51.

We finally consider the variations of «"(¢"), plotted in Fig.
3 for several values of Bo, together with their best exponen-
tial fit. The agreement between « (1) and its best exponen-
tial fit is found to be very satisfactory at any Bo value. The
variation of the reduced characteristic time scale of relax-
ation of k"(t"), T/ T(w(_)l) versus Bo is shown in the inset of
Fig. 3. The observed weak variation of 7./ T(wal) over the
wide range Bo=5 X 1072—103 shows that 7, actually scales
as T(wal) both in the Bo<1 and Bo> 1 regimes. Thus, the
use of k=w51 in the dispersion relation of plane interfacial
waves gives the right order of magnitude for the character-
istic time scale of evolution, 7., of the hump curvature
x(0,7) at any Bo value. In particular, 7.;=0.57(w,") holds
up to Bo=1.

To summarize this section, the numerical study demon-
strates that (i) the behavior of the hump curvature evolution
k(0,1) is close to an exponential relaxation at any Bo value,
(ii) it is also the case for the hump height evolution 4(0,7) in
the range Bo> 1072, (iii) in these ranges of Bo, the charac-
teristic time scales of evolution of the hump height and cur-
vature are correctly predicted by the dispersion relation of
plane interfacial waves assuming k:wal, and (iv) in the
range Bo <1072, the hump height evolution shows up a no-
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ticeable late-stage logarithmic evolution that makes simple
exponential fits irrelevant.

IV. MEASUREMENT OF THE CHARACTERISTIC TIME
SCALE OF THE INTERFACE MOTION

In order to experimentally characterize the time scale of
the interface deformation dynamics when it is submitted to
the radiation pressure of a laser beam, we proceeded in two
ways. At first, we captured the motion of the hump formed at
the interface, extracting its height h(0,7) along the beam
axis. Then, we used the focusing property of the interface
hump [4] in the same way as Sakai et al. [27] to measure the
dynamics of the hump curvature along the beam axis «(0,1).
We present sequentially our measurements of both the hump
height and curvature dynamics, and compare them to their
prediction presented above.

A. Hump height dynamics

The experimental setup is described in detail in the pre-
ceding companion article [12]. We captured the motion of
the interface using a high-speed motion meter Redlake digi-
tal video camera of resolution 292 X220 acquiring 250 fps.
Then we extracted the hump height along the beam axis
h(0,1) from the pictures. We performed these experiments in
the temperature range 7—-7,-=5-25 K and for a beam waist
varying from 5 to 8.9 um, corresponding to a range of Bo
number 7 X 1073-0.1. A typical evolution of the interface
distortion against time is shown in Fig. 4.

A series of hump height evolutions is shown in the inset
of Fig. 5. In order to be allowed to compare our measure-
ments of 7.4 to the linear model presented in Sec. III D 1,
experiments have to be performed in the linear regime; i.e.,
the measured value of 7.5 has to be independent of the beam
power P. To check this requirement and simultaneously mea-
sure 7.5, we used the procedure illustrated in Fig. 5 for each
chosen couple (w,y,T—T,). The temporal behavior of 4(0,7)
is extracted from the image analysis for several beam power
values. Then, as explained in Sec. III, the curves are inde-
pendently fitted with an exponential function in order to get
both the asymptotic hump height (0, ) and the relaxation
time scale 7., as illustrated in the inset of Fig. 5. The de-
duced asymptotic hump heights are used to reduce the height
h(0,7). An example of data reduction, expected for the linear
regime of deformation, is presented in Fig. 5. On the other
hand, the measurement of different values of the relaxation
time allows the determination of a mean value of 7., which
must be retrieved from the fit of the full reduced data set.

Since the experiments were performed in the range of Bo
number, 7 X 1073-0.1, an exponential fit of 4(0,7) is rel-
evant, as shown by the numerical study presented in Sec.
I D 1, and the effective time scale of exponential relaxation
of the hump height, 7., should scale as 7y=4(7)w,/ o. Thus,
T.¢¢ should increase versus both the beam waist and the vi-
cinity to the critical point. The first expectation is confirmed
in Fig. 6, while an example of the second one is given in the
inset.
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FIG. 4. Typical temporal behavior of an interface distortion in
the regime of linear deformation when the cw optical excitation is
suddenly applied at time r=0 s. The parameters are P=840 mW,
wy=6.3 um, and 7-7,=10 K.

Finally, the variation of 7. versus 7, plotted in Fig. 7 in
log-log scales, is compatible with the predicted scaling law,
despite a large experimental scatter. In particular, the slope of
the best linear fit of the experimental data, 1.88, is located
between the value of 7./ Hw;') at Bo=10"2 namely, 2.15
and its value at Bo=10"", 1.06.

Nevertheless, we must note that this method suffers from
a major drawback. Since we use near-critical interfaces, the
refractive index contrast between the two phases at coexist-
ence is intrinsically weak. Interfaces are thick and weakly
contrasted, making the detection of interface profiles diffi-
cult. This drawback is enhanced by the fact that we must use
a long-working-distance microscope objective to observe the
interface, due to the presence of an oven around the cell
containing the sample. Consequently, the resulting depth of
field is quite large, reducing the optical resolution. This and
the usual sensitivity of near-critical fluids properties to any
thermal and composition gradients probably explain the scat-
tering of the data.

B. Hump curvature dynamics

In order to get more reliable results, we extended to
liquid-liquid interfaces a method used to quantitatively char-
acterize laser beam self-focusing in nonlinear media [29]
and, more recently, to measure surface tension at liquid free
surfaces [27].

The experimental setup used to measure the dynamics of
the interface hump curvature is shown in Fig. 8. It consists in
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FIG. 5. Temporal evolution of the reduced hump height
h(0,2)/h(0, ) corresponding to the temporal evolutions of the
hump height observed for various beam powers shown in the inset.
The asymptotic value A(0, ) is determined for each P from an
exponential fit of 2(0,7) shown in the inset.

measuring the power of the laser beam refracted by the liquid
interface and transmitted through a diaphragm of diameter
smaller than that of the beam. The laser beam is mechani-
cally chopped with a period of 4 s in such a manner that the
illumination of the sample is steady after a very short tran-
sient of 4 us. The time-dependent, bell-shaped deformation
induced at the interface by this upward incident beam acts as
a convergent lens that focuses the beam. The focused beam
emerging from the sample cell is filtered spatially using an
iris diaphragm placed between the sample cell and the focus
of the refracted beam. The power of this filtered beam is
measured as a function of time using a photon counter and a
SR430 multichannel analyzer. Thus, the characteristic time
scales of the dynamics of the measured optical power are
similar to those of the interface deformation dynamics. For
interface deformations of curvature small enough so that the
resulting focal length of the liquid lens is large compared to
the path of the focused beam, the power of the filtered beam
is actually proportional to the hump curvature, as shown in
the Appendix.

We measured the power detected by the photon counter
versus time during the deformation of the interface in the
temperature range 7T—7,=2-20 K and in the range of beam
waist, 3.47-31.2 um, corresponding to a range of Bo num-
ber, 1072-1.8. A typical temporal evolution of the filtered
beam power is shown in the inset of Fig. 9. For interface
deformations of small amplitude, the power signal exhibits a
monotonous, relaxation behavior from an initial value at the
beginning of the irradiation, corresponding to the flat inter-
face, to an asymptotic value, corresponding to the steady,
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FIG. 6. Temporal behavior of the reduced hump height
h(0,1)/h(0,>) versus the beam waist w, and the vicinity to the
critical point T—T, (inset). Lines are exponential fits.

bell-shaped interface acting as a lens. This confirms that the
dynamics of the interface deformation is always over-
damped, as predicted in Sec. III for the present experimental
conditions. This relaxation behavior is also satisfactorily de-
scribed using a single-exponential relaxation of characteristic
time 7., as shown in the inset of Fig. 9. As for the measure-
ments of the hump height dynamics, for each measurement
of 7.4 we checked its independence with respect to the beam
power by varying P over a chosen range.

Since the scaling law 7.;=0.57(w,') was theoretically
shown to hold up to Bo=1 in the case of the hump curvature
dynamics, we plotted in Fig. 9 the variation versus T((x)al) of
the characteristic time scale of the evolution of the hump
curvature 7., measured for the whole range of Bo, together
with its best linear fit of slope 0.98. This value is 2 times
larger than its prediction at small Bo number, but close to its
predicted value at Bo=2, the upper limit of the investigated
range: namely, 0.83 (see Fig. 9). This discrepancy could be
attributed to the uncertainty on the value of (7). Despite this
slight discrepancy, we can say that in the Bo<1 and Bo
=1 regimes, the characteristic time scale of the dynamics of
the hump curvature obeys the linear model of overdamped
relaxation developed in Sec. III.

To summarize this section, we showed theoretically that,
given the conditions of our experiment, the dynamics of the
interface deformation induced by the electromagnetic radia-
tion pressure is overdamped; i.e., it has a relaxation behavior
of characteristic time scale 7. of the order of a few tens of
milliseconds. We showed numerically that, using kzwal as
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FIG. 7. Variation of the characteristic time scale 7. of the hump
height evolution versus its predicted scaling behavior 4( )/ o for
several temperatures. The solid line is the best linear fit of slope
1.88.

effective wave number, the linear dispersion relation of plane
interfacial waves, Eq. (7), satisfactorily describes the relax-
ation dynamics of the hump curvature at any Bo value,
whereas a noticeable logarithmic divergence characterizes
the late-stage evolution of the hump height for Bo<<1072
Finally, we showed experimentally that the characteristic
time scale 7.4 of the hump height (the hump curvature) re-

-t

Multichannel Analyzer

Chopper
Synchro

Mechanical Chopper

cw ArtLaser

FIG. 8. Experimental setup used to measure the dynamics of the
interface hump curvature along the beam axis. The pictures illus-
trate the beam focusing induced by the interface deformation for
increasing beam powers (up to down).
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FIG. 9. Variation of the characteristic time scale 7. of the hump
curvature evolution versus its predicted scaling behavior T(wal)
=4({m)wy/ o. The solid line is the best linear fit of slope 0.98. The
Bo number ranges from 1072 to 1.8. Inset: typical power signal
measured by the photon counter. The sample temperature is such
that 7-7.=15 K. The illumination by the laser beam of waist w,
=24.5 pm and power 500 mW begins at =0. The solid line corre-
sponds to the best fit by an exponential function of characteristic
time 7.=39 ms.

laxation dynamics scales as the theoretically predicted time
scale 7(w;") in the Bo range 7X 10-10"" (102-1.8).

V. INTERFACE DYNAMICS AT THE ONSET OF THE
OPTOHYDRODYNAMIC INSTABILITY

In Ref. [30] and in the preceding companion article [12],
we showed that above a given beam power threshold P, the
interface becomes unstable and forms a long cylinder of very
large aspect ratio [31], emitting drops, called hereafter a jet.
In order to enlighten the mechanism of the instability leading
to the lengthening of the hump and to the formation of the
jet, we now study the dynamics of the interface at instability
onset.

A. Experimental procedure

To study the influence of the control parameter P of the
interface instability on its dynamics just beyond the thresh-
old, we captured the motion of the unstable interface using
the high-speed video camera acquiring at a rate of 250 fps. A
typical series of pictures of the moving interface above in-
stability threshold is shown in Fig. 10. The interface dynam-
ics was analyzed as a function of both temperature, in the
range T-T.=2-10 K, and laser beam power for a fixed
beam waist wy=3.74 wm, so that the dimensionless distance
to the threshold AP"=(P—P;)/P; was varied in the range
0—1.6. Once the temperature and beam power are chosen,
the experiment proceeds as follows. At r=0, the beam shutter
is set off, the laser beam suddenly impinges on the interface
with a power larger than P; and the interface motion is cap-
tured up to the exit of the interface tip from the camera field.
We stress the fact that, because of experimental constraints,
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1600 ms

1720 ms

FIG. 10. Sequential pictures of the moving interface at 7-T.
=8 K above the instability threshold P;=755 mW. The laser illu-
mination of power P=840 mW and waist wy=3.74 um started at
1=0.

this procedure differs from classical experiments dedicated
to the slow dynamics of instabilities at their onset (see, e.g.,
Ref. [32]), for which the control parameter is suddenly in-
creased from a value just below the instability threshold to a
slightly unstable value.

B. Slowing down near the instability threshold
1. Hump height dynamics

In Fig. 11(a) the temporal evolutions of the hump height
h(0,t) at T-T,=8 K are plotted for several values of beam
power P, the smallest one below threshold P;=760 mW
(AP*<0), the larger ones above it (AP*>0). For AP* <0,
h(0,t) shows up a relaxation behavior of characteristic time
scale 7, similar to the linear dynamics studied in Sec. I'V.
On the other hand, for AP*>0 each 4(0,7) curve exhibits an
inflection point at a hump height %;, which slightly increases
with P, and at a time #;, called hereafter the inflection time,
which decreases when P increases. The instability first be-
comes evident at the inflecion of h(0,7), although it may
have begun earlier. The variations of the inflection time ¢
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FIG. 11. (a) Temporal evolutions of the interface hump height
h(0,r) at T-T,=8 K for several values of beam power P below and
above threshold P;=760 mW: ((J) P=700 mW. (@) P=770 mW.
(W) P=840 mW. () P=910 mW. (V) P=980 mW. (A) P
=1120 mW. («€) P=1260 mW. (») P=1400 mW. (b) Correspond-
ing temporal evolutions of maximum angle of incidence 6; ., (7)
along the interface. Symbols are the same.

normalized by 7.; versus AP" are plotted in Fig. 12 in loga-
rithmic scales for several values of 7—T.. These variations
range over more than a decade and are compatible with a
power-law behavior with exponents close to —0.65.

2. Model of subcritical instability

In order to justify our choice of the model describing the
dynamics of the hump at the instability onset, we first briefly
characterize the stability of the hump and the associated bi-

0.5 —A- T-T, =2K
10°} v T-T =4K
— T-T =6K
- T-T_=8K
e T-T,=10K

10

-2

10 0

10
AP"

FIG. 12. Instant #; of inflection of A(0,7) [see Fig. 11(a)] nor-
malized by the characteristic time scale of the relation 7.¢ below the
instability threshold, as a function of the reduced distance to the
beam power threshold AP*=(P—PT)/ P; for several values of T
—T.. The solid line is the prediction of a model of imperfect sub-
critical instability (see Fig. 14).
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FIG. 13. Hysteresis of the deformation height versus the beam
power. T—-T.=18 K and wy=3.5 um. The lower branch of the hys-
teresis corresponds to the static hump studied in Ref. [12], whereas
its upper branch corresponds to an elongated shape emitting drop-
lets (jet). Inset: variations of the reduced hump height 1 ~#/h; (hy is
the static hump height at the instability threshold) versus the re-
duced distance to the threshold 1-P/P; for several experimental
conditions: (0) T-7.=4 K, wy=3.47 um, (®) T-T.=6 K, w,
=347 um, (V) T-T.=14 K, wy=3.47 um, and (@) T-T.=4 K,
wp=3.91 pum. The solid line is a square root law.

furcation diagram. A more detailed presentation of the ex-
perimental results relative to the bifurcation diagram will be
the subject of a future article. As shown in Fig. 13, the hump-
jet transition is hysteretic; i.e., after its formation at P=Py,
the jet persists when P is decreased until a second threshold
P < P;. Moreover, the variation of the hump height / versus
P close to the instability threshold is characteristic of a
saddle-node bifurcation. As shown in the inset of Fig. 13, the
variations of the reduced hump height 1-h/h; [A=h(0, ),
and £ is the static hump height at the threshold; see Fig. 13]
versus the distance to the instability threshold 1-P/P; are
indeed compatible with a square root dependence 1-h/h;
«(1-P/P)"? for 1-P/P;<107" [33].

These observations, as well as a former analysis of the
bistable shape of ferrofluid drops under magnetic field [32],
lead to suppose by analogy that at P=P; the hump becomes
unstable and turns to a more elongated shape, the jet. At this
power threshold, the sum of the electromagnetic energy and
of the interfacial energy associated to the hump shape is no
longer a minimum, but becomes a maximum. Thus, the sta-
bility diagram of the hump in the (4, P) plane should predict
(i) the linear increase of i with P at small beam powers
(static linear regime), (ii) a relaxation dynamics below the
threshold of instability, (iii) a saddle-node bifurcation, and
(iv) the coexistence of two static equilibrium shapes for the
hump in a given range of power below P;: namely, the small
hump and the jet. The stability diagram associated with the
first-order, nonlinear equation

—=P—h+bh:-ch’, (16)
dr

with 3e<b< \54—c, qualitatively fulfills the above listed re-
quirements. Equation (16) involves dimensionless variables,
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FIG. 14. Temporal evolutions of the reduced height n® 7
=t/7.) computed for several distances to the instability threshold
AP" using the amplitude equation (16). 7.¢ is the characteristic time
scale of the hump linear dynamics. inset: stability diagram associ-
ated with Eq. (16).

among them a time normalized with the time scale 7. of the
linear dynamics—i.e., h(f)=h(0,¢/7.y). It is similar to the
hysteretic magnetization diagram of a single domain under
an applied static magnetic field (imperfect subcritical insta-
bility [33]). The stability diagram associated with Eq. (16)
with ¢=0.1 and 5=0.6 is shown in the inset of Fig. 14. The

hump becomes unstable at (ET’ﬁT)’ and the associated bifur-

cation is a saddle node. Note that close to IST, h strongly
increases, as experimentally observed in Fig. 1.

We now aim to check if Eq. (16) qualitatively reproduces
the observed hump height dynamics shown in Fig. 11(a). To
agree with the experimental conditions presented in Sec.

V A, we computed the solutions of Eq. (16) with 1(0)=0 as
a function of the initial value of the static beam power P.

They are plotted in Fig. 14. A relaxation of h(7) is observed
for AP* <0, while a divergent behavior very similar to Fig.

11(a) is observed for AP*>0 [at longer times, h(7) con-
verges to the upper stable branch of the stability diagram
shown in the inset of Fig. 14]. Finally, the variation versus
AP of the computed normalized inflection time #;/ 7.5 is
compared to the experimental one in Fig. 12. Excellent
agreement is found, which confirms the validity over a large
range in P of the phenomenological, simple nonlinear model
for this instability represented by Eq. (16).

Very close to the instability threshold, the exponent of the
effective power law representing the variation of ¢,/ 7.4 ver-
sus AP" computed using Eq. (16) drops to —0.5, as shown in
Fig. 12. This value is identical to the analytical prediction
and its experimental verification by Bacri and Salin [32] of
the time scale of divergence for the eccentricity of ferrofluid
drops under a magnetic field above the instability threshold,
when the magnetic field is first established at a value slightly
lower than the threshold (initially motionless interface). As a
matter of fact, in the present experiment, for 0 < AP* <1, the
hump is almost motionless when the instability sets on.
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The main difference between this model and measure-
ments is that inflection is experimentally found to occur at a
hump height h; that slightly depends on AP, whereas the
first-order differential equation (16) imposes the condition

that inflection (d?h/dP=0) occur at ET’ which has no AP*
dependance. This discrepancy can probably be ascribed to
the fact that the actual interface dynamics is not simply of
first order in time, but of overdamped second order.

C. Maximum angle of incidence at inflection of /(0,¢)

In Ref. [30], we proposed an instability mechanism based
on the hypothesis that the instability occurs when the maxi-
mum of the angle of incidence along the deformed interface,
0; max» reaches the angle of total reflection 6. This leads to
the reflection of the whole incident electromagnetic energy
towards the tip of the deformation and consequently to a
huge increase of the radiation pressure acting on it. We
showed in [12] that the instability mechanism should be
more complex than expected, since at the instability onset
the actual value of 6, ., is smaller than ;. In this section,
we test whether the interface dynamics at onset is compat-
ible, at least qualitatively, with the proposed model of insta-
bility.

We analyzed the unsteady interface shapes with the same
technique as for steady ones in the preceding companion
article (see Sec. IV D of Ref. [12]). We determined the maxi-
mum value of the angle of incidence along the interface
0; max as a function of time for several temperatures in the
range 7-7,=2-10 K and several values of power P at a
fixed waist wy,=3.74 um. The 6, ,.(z) curves obtained for
several values of P above the threshold P; (AP">0) at T
—T.=8 K are plotted in Fig. 11(b). 6; ,,.x(?) is found to be a
monotonous function of ¢ up to its maximum 90°. From these
data, we plotted in Fig. 15 the value of 6, ., at time ¢; of
inflection of 4(0,7) as a function of AP” for several values of
T-T,., together with the corresponding values of 6y
0; max(;) is found to increase with AP" from roughly 70° at
AP*=0 up to values roughly equal to 6 (and undoubtedly
smaller than 90°) at large values of AP". Note that 70° co-
incides with the value of 6, ., along static interfaces just
below the instability threshold (see Sec. IV D of Ref. [12]).
Consequently, there is no singular change of the shape of the
interface when the instability threshold is reached.

Interpreting the increase of 6, ,,(¢;) with AP" in the
frame of the reflection-induced instability model and consid-
ering Fig. 7 of the preceding companion article [12], we note
that the instantaneous amount of incident light that is re-
flected towards the interface tip at time #; increases strongly
with AP". If the light that is partially reflected toward the
interface tip is actually involved in the instability mecha-
nism, the larger 6; ,..(#;), the faster the instability should
grow. Thus, the increase of 6 ,(¢;) with AP", observed in
Fig. 15, is compatible with the observed increase of the
growth rate of the instability with AP", observed in Fig.
11(a).

Finally, the fact that the maximum of 6; ,,,(¢;) is found in
Fig. 15 to be roughly equal to ;; can be explained by the
following argument. When 6; ,..=6rs, both the radiation
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FIG. 15. Variation of the maximum value of the angle of inci-
dence along the interface 6, .. at the time ¢; corresponding to the
inflection of h(0,7) [see Fig. 11(a)] as a function of the reduced
distance to onset AP" for several values of T—T,. Lines joining
experimental data are a guide for the eye. Each horizontal line
decorated with open symbols indicates the value of the angle of
total reflection, Oy, at the temperature corresponding to the solid
symbols.

pressure due to the incident light [34] and the amount of light
reflected toward the tip are maximum (total reflection), what-
ever the light polarization. Thus, when 6; .., = 67, the inter-
face dynamics is the fastest, as observed in Fig. 11(a).

To conclude this section, we showed that the instability
growth rate at time ¢; of apparent instability onset is linked to
the value of the maximum of the angle of incidence along the
deformed interface 6; . (t;)—i.e., to the amount of light re-
flected on the interface. This is compatible with the hypoth-
esis that the light reflected toward the hump tip is involved in
the instability mechanism.

VI. CONCLUSION

We investigated the dynamics of a liquid-liquid interface
when it is deformed by the radiation pressure of a focused
cw Gaussian laser beam. We measured the temporal evolu-
tion of both the hump height and the hump curvature. Ex-
tending the results of Ref. [10] to the case of liquid-liquid
interfaces and to the Bo=1 regime, we showed that, in the
Bo<1 and Bo==1 ranges, the temporal evolution of the
small-amplitude deformations is correctly described by a lin-
ear hydrodynamic theory predicting an overdamped dynam-
ics. In particular, the dynamics of the hump curvature was
found to be correctly predicted by the dispersion relation of
plane interfacial waves Eq. (7) using k.;=0.5w;" as the ef-
fective wave number representing the hump deformation in
the Bo>1 regime and up to Bo=1. The same result was
established for the dynamics of the hump height in the Bo
=107 regime, and a logarithmic behavior at late stage of the
hump height dynamics was numerically evidenced at very
small Bo number. We also investigated the dynamics of the
large-amplitude interface deformations at the onset of the
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FIG. 16. Optical setup to filter and measure the beam transmit-
ted through the hump. O1 and O2 are the microscope lenses used,
respectively, to focus the laser beam on the fluid interface (beam
waist wg) and to image the beam radius  at the exit face of the cell
C on the iris diaphragm (beam waist @'). w is an intermediate
beam waist. p (p') are the distances between the exit face of the cell
and 02 (between 02 and the iris diaphragm).

optohydrodynamic instability. Using a simple, phenomeno-
logical model for the nonlinear evolution of the hump height,
we interpreted the observed interface dynamics at the insta-
bility onset as the signature of an imperfect subcritical
instability. Nevertheless, the actual instability mechanism re-
mains unrevealed by the theory and shall deserve further
investigation.
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APPENDIX: RELATIONSHIP BETWEEN THE
CURVATURE OF THE HUMP AND THE INTENSITY OF
THE TRANSMITTED LIGHT

The determination of the hump curvature dynamics is
based on the measurement of the temporal evolution of the
intensity of the laser beam refracted by the hump acting as a
lens. To be able to compare our beam power measurements
to the predicted characteristic timescale of evolution of the
hump curvature, the beam power variations have to be pro-
portional to the hump curvature variations. In this appendix,
we prove that it is effectively the case for interface deforma-
tions of curvature small enough so that the resulting focal
length of the liquid lens is large compared to the path of the
focused beam. The detailed optical setup used to filter and
measure the beam transmitted through the hump is shown in
Fig. 16. Taking into account the smallness of the beam waists
used, it is not possible to directly measure the optical trans-
mission through a diaphragm located just behind the sample.
Thus, we used the microscope objective O2 to image the exit
face of the sample cell on the iris diaphragm located at a
large distance, as shown in Fig. 16. If P; denotes the power
of the TEM,, Gaussian beam incident to the diaphragm and
P, the transmitted beam power, the transfer function 7 of the
diaphragm of aperture radius p is given by

p 2
T=—"=1 —exp(— 2p—>,
P

wr2

(A1)

1

where ' is the beam radius on the diaphragm. Since the
distance p’ between O2 and the iris diaphragm is large com-
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pared to the distance p between the exit face of the experi-
mental cell and 02, we can approximate the Gaussian propa-
gation laws by those of geometric optics. Then, w'/w
=p'/p, where w(z) is the beam radius at the exit face of the
experimental cell; in our experiment, we have z=2 mm cor-
responding to 1 mm of phase ®, plus 1 mm of quartz win-
dow. The transfer function becomes

2

p
T=1-exp|-2———]. A2
p( (p’/p)zwz) (42)
Without any focusing effect (flat interface), the beam radius

w(z)fzc,O at the exit face of the sample cell is such that

2
wrom (25
0

in the paraxial ray approximation, where wy is the beam
waist at the interface (z=0). Besides, when the interface is
deformed and gives birth to a thin lens of focal distance f,
the expression of the beam radius w(z) at the exit face of the

cell is
2 Az \2
w(z)ch:wé{(l—J%) +<W—5)3> }

Experimentally, we considered a situation where z<<f in or-
der to investigate the dynamics of the interface in the linear
regime in deformation. Moreover, we choose p/w'<1 to
work in the paraxial-ray approximation where the interface
deformation can be assimilated to a thin spherical lens. In
these conditions, we get

(A3)

(A4)

~ (O 25}
T(w(z)f)~T(w(z)f=m)[1 +2<w(z)f=w> ik (A5)

Note that both w, and z are fixed in a given experiment, so
that the only, time-dependent variable is f. Finally, in the
paraxial-ray approximation, f is given by [35]

1 ny —ny

f 2n,

where «(0,7) is the curvature of the interface on the beam
axis at time ¢. This leads to

T(0(2) 7)) = T(0(2) =) 1 + aic(0,1)],

x(0,1), (A6)

(A7)

where «a is a constant. Consequently, the beam power trans-
mitted through the iris diaphragm is an affine function of
k(0,7). Assuming «(0,1)=k(0,0)[1—exp(-t/74)], we fi-
nally find

T(w(2)f)) = T(0(2) {1 + ax(0, )[1 - exp(= t/ 74 I},
(A8)
where 7. is the characteristic time scale of the linear inter-
face deformation. The fit of the example of temporal behav-

ior of the transmission presented in the inset of Fig. 9 by the
predicted expression, Eq. (A8), shows good agreement.
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