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Bubble behavior in a Taylor vortex
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We present a study on the behavior of air bubbles captured in a Taylor vortex formed in the annulus between
two concentric cylinders. It is found that small bubbles stay either at certain locations near the vortex cores or
in the outflow regions along the inner cylinder. If bubbles of the same size are introduced, a variety of bubble
structures (such as ring, chain, cluster, etc.) appear due to different mechanisms. For bubbles of nonuniform
size, orbit crossing of small and large bubbles is observed. Droplets and particles can also be captured in Taylor

vortices, and these exhibit certain unique features.
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Due to buoyancy, bubbles tend to rise to the top of a static
liquid. However, if the fluid is contained between two verti-
cal rotating cylinders, it is found that the bubbles may be
indefinitely trapped. Moreover, if multiple bubbles are
present, they may self-assemble into structures such as spi-
rals, stripes, and rings [1-6]. In prior work, these structures
were observed in the wavy vortex flow regime and the
bubble size was quite polydisperse. A specific study on the
behavior of individual bubbles, of pairs of bubbles, and of
monodisperse groups of bubbles, in a nonwavy Taylor vortex
has been unavailable, due partially to the constraints of tra-
ditional apparatus. The apparatus developed for this study
has permitted observation of previously unreported phenom-
ena.

The apparatus consists of a stationary outer cylinder (R,
=30 mm) and a rotating inner cylinder (R;=18.4 mm) which
provide a gap width (d=11.6 mm) sufficient for the devel-
opment of various bubble structures. The working section
length H is 60 mm, giving an aspect ratio '=H/d=5.17. A
Newtonian mineral oil (with a density p of 0.86 g/cm® and a
viscosity u of 29.7 cp) was selected as the working liquid.
Its high viscosity ensures laminar flow at rotational speeds
(2) up to 800 rpm. A syringe pump drives air through a
needle in order to generate uniform bubbles. The bubble size
(dy) is easily changed by altering the needle diameter.
Bubbles can be injected at nearly any desired position with
little perturbation to the flow from the needle itself. A high
speed video camera working at a speed of 250/500 fps
(frames per second) is employed to visualize the bubble be-
havior in the vortex. Both spatial and temporal information
for bubble patterns can be obtained in this way.

We use a two-dimensional (2D) particle image velocim-
etry (PIV) system to monitor the liquid flow. Silver-coated
hollow glass beads (d,=14 um) were adopted as the tracer
particles. The position, shape, and velocity distribution of
vortices can be determined [Fig. 1(a)]. It is found that a
Taylor vortex first appears at a critical Reynolds number
(Re,=Q.R;dp/ u) of 62 and persists to at least a Reynolds
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number of 519. The observed critical Reynolds number is
fully consistent with the prediction of Yim et al. for this
radius ratio [7]. It should also be noted that the data show no
sign of wavy vortices and this is consistent with the predic-
tions of Edwards er al. [8] for low aspect ratio devices. As
shown in Fig. 1(a), bubbles are of two kinds: one kind is
found in the outflow regions along the inner cylinder (“wall
bubble”) and the other kind is found near the core of the
Taylor vortex (“vortex bubble”). The former were reported
by Shiomi ef al. [1], but we believe that this is the first report
of vortex bubbles which are arranged as a well structured
“necklace.”

To understand the nature of bubble capture, a computa-
tional fluid dynamics (CFD) software package (Fluent 6.1)
was used to simulate the Taylor vortex flow. We are able to
quantitatively reproduce the flow field observed in the ex-
periments, as shown in Fig. 1(b). The experiments were per-
formed by first establishing a steady state at Re=389 and
then reducing the rotation rate to obtain the desired experi-
mental value of Re. The simulation followed the same pro-
cedure, in an effort to model any hysteresis effects that might
be present.

Figure 1(c) shows the calculated pressure distribution in
the cross-sectional plane. At P2, there is a pressure minimum
which corresponds to the outflow region where the wall
bubble is found. This agrees with the expectation that the
pressure force is responsible for the capture of wall bubbles
[4]. However, a force analysis indicates that the pressure
gradient cannot be responsible for the capture of a vortex
bubble. Instead, fluid dynamic drag and the buoyancy force
are the dominant terms in the force balance. In Fig. 1(c), the
trajectory of a bubble released from P1 is predicted by the
equations of motion contained within the particle tracking
feature of Fluent. The principal forces are buoyancy and
drag. Due to drag (and, to a lesser extent, the pressure gra-
dient), it deviates from its initial motion and is gradually
trapped in a Taylor vortex. However, because a velocity dif-
ference between the bubble and its neighboring liquid is
needed to generate the required drag force, the bubble is not
stable at the exact center of the vortex. Instead, it settles in a
region of downflow, for example, to the right of P3 (denoted
by the green circle), or to the left of P4 (denoted by the blue
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circle). The larger the bubble size, the further it deviates
from the vortex center. Furthermore, the diameter of the
bubble orbit alternates from one vortex to the next (P3 to
P4) and this was observed experimentally. For this reason, it
is necessary to distinguish between these two types of vortex
bubbles: those located between the inner cylinder and the
vortex center are termed “ic”-vortex bubbles and those lo-
cated between the outer cylinder and the vortex center are
“oc”-vortex bubbles. Their differences will be addressed
later. A detailed study also suggests that the release velocity
and position significantly affect the result of bubble capture,
as observed in the experiments.

Addition of single-size wall bubbles results in the forma-
tion of a chain structure, as shown in Fig. 2(a). The mecha-
nism for the chain generation is unknown. Furthermore, such
chains are found to be stable only at low () values and small
bubble numbers (N), otherwise adjacent bubbles can coa-
lesce into large bubbles and break the structure. This is dif-
ferent from the spiral/ring streak line observed by Shiomi et
al. where the bubbles do not coalesce [1].

When bubbles of the same size are trapped in the interior
of a certain vortex, a bubble ring forms in the annulus such
that bubbles are azimuthally uniformly distributed, as shown
in Fig. 2(b). This uniformity is quite astonishing because the
second bubble may well be 50 bubble diameters removed
from the first. The ring circulates at a speed w along the
annulus in the same direction as the inner cylinder. The for-
mation of a regular bubble ring can be described as follows.
For a N-bubble ring, the newly introduced (N+ 1)th bubble
gradually approaches the equilibrium position along a trajec-
tory such as the simulated one shown in Fig. 1(c). Finally,
the bubble settles in between two adjacent bubbles in the
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FIG. 1. (Color) Bubble captured in Taylor
vortices (a) velocity field across the gap obtained
from a 2D PIV system (Re=194) in the presence
of both a vortex bubble and a wall bubble, as
shown. g is the gravitational acceleration, % is the
vertical position, R; and R, denote the radial po-
sitions of the inner and outer cylinder walls, re-
spectively. (b) Velocity field calculated from Flu-
ent simulation under the same conditions as (a).
(c) Calculated contours of the pressure distribu-
tion corresponding to the velocity field in (b). The
black arrows show the local velocity vectors, and
the thick solid curve shows the trajectory of an
air bubble (£=0.129) after being released from
P1. The color bar between (a) and (b) shows the
common velocity scale (m/s) for both (a) and (b),
and the upper and lower color bars on the right
side show the relative pressure scale (Pa) and
tracking time (sec) for (c), respectively. P2, P3,
and P4 correspond to the positions of the local
pressure minimum, the core of a clockwise Tay-
lor vortex and the core of an anticlockwise Taylor
vortex, respectively.

ring. Then, the distance between adjacent bubbles rearranges
during an “azimuthal adjustment” until the bubbles are uni-
formly distributed in the new (N+1) ring. The whole proce-
dure may be quite slow. For example, it takes approximately
80 min for a two-bubble system (Re=194, d,=0.9 mm) to
evolve from an initial distribution (in which the azimuthal
separation between the two bubbles is 24°) to the equilibrium
structure (with a separation of 180°).

For large values of N, the newcomer cannot easily enter
the necklace. The newcomer therefore “invites” a bubble al-
ready in the ring to join it in a pairing such that each follows
a corkscrew-like trajectory until nearby bubbles have made
room for them to assume their desired positions. However,
there is a saturation number, N, beyond which the above
bubble-addition process cannot continue. In the state of satu-
ration, the newcomer will not settle down, even after a long
time (experimentally we wait for 1 h); and it finally coa-
lesces with its “partner” (and, sometimes, with several other
nearby bubbles) in the ring to form a single large bubble.
Thus the ring is no longer uniform in bubble size. The newly
formed large bubble may escape from the orbit and disappear
at the liquid surface, in which case the remaining bubbles
reorganize and form a regular ring structure once again. Al-
ternatively the new bubble may not be large enough to es-
cape and a ring composed of the original small bubbles and
one large bubble persists.

As shown in Fig. 3, for the same bubble size, N, increases
with increasing Reynolds number. Also, but not shown, it is
found that a smaller bubble size corresponds to a higher N,
value. For example, at Re=194, N, increases from 71 to 150
when bubble size (é=d,/d) decreases from 0.152 to 0.068.
At “saturation,” the bubbles are quite closely packed in the
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FIG. 2. (Color) Typical bubble structures recorded by the high-
speed video camera (a) a 4-bubble chain of wall bubbles; (b) a
110-bubble ring of vortex bubbles. The two subpanels in (a) and (b)
show the schematic top view of a chain/ring with two and three
bubbles, respectively. (c) and (d) show the evolution of a clustering
ring into one with larger, but fewer, bubbles, with (d) being photo-
graphed 30 min later than (c). The white stripe on the inner cylinder
is the reflection due to the illumination while the thin and thick
dotted lines are inserted to delineate the inner cylinder wall and the
inner wall of the outer cylinder, respectively.

annulus. For instance, with d,=1.76 mm and N,=71,
Nd,/27R,=0.76. For d,=0.8 mm and N;=150, Nd,/27@R,
=0.75. Here R, is the radius of the bubble ring. This ex-
tremely dense packing is consistent with our observation of
ring breakage shown in Fig. 2(c): the newly introduced
bubble can settle down after radial and azimuthal adjust-
ments but, if the distance between adjacent bubbles is very
close, many small clusters form—usually composed of two
or three bubbles. These small clusters then coalesce into
large bubbles; however, because the size of the new bubbles
may still not be large enough to permit escape from the orbit,
the original ring of small bubbles can evolve into a ring of
larger bubbles [Fig. 2(d)]. Note that bubble size in the new
ring is not uniform because different clusters may contain
slightly different numbers of bubbles.

From the above, we can see that bubble coalescence and
escape are key factors in the stability of bubble structures;
thus it is important to determine the maximum bubble size
captured in a certain orbit. As shown in Fig. 3, for each
operating speed, there is a maximum bubble size §,, beyond
which the bubble escapes. The whole dataset from experi-
ments and simulation can be best fit with a power function,
showing that ¢, is solely dependent on the square root of the
relative Reynolds number (Re-Re,). To characterize this fea-
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FIG. 3. Maximum bubble size, dj, ,,, and saturation number, N,
for oc-vortex bubbles captured at certain Reynolds numbers. The
gap width, d, is used to form a dimensionless bubble size, &,,. The
diamonds and squares show the maximum bubble sizes obtained
from experiments and Fluent calculation, respectively. The open
circles show the dependence of the saturation number on the Rey-
nolds number. The curve for the maximum bubble size is the best fit
for all the data points.

ture, we developed a simple model by assuming that the
bubbles of the maximum size escape from the location with
the maximum downward fluid velocity (V,,,). From a Fluent
simulation of the short column used in this study, V,,, was
found to be nearly proportional to the difference between the
actual speed of the inner cylinder and the speed at the onset
of Taylor vortex flow, i.e.

Vam:I{Ri((2 _Qc) (1)

with K= 0.184. This result is different from that obtained by
Davey [9] for an infinite aspect ratio. If the drag force bal-
ances gravity and if Stokes’ law applies, we obtain

18K u?
£, = \| —2—(Re-Re,)? = C(Re-Re,) 2. (2)
Apd’gp

The coefficient C is estimated to be 0.016. This differs from
the experimental correlation by 8.5% and is therefore in
good agreement. The difference between the model and the
data is not due to any small uncertainties in the latter, but
rather to the simplicity of the model. The model also indi-
cates that both ic- and oc-vortex bubbles have nearly the
same maximum size at a given Reynolds number, which is
confirmed by the experimental observations.

Another parameter which characterizes the bubble ring/
chain is its angular speed. As shown in Fig. 4, the nondimen-
sional speed @ is independent of the number of bubbles in
the ring/chain. For a single wall bubble, @ decreases with
increasing bubble size but is almost independent of Re. For
example, it is equal to 0.91 for £=0.112, which may imply
some kind of “rolling” motion between the bubble and the
inner cylinder. For vortex bubbles, however, @ depends on
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FIG. 4. Circulating speed of ring/chain at various bubble num-
bers (N) and Reynolds numbers (Re). The squares denote the cir-
culating speed of rings composed of oc-vortex bubbles and other
symbols denote the circulating speed of chains composed of wall
bubbles. The dashed curve shows the undisturbed liquid speed at
the vortex center obtained from simulation.

whether the bubble is of the oc or the ic type. For instance, at
Re=389 and £=0.155, ©,./®.=0.86 and ©;,./w.=1.01,
where @, is the undisturbed liquid velocity at the center of
the vortex. Figure 4 shows that w decreases as speed in-
creases; and small bubbles move faster than large bubbles.
The dependence of @ on & leads one to wonder what might
happen if two bubbles with different sizes were to travel
nearly the same orbit. Taking an oc-vortex bubble as an ex-
ample, it is observed that the smaller bubble (BS), having a
higher circulating speed as stated above, soon catches up
with the large bubble (BL). Because BS holds a slightly
lower, but outer, position than does BL (the displacement
may be less than d,,), it overpasses BL by steering below it
and moves ahead, followed by successive chasing-
overpassing games. The larger the difference in bubble size,
the more easily they overpass. However, overpassing is a
dangerous process for the two bubbles during which they
might coalesce into one bubble, especially at high rotation
speeds. Even if they can survive for a time, the crossing
behavior does not continue indefinitely; the difference in cir-
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culating speeds becomes less and less significant due to the
mutual interaction between the two bubbles, until finally a
state is reached in which they coalesce to form a ring of
nonuniform bubbles, much like that shown in Fig. 2(d).

By analogy, droplets (water, p=1.0 g/cm?) and solid par-
ticles (glass beads, p=2.5 g/cm?) might be expected to be-
have much like bubbles, although they tend to sink, rather
than float, in the mineral oil. It is observed that the droplets/
particles exhibit a ‘“dancing” behavior at high rotation
speeds: they exhibit a characteristic periodic oscillation in
the axial, radial and tangential directions. Such a motion can
be viewed as a combination of the particle motion in the
vortex flow and along the annulus, although it is very much
complicated by the unmatched periods of the two motions.
This behavior has been explored by Wereley and Lueptow in
the absence of gravity [10]. We find that gravity actually has
a significant influence. As a result, the observed limit cycle
for the dancing particles is not centered on the vortex, as in
the results of Wereley and Lueptow [10], but is instead offset
so that particles reside mostly in regions of upflow. Such a
“dancing” behavior becomes less significant with decreasing
rotational speed until finally the trajectory is purely azi-
muthal, and the equilibrium position is always lower than the
position of the vortex core. Both droplets and particles can
form rings, but the mechanism for ring breakage is different
from that for bubbles; without coalescence, one droplet/
particle falls out of the orbit if it is too close to another.

In summary, we have presented a set of complicated
bubble (and droplet/particle) behaviors observed in a seem-
ingly “simple” Taylor vortex system, including the different
radial positions of ic and oc bubbles, uniform spacing be-
tween bubbles of the same size within a planar group of
bubbles, orbit crossing of small and large bubbles, and
“dancing” of particles. The capture of vortex bubbles in a
Taylor vortex can be satisfactorily explained by the balance
of drag force and gravity in the vertical direction. When
bubbles are azimuthally, or nearly azimuthally, distributed, as
in rings or in passing events, the interactions are not well
understood. These phenomena are to be the subject of further
study.
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