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Measuring the transverse magnetization of rotating ferrofluids
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We report on measurements of the transverse magnetization of a ferrofluid rotating as a rigid body in a
constant magnetic field, H, applied perpendicular to the axis of rotation. The rotation of the fluid leads to a
nonequilibrium situation, where the ferrofluid magnetization M and the magnetic field within the sample, H,
are no longer parallel to each other. The off-axis magnetization perpendicular to Hy is measured as a function
of both the applied magnetic field H, and the angular frequency (). The latter ranges from a few hertz to
frequencies well above a characteristic inverse Brownian relaxation time. Our experimental results strongly
indicate that the transverse magnetization is caused only by a small fraction of the colloidal ferromagnetic
particles. The effect of the polydispersity of the ferrofluid is discussed. Experimental results are compared to
predictions based on several theoretical models. A single-time relaxation approach for the so-called effective
field and a field-dependent Debye relaxation of M yield reasonably good shapes of the curves of transverse
magnetization vs (). However, like the other models, they overestimate their magnitudes.

DOI: 10.1103/PhysRevE.73.036302

I. INTRODUCTION

Ferrofluids are colloidal suspensions containing mon-
odomain ferro- or ferrimagnetic nanoparticles with a typical
diameter of 10 nm [1]. Each particle carries a permanent
magnetic moment, which is proportional to the volume of its
magnetic core. To suppress agglomeration, the particles in
the ferrofluids that have been investigated are covered with a
surfactant coating, which prevents them from approaching
each other too closely. The hydrodynamic diameter d, of
these particles (magnetic core plus dead layer plus surfactant
coating) has a significant influence on the interaction be-
tween the particles and the carrier liquid. Many phenomena
in ferrofluids, such as the viscosity enhancement in a static
magnetic field [2,3], the occurrence of “negative viscosity”
[4-6], or the magnetovortical resonance [7,8], are direct re-
sults of this interaction. Nowadays, ferrofluids are used in a
broad range of applications from vacuum seals to medical
treatments [ 1,9,10]. But despite a long research history, there
is yet no full understanding of the dynamics of ferrofluids. In
particular, a generally accepted constitutive equation is still
missing. It is therefore reasonable to investigate a key
mechanism of ferrofluids carefully, namely, the difference of
rotation of the suspended particles and the surrounding car-
rier liquids in a constant external magnetic field.

Heegaard et al. [7], and Gazeau et al. [11] used magneto-
optical birefringence to examine the local vorticity ) of di-
lute ferrofluid flow. While they measured the angle between
H and M by means of optical birefringence in a dilute fer-
rofluid sample, the subject to our research is to measure the
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same effect via the off-axis magnetization component in a
nondilute ferrofluid. In Heegaard et al.’s work [7], the rota-
tion rate varies between zero and 220 rad/s. They present
data of the normalized bifringence intensity as function of ().
However, the frequency range was too small to allow for the
observation of a peak behavior as a function of () that is
predicted by many theoretical models for the magnetization
dynamics. Furthermore, since only a normalized quantity
was reported, a direct quantitative comparison to theoretical
predictions is not possible.

Some of the coauthors of this work used a torsional pen-
dulum [12] in order to examine the transverse relaxation time
7,(H,) and the rotational viscosity 7z(H,) in the shear-free
flow of rigid-body rotation (RBR) as function of the exter-
nally applied magnetic field H,. The torsional pendulum ex-
periment [12] was operated by necessity in the low-
frequency regime (7<<1, where 7 denotes the relaxation
time of the relevant relaxation process. To obtain a more
complete insight into the rotational dynamics of ferrofluids
we have devised an experiment that can probe also higher
frequencies. For that purpose we use a slender cylinder filled
with ferrofluid in a spatially homogeneous constant magnetic
field perpendicular to the cylinder axis. The cylinder with the
ferrofluid is rotating as a rigid body with constant frequency.
Within this experiment, the rotation rate () is varied between
zero and 2500 rad/s and thus extends well into a range
where Q7=1.

In the rotating ferrofluid, the local magnetization M(r,7)
will be off from the equilibrium value M4(H) and a viscous-
drag torque occurs by virtue of the difference between the
angular velocity of the particles and the local angular veloc-
ity of the surrounding liquid. In order to countervail this
flow-induced torque, a magnetic torque M X H appears. This
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interplay between the flow-induced and the magnetic torque
generates a component of M perpendicular to the externally
applied field H,. Deviations from the equilibrium are largest
when the rotation rate () of the fluid is comparable to the
relaxation rate 1/7.

According to Maxwell’s equations, the relation between
the constant magnetic field H inside the ferrofluid sample,

the magnetization M, and the externally applied magnetic
field H, reads

H+NM = H,. (1)

Here N denotes the demagnetizing factor that reflects the
geometry of the sample under investigation (N=1/2 in our
experimental setup). Thus, to sum up, in a rotating ferrofluid
a finite angle between H and M is formed when Hj is per-
pendicular to the rotation axis.

II. CHARACTERIZATION OF THE FERROFLUIDS

We used several ferrofluids out of the APG series of Fer-
roTec. According to the manufacturer, the saturation magne-
tization of all the ferrofluids that we used is M&:
=17507 A/m (x10%) leading to a volume concentration
¢=3.6% of the suspended magnetic material. We have mea-
sured the equilibrium magnetization of the ferrofluids with a
vibrating sample magnetometer (LakeShore 7300 VSM) with
a commercial PC user package. In order to get information
on the particle size distribution of the ferrofluid under inves-
tigation, we used a regularization procedure based on
Tichonovs method [13]. Generally, the equilibrium magneti-
zation M®I(H) can be approximated by a superposition of
Langevin-functions

N
M(H) = 2 willay(H)]. (2)

i=1
Here L(x)=coth(x)—1/x denotes the Langevin function,
which depends on the dimensionless Langevin parameter

a;(H)=pugm;H/kgT, and w; are the so-called magnetic
weights. m; refers to the magnetic moment of particles with
magnetic diameter d;, i.e., m;=m/64>M™2 with M4 the
bulk-saturation magnetization. From Eq. (2), we can deduce
the initial susceptibility xo=(mpoM "/ 18ksT)SN ,w;d> and
the saturation magnetization M. =3 w, of the ferrofluid

under investigation. Minimizing

K

o= 2, [M(H,) - M} (3)
i=1

with respect to w;, in which {H,, M}, indicate the experi-
mental data, leads to an ill-posed problem, resulting in large
positive and negative magnetic weights w;. To avoid these
unphysical results, one introduces an additional quantity p
=Efi1wi2 and now minimizes

o' =o+pa 4)

with respect to w;, where @ refers to the so-called regulariza-
tion parameter (a=0 leads to the initial ill-posed problem).
Using a small but finite positive & allows for the computa-
tion of the distribution of the magnetic weights w; as func-
tion of the particle diameters d;.

In Fig. 1, we present the measured M°I(H) curve together
with the distribution of the magnetic weights w(d;) (inset) for
one of our sample ferrofluids. The solid curve was calculated
using Eq. (2) together with w(d;) as obtained from the regu-
larization method. The solid line indicates the saturation
magnetization of the ferrofluid sample with Mf;
=19 108.6 A/m. From the saturation magnetization, the vol-
ume concentration of the magnetite particles was found to be
p=M-r/ M?:tlk=4.l%, in reasonable agreement with the

manufacturer’s specifications. For the initial susceptibility,
we found the value y,=1.09.
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FIG. 2. Sketch of the experimental setup. (a) The cylindrical
ferrofluid sample rotates with the angular velocity € in the pres-
ence of the applied static magnetic field H perpendicular to 2. The
off-axis magnetization M, is measured with a calibrated Hall probe
located at the distance h=4.75 mm from the middle of the cylindri-
cal sample holder with inner radius R=3.2 mm. (b) The fields M,H
within the ferrofluid sample.

III. EXPERIMENTAL SETUP

The experimental setup is sketched in Fig. 2. The ferro-
fluid is filled into a cylindrical plexiglass sample holder with
inside radius R=3.2 mm. The sample is placed centrally be-
tween the poles of an electromagnet (Bruker B-E 10V) pro-
viding the homogeneous and temporally constant magnetic
field Hy=He,. This field is constant within +2% in the spa-
tial range of our experiment.

The cylindrical sample holder is mounted on an aluminum
shaft, which is driven via a gearing system by a DC motor.
The sample holder rotates with a constant rotation rate ().
The cylinder radius is so small that we can assume the flow
u always to be that of a rigid body, i.e., %(V Xu)=0e,.

The off-axis magnetization component M, is measured by
a Hall probe, mounted on an aluminum tube surrounding the
sample and placed at the distance b=4.75 mm away from the
center of the cylindrical sample. According to the manufac-
turer’s data sheet, the angular sensitivity range is +3°; thus,
the sensor responds only to field components perpendicular
to the surface of the Hall sensor.

A Pt-100 resistor and a calibrated Gaussmeter (LakeShore
421 Gaussmeter) provide additional information about the
experimental environment. The DC voltage for the motor
and the magnet current are controlled by a LabView® pro-
gram. The Hall voltage, Pt-100 resistance, rotation rate, and
flux density are recorded by the program via a digital multi-
meter (Keithley 2000 multimeter) and an I/O card installed
in a PC.

The magnetic field outside an infinitely long cylinder is

given by
R\*(M- 1
H°“‘=H0+(—> ( rE——M). (5)
r rr 2

Here, R is the inner radius of the cylindrical fluid container,
r is the radial position vector, and Hj is the externally ap-
plied magnetic field. Because of the finite size of the Hall
sensor, the y component measured by the sensor is given by

HSCHSO[‘ — ija H()Utdx —_ ( R )2]-] (6)
Y T2a) 2vp?)

—a Va* + b?

In our experimental setup, b=4.75 mm, R=3.2 mm, and a
=2 mm; here, a denotes the horizontal extension of the Hall
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FIG. 3. H;™* as function of ) at Hy=30 kA/m for five ferrof-
luids out of the APG series of FerroTec that differ in their viscosity

7.

sensor. With these values we find H™™"'=-0.386 H, where

Hy,=-M /2 is the y component of the internal magnetic field

in the ferrofluid.

IV. EXPERIMENTAL RESULTS
A. Viscosity dependence

In the first experimental series, five ferrofluids with dif-
ferent viscosities were investigated. Our magnetogranulom-
etric results confirmed the manufacturer’s specification that
the particle distributions were always the same. In each ex-
periment of this series, the external magnetic field was H,
=30 kA/m. We measured H, as a function of (), ranging
from O up to 800 rad/s. The results of these measurements
are presented in Fig. 3.

After completing the experiments at Hy=30 kA/m, we
performed the same measurements at Hy=15 kA/m. In both
experiments we observed a shift of the position of the maxi-
mum of the experimental curves toward lower () values with
increasing viscosity. This behavior reflects the Brownian na-
ture of the relaxation process since the Néel process—the flip
of the internal magnetic moment—is independent of the vis-
cosity 7. One can therefore expect that only Brownian par-
ticles, i.e., only those particles of sufficient size for the mag-
netic moment to be rigidly coupled to the crystalline
structure of the particle, are capable of contributing to the
transverse magnetization peak observed by our method.

From the position of the peak maximum, we deduced the
relaxation time 7 via the relation QO™ 7=1+ x,/2, suggested
from a simple Debye approach ignoring the fact that here H,,
was already too large to justify the use of the initial suscep-
tibility x,. In Fig. 4, we show the so-obtained relaxation time
7 as function of the fluid viscosity for two magnetic fields
Hy=15 kA/m and Hy=30 kA/m, respectively. Note that the
relaxation time for the former is larger by almost a factor 2
than the latter. This gives a first hint to the field dependence
of the relaxation process. If one were to identify 7 by 78
=371 V,/kgT with a hydrodynamic volume Vh=d277/ 6, then
one would obtain from the straight lines in Fig. 4 two differ-
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FIG. 4. Relaxation time 7 as function of the viscosity # given by
the manufacturer. The relaxation time was determined using the
relation QO™ 7=1+ y,/2, where O™ denotes the position of the
maximum (cf. Fig. 3). Open circles denote measurements at H,
=30 kA/m, full circles denote results of measurements performed
at Hy=15 kA/m. Error bars indicate the statistical errors.

ent estimates of the hydrodynamic particle diameters,
namely, d;,=(25.0=1.7) nm from the data at H,=30 kA/m
and d,=(30.5+0.3) nm for Hy=15 kA/m.

B. Measurements at different constant external fields H

Further experiments that we describe in the remainder of
this paper were performed on the ferrofluid APG 933 with
7=0.5 Pas. We measured H, as a function of ) for a fixed
value of H. After completing an experiment, we increased
H, and repeated the experiment. In this way, we got H,({2)
for seven different values of H,. The results of these mea-
surements are shown in Fig. 5. One observes that the maxi-
mum amplitude of H, increases with increasing H, and that
the peak position (™ is shifted toward higher () values
with increasing H,,.

In a first attempt to compare to theoretical models, we
analyzed the experimental data obtained at Hy=30 kA/m
(cf. Fig. 7). To that end we calculated H;"’“SOI(Q) numerically
according to the models presented in the Appendix. In order
to describe the experimental data with the theoretical models,
we used 7 as fit parameter and, in addition, an ad hoc am-
plitude correction factor f (discussed below) which forces
the model prediction for the maximal H;™" to coincide with
the measured one.

The fact that we found a much larger mean hydrodynamic
diameter in the experiments with ferrofluids of different vis-
cosities than in the equilibrium magnetization measurements
and the necessity of an amplitude reduction factor f<<1 re-
flects, in our opinion, the fact that only a fraction of the
particles contribute to the experimental signal: only those
particles contribute that have a volume large enough to en-
sure the magnetic moment to be fixed within the particle and
therefore to relax in a Brownian manner. As already men-
tioned, there exist two distinct relaxation processes, namely,
the Brownian and the Néel relaxation. Usually, one defines
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FIG. 5. (Color online) Comparison between the experimental
data and the prediction of the Debye model with 7(H) according to
Eq. (8). Here the fit parameters =4 ms, y=10" m/A, and f
=0.164 were used.

the so-called effective relaxation time 7 by the sum of two
relaxation rates

1 1 1
e A 7

Here, 7V=f;'exp(xV,,/kyT) is the Néel relaxation time (f,:
attempt frequency ~ 10° Hz [14], «: anisotropy constant, V,,,:
magnetic volume of the particle). The typical range of « for
magnetite-based ferrofluids is about 10—50 kJ/m? [15,16].
With, e.g., k=44 kI/m?, 7%=0.5Pas, f,=10° Hz, and d,
=d,,+2s with s=2 nm (s denotes the thickness of the poly-
meric surface layer), the Shliomis diameter dg, at which #
=17V, was calculated to =14 nm. Therefore, only particles
with a diameter d >d relax via the Brownian process and
contribute to the observed phenomenon. In Fig. 6, 2, 7, and
7" are plotted for x,=44 kJ/m?, k,=11 kJ/m?3, 5=0.5 Pas,
fo=10° Hz, and s=2 nm. For x,=44 kJ/m?, the Shliomis di-
ameter is dg=~14 nm, whereas for «,=11 kJ/m?3, dg
=~ 23 nm. This indicates a strong influence of the anisotropy
constant « on the boundary between large particles that relax
via the Brownian process, that therefore, contribute to the
observed phenomenon, and those that relax in a Néelian way.

Theoretical modeling

As mentioned already, in our first attempt to describe the
behavior of the magnetization M for rotating ferrofluids, we
used the single-relaxation-time models listed in the Appen-
dix. They are discussed at greater length in Ref. [17]. Figure
7 shows comparisons of experimental data with the fits for
the case of the medium-sized field Hy=30 kA/m. The pa-
rameters used to calculate Hy(Q) are summarized in Table 1.

We found that the models FK, S’01, and S’72 with the
finite a3=py/4¢ do not properly reproduce the position ™**
of the maximum of the experimental curve in Fig. 7. In fact,
expression (A9) shows that the initial slope for the models
with a3=uq/4{ is primarily determined by the external field
value H,. Therefore, even a substantial increase of 7 would
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TABLE I. Models described in the Appendix are used in Fig. 7
in order to get the presented curves. f factor refers to the amplitude
factor.

Relaxation time 7
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FIG. 6. (Color online) Illustration of the relaxation times 75, 7,
and 71 as function of the magnetic particle diameter in nanometers.
The dashed curve corresponds to the Brownian relaxation time 7.
The dotted curves represent relaxation times according to Néel for
two different x;=44 kJ/m> and k,=11 kJ/m>. The solid curves
show the effective relaxation times. The intersections of 78=7" are
marked with gray circles.

shift the curves only slightly to smaller (). Another drawback
of the FK, S’01, and S’72 models is that the slope of the
curves becomes more and more negative for >0 In
contrast, using the models with a;=0 with an appropriate
choice of the fit parameter 7, we can reproduce the peak
position Q™ However, only the model ML(S) reproduces
the experimental curve in Fig. 7 for larger values of ().
From the measured curves of H,(€),H,) vs Hy, we ex-
tracted the position of the maximum [denoted as Q™*(H,)]
and the maximum value max(H}™*)=H"*(Q™*,Hy). The
latter is shown in Fig. 8 in comparison to the results of the
models. In order to fit the maximum amplitude, we had to
introduce an ad hoc additional amplitude reduction factor f
(cf. Table I). Note that the models Debye and S’72 yield the
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120 —ML(S)
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Lo TS
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FIG. 7. (Color online) Comparison of the experimental data
(symbols) obtained at Hy=30 kA/m with the numerical results ac-
cording to different theoretical models (cf. Appendix). See Table I
for an identification of the curves and the fit parameters used.

Model Color f factor (ms)
Debye cyan 0.164 2.5
S*72 magenta 0.164 2.5
FK blue 0.125 5

S’01 black 0.125 35
ML(F) green 0.125 6

ML(S) red 0.125 35

same maximum [17]. The other models [FK, S’01, ML(F),
and ML(S)] also have a common but different maximal H,,.
Thus, Table I contains only two different amplitude reduction
factors f. Figure 8 shows that, already, the simple Debye
model reasonably well reproduces the variation of
max(H,™") with H, if one ignores the ad hoc amplitude
reduction factor.

We mentioned above that the models with a3 # 0 do not
reproduce the experimental peak positions Q™. Figure 9(a)
shows QO™ as function of H, compared to numerical results
of Debye and ML. Debye yields a shift in the wrong direc-
tion, while the peak positions of ML(S) do not increase
strongly enough with increasing H,. On the other hand, the
ML(F) results show a somewhat better agreement with the
experimental data.

We also mentioned that the simple Debye model yields
better values for the amplitude max(H{™"). Thus, in order to
describe both the variation of the amplitude max(H‘;,e“S"r)

200

150
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y

max( ™) (A/m)

50

0 10 20 30 40 50 60
H, (kA/m)

FIG. 8. (Color online) Maxima of H;C"S"r:I-I;cns"r(Qm"”‘) as a
function of the external field Hy. Squares with error bars refer to
experimental data. Solid line shows the result of the Debye and
S’72 model. Dashed line is common to the models denoted as FK,
S’01, and ML. Parameters are listed in Table I.
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FIG. 9. (Color online) (a) maxima locations,
QM and (b) initial slopes, N (9), of the curves
H™(Q,Hy) vs Hy. Circles with error bars: ex-
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periments. Dashed lines: simple Debye model
with 7=2.5 ms, f=0.164. Dotted lines ML(F)
with 7=6 ms, f=0.125. Dashed-dotted lines:
ML(S) with 7=3.5 ms, f=0.125. Full lines: gen-
- eralized Debye model with 7{H) according to Eq.
il (9) and =4 ms, y=10"* m/A, f=0.164.

0 10 20 30 40 50
H, (kA/m)

with H, as well as the obvious increase of ™ with the
magnetic field, we finally used the Debye model with an
H-dependent relaxation rate 1/7(H) that increases with H
according to the simple relaxation time ansatz [18]

L(a)
H) = 2rBa L@ (8)

Here 7 denotes the Brownian relaxation time, £(«) is the
already-mentioned Langevin function, and a=yH. For this
generalized Debye model, we used 7% and 1y as fit parameters
together with the amplitude reduction factor f=0.164 ob-
tained for the simple Debye model.

We also analyzed the behavior of our experimental curves
in the low-frequency regime, i.e., the initial slope

d Sensor
- —Y (9)
dQ 0—0

as a function of H,,. For a quantitative evaluation of the ex-
perimental A, we need to determine the linear frequency re-
gion for each H, separately. This is accomplished with a
linear regression fit with error weighting. The basic idea of
that method is to minimize the so-called &-square merit func-
tion

Ny (i) i\ 2

1 H? - yQ

§2=—E<—;’f) ) (10)
NS\ ARV

so as to get y and its error bar [19]. Here AH() is the error
bar related to the measured data of H)’) In F1g 9(b), we
show the experimental initial slope \ as a function of H in
comparison to model predictions; again the Debye model
with H-dependent relaxation time 7 represents the experi-
mental data best.

V. DISCUSSION AND CONCLUSION

The results of Figs. 9(a) and 9(b) can be summarized as
follows: ML(F) with 7=6 ms and f=0.125 (dotted lines)
reproduces the behavior of O™ and the initial slope \ (9)
quite reasonably, whereas the simple Debye model with a
constant 7=3.5 ms and f=0.164 (dashed lines) is inferior, in
particular, because of the shift of 1™ in the wrong direc-
tion. The generalized Debye model with the H-dependent
oH) (8) and =4 ms, y=10" m/A, and f=0.164 (full
lines) reproduces Q™ and \ significantly better than the
simple Debye model. As an aside, we mention that, in using
the simple Debye model with other combinations of 72,y
one can get reasonable values of Q™ as well while the
initial slope N depends more sensitively on these parameters.
The models FK, S’01, and S’72 with the nonlinear contribu-
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tions a;[M X (M X Hy)] to the relaxation of the magnetiza-
tion were not included in Figs. 9 since their predictions for
H (), H,) are for larger H|, too far off from the experimental
results (cf, e.g., Fig. 7). With this reasoning, we tried to fit
our complete set of data of Fig. 5 at different H, consistently
with the extended Debye model, but the quality of the data
reproduction is rather limited because of the substantial de-
viations at small and large H,.

For the above-obtained parameter 78=4 ms, the hydrody-
namic particle diameter would be d;,~27.5 nm. This again
supports the argument that the observed H, is produced only
by the large particles.

Heegaard et al. [7] used a ferrofluid containing cobalt
ferrite particles, and the viscosity of the fluid is given as 7
=1 Pas. They found a Brownian relaxation 7=6 ms; as-
suming spherical particles, this relaxation time is correlated
to a hydrodynamic diameter of about dy=30 nm, whereas
the characteristic magnetic size is d,,=8.2 nm. The relax-
ation time obtained in Ref. [7] is comparable to the relax-
ation time 7°=4 ms that was inferred from our experiments
using the generalized Debye model. The large Brownian re-
laxation time implicates the presence of large particles or
even clusters within the fluid.

Lal er al. [20] used x-ray photon correlation spectroscopy
in order to study the static and dynamic behavior of ferrof-
luids. These authors investigated a ferrofluid containing
maghemite particles (y—Fe;0,) with a volume concentration
of ¢=3.5%. From the measured autocorrelation functions
g(1), they extracted the relaxation rates I'(Q) as a function of
Q>. A fit to their data yields a diffusion coefficient Dy=9.1
X 10719 ¢m?/s. With the help of the Stokes-Einstein relation,

and 7=0.4 Poise, the hydrodynamic radius was found to be
Ry=591 A, i.e., the diffusing object (observed for Q
<0.01 A" is much bigger than the individual colloidal
sphere with a nominal radius of r=80 A.

In this paper, we have presented measurements of the
transverse magnetization of a ferrofluid rotating as a rigid
body in the presence of a static magnetic field oriented per-
pendicular to the axis of rotation. The rotation rates extend
well into the range of (17> 1. For the largest magnetic fields,
the equilibrium magnetization already shows significant de-
viations from a linear behavior.

The comparison of our experimental results with the pre-
dictions of several different models can be summarized as
follows: Models S’72, S’01, and FK have a tendency to shift
the maximal location (), in the transverse magnetization,
i.e., in the curves of H,({2) to frequencies that are too large
in comparison to experiments. Furthermore, the shape of the
curves for Hy({}) vs () are somewhat better reproduced by
the ML and Debye models. Concerning the variation of the
maximum location {),,, of H, and of its low-frequency
slope (dH,/d()) with externally applied field H,, we found
that ML(S) and a simple Debye model are inferior to ML(F)
and a Debye model with a field-dependent relaxation rate
7(H) with the latter lying slightly closer to experiments than
the former. But none of these single-relaxation-time models
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TABLE II. Coefficients in Egs. (A1)-(A7). Here x=x(H)
=M°®U(H)/H denotes the chord susceptibility, 7 is the relaxation
time, and F=F(M) is the inverse function of M°4(H) divided by M.
Furthermore, uy=4mX 1077 Vs/Am and {=3/2¢7 (vortex viscos-
ity) with the volume fraction ¢.

Model a a, as Eq.
Debye? X/ T 1/ x+1/2 0 (A1)
$72° X7 1/ x+1/2 wol 4L (A2)
FK° Vi F+1/2 ol 4L (A4)
s01¢ 1/(F7) F+1/2 wol 4L (A3)
ML® £ F+1/2 0 (A5)

“Reference [1].

PReference [21].
“Reference [22].
dReference [23].
“Reference [24].

seems to describe our findings in the full range of frequen-
cies and external magnetic fields and all of them require a
substantial overall amplitude reduction factor since their pre-
dictions concerning the magnitude of the transverse magne-
tization are too large by factors of 6-8 (these f factors are
summarized in Table I). Furthermore, they do not properly
describe the experimentally observed saturation behavior of
H7(€Q) with increasing H,,.

Real ferrofluids, being composed of a broad distribution
of particles sizes, presumably show more complex magneti-
zation dynamics than those of the models here, in particular,
when () is not very small compared to the smallest relaxation
rate of the system. In semidilute systems, where the dipolar
interaction between the magnetic particles is not yet relevant,
one can expect the magnetic degrees of freedom to relax
independently from each other. We are currently investigat-
ing such polydisperse model extensions to describe the ex-
perimental data.
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APPENDIX: MODELS

The model equations for the magnetization in situations
where M and H are spatially and temporally constant but not
parallel to each other include either a term describing the
relaxation of M toward M®(H) or of the effective field
H(M) toward the internal magnetic field H [17]. We con-
sider here five different models (Table II) that are discussed
in Ref. [17]. They yield the following relations between the
fields

Debye [1]: Q@ XM= l(M — M*9) (A1)
T

036302-7
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S72[21] QX M=-(M- M) + Z—E[M X (M X H)]
T

(A2)

FK [22]: © X M= v,(H - H) + Z—E[M X (M X H)]

(A3)

S'01[23]: @ x H"= L(He_ 1) + Z—E[Heff X (M X H)]
T

(A4)

ML [24]: Q@ X M= &H - H). (A5)

They are solved numerically together with the relation

PHYSICAL REVIEW E 73, 036302 (2006)

H=H,-M/2, (A6)

following from Maxwell’s equations. Note that H,=-M,/2
for our setup. As outlined in Ref. [17], the equations can be

written in the following common form:
QXM= al(azM - Ho) + 013[M X (M X Ho)] (A7)

with the coefficients summarized in Table II. For 7y, we
used yy= xo/ 7[22]. For the parameter &, we investigated two
different choices: either the low-field variant, é=yx,/7 as in
Ref. [22]; which is denoted here by ML(F), or the variant
E=1/[F(M)7] as in Ref. [23], which is referred to as ML(S).
Performing an expansion for small (), we obtained from

Eq. (A7) an expression for M, of first order in {)

2
M= M. 5 2. (A8)
B g+ a3M eq H 0

From this equation, we find for the initial slope the relation

(1) 2
am| oM w1 A0
dQ) O—0 Q )+ CK3M§qHO
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