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The dynamics of the localized region of the Lyapunov vector for the largest Lyapunov exponent is discussed
in quasi-one-dimensional hard-disk systems at low density. We introduce a hopping rate to quantitatively
describe the movement of the localized region of the Lyapunov vector, and show that it is a decreasing function
of the hopping distance, implying a spatial correlation of the localized regions. This behavior is explained
quantitatively by a brick accumulation model derived from hard-disk dynamics in the low density limit, in
which hopping of the localized Lyapunov vector is represented as the movement of the highest brick position.
We also give an analytical expression for the hopping rate, which is obtained as a sum of probability distri-
butions for brick height configurations between two separated highest brick sites. The results of these simple

models are in good agreement with the simulation results for hard-disk systems.
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I. INTRODUCTION

The dynamical instability and many-body nature play es-
sential roles in the justification of a statistical treatment for
deterministic dynamical systems. The dynamical instability
is described as a rapid expansion of the difference between
two nearby trajectories, namely the Lyapunov vector. A sys-
tem is called chaotic if at least one exponential rate of
change of the amplitude of the Lyapunov vector (Lyapunov
exponent) is positive. A Lyapunov exponent X is defined for
each independent direction of the phase space, so the chaotic
properties of many-body systems can be characterized by an
ordered set of Lyapunov exponents, the so-called Lyapunov
spectrum (AN N} where AV=A®=_... The
Lyapunov spectrum is connected to the contraction rate of
the phase space volume (roughly speaking, the dissipation
rate) through the sum of all the Lyapunov exponents, allow-
ing the calculation of transport coefficients from the
Lyapunov spectra [1-3]. The conjugate pairing rule for
Lyapunov spectra for Hamiltonian systems and some uni-
formly thermostated systems (e.g., isokinetic Gaussian ther-
mostat) reduces the calculation of the sum of all the
Lyapunov exponents to the sum of just one pair [4-7]. The
set of all positive Lyapunov exponents specifies the natural
invariant measure [8,9]. Representations of the invariant
measure can be calculated from the Lyapunov exponents of
periodic orbits [10] and these ideas motivated the earliest
fluctuation theorem [11-13]. On the other hand, recently,
much attention has been paid to individual Lyapunov expo-
nents and their Lyapunov vectors for many-body systems. As
each Lyapunov exponent has the dimensions of inverse time,
the Lyapunov spectrum can be regarded as a time-scale spec-
trum. From this point of view, Lyapunov exponents with
small absolute values are connected to large and macroscopic
time-scale behavior of many-body systems, and in this re-
gion the wavelike structure of Lyapunov vectors, known as
the Lyapunov modes, is observed [14-18]. The Lyapunov
mode is a reflection of a collective movement (phonon
mode) of many-body systems, and comes from dynamical
conservation laws and translational invariance [18-21]. On
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the other hand, the large Lyapunov exponents are dominated
by small and microscopic time-scale movement, and in this
region the spatially localized behavior of the Lyapunov vec-
tor, the so-called Lyapunov localization, appears [22-29].
Analytical calculations have been attempted for the largest
Lyapunov exponent of many-body chaotic systems, and even
for the full Lyapunov spectra in some cases [15,26,30-37].
The time-scale separation in many-body systems is crucial to
extract a macroscopic dynamics from microscopic many-
body dynamics, and the Lyapunov spectrum allows us to
discuss it dynamically.

One of the features of Lyapunov vectors for many-body
systems is Lyapunov localization, which appears when the
components of a few particles dominate the Lyapunov vec-
tor. This strongly localized region of a Lyapunov vector
moves with time. The magnitude of the localization of each
Lyapunov vector can be measured quantitatively by the
Lyapunov localization spectrum, which is defined as a set of
exponential functions of entropylike quantities for the nor-
malized amplitudes of the Lyapunov vector components
[29,38,39]. We have previously reported that the Lyapunov
localization spectra show a critical bending point at low den-
sity, and this limits the number of strongly localized
Lyapunov vectors. At the bending point the dependence of
the Lyapunov localization spectrum with respect to
Lyapunov indices changes from linear to exponential
[29,38]. This critical bending point behavior of the Lyapunov
localization spectrum appears when kinetic theory properties
(e.g., the Krylov relation for the largest Lyapunov exponent,
and the mean free time being inversely proportional to den-
sity, etc.) dominate the behavior of the hard-disk system.
However, the Lyapunov localization spectrum requires a
time-average and characterizes only the static localization of
the Lyapunov vectors. The physical meaning of the move-
ment of the localized regions of Lyapunov vectors is not
clearly understood.

The principal aim of this paper is to study dynamically the
movement of the localized region of the Lyapunov vectors
corresponding to the largest exponent in hard-disk systems at
low density. To discuss this problem we use the fact that at
low density only that part of the Lyapunov vector corre-
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sponding to two particles is large [29]. This is observed nu-
merically for the Lyapunov vectors corresponding to expo-
nents in the linear dependence region of the Lyapunov
localization spectrum. At low density, this is due to the fact
that collisions are rare and typically occur between only two
particles. The movement of the localized region of the
Lyapunov vector appears to be a series of jumps or hops, so
we introduce a hopping rate to describe the dynamics. To
simplify the problem we consider quasi-one-dimensional
systems, in which the system width is so narrow that disks
always remain in the same order [18,21,29,38] and we limit
our study to the largest exponent. We show that the hopping
rate depends inversely on the distance. This implies that
there is some spatial correlation among localized regions of
Lyapunov vectors.

We explain the hopping-distance dependence of the hop-
ping rate in many-hard-disk systems in two ways. First we
use a simple model expressed as an accumulation of bricks.
Here, the hopping of the localized region of the Lyapunov
vectors is expressed as a change in the position of the highest
brick site. This model is a one-dimensional version of the
so-called clock model, which has been used to calculate
Lyapunov exponents for many-hard-disk systems [35-37].
We demonstrate that this model can reproduce the largest
Lyapunov exponent for the quasi-one-dimensional hard-disk
system. As a second approach to the hopping behavior we
propose an analytical method to calculate the hopping rate
from the sum of probability distributions for the brick height
configurations between two separated highest brick sites. Us-
ing this analytical approach we can also discuss the relation
between the hopping rate and the Lyapunov exponent. Hop-
ping rates calculated by these two approaches are in good
agreement with the ones for quasi-one-dimensional hard-disk
systems.

The outline of this paper is as follows. In Sec. II we
introduce the quasi-one-dimensional hard-disk system and
show the localized behavior of the Lyapunov vector corre-
sponding to the largest Lyapunov exponent at low density. In
Sec. III we introduce the hopping rate of the localized region
of the Lyapunov vectors and show the hopping-distance de-
pendence for many-hard-disk systems. In Sec. IV we discuss
the hopping rate using a brick accumulation model. In Sec. V
we propose an analytical expression for the hopping rate.
Section VI is our conclusion and some remarks. In Appendix
A we discuss the technical details of the calculation of the
hopping rate. In Appendix B we give a microscopic deriva-
tion of the brick accumulation model.

II. QUASI-ONE-DIMENSIONAL SYSTEM AND
LOCALIZATION OF LYAPUNOV VECTORS

The system we consider in this paper is a quasi-one-
dimensional system consisting of N hard-disks in periodic
boundary conditions. All of the particles are identical with
radius R and mass M, and the shape of the system is rectan-
gular with the length L, and the width L, satisfying the in-
equality 2R <L, <<4R. The schematic illustration of the sys-
tem is given in Fig. 1, in which we number particles
1,2,...,N from left to right. For the actual numerical results
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FIG. 1. A quasi-one-dimensional system consisting of hard-
disks with radius R. The length L, and the width L, of the system
control the density. The width L, satisfies the ine(juality 2R<L,
< 4R, so that the disks remain in the same order and particles can
be numbered 1,2, ...,N from left to right.

shown in this paper, we used: R=1, M =1, the total energy of
the system E=N, the system width L,=2R(1+107°), and the
system length L,=NL,(1+d) with the constant d controlling
the density p=N7R?/(L,L,). In the quasi-one-dimensional
system, the particle interactions are restricted to nearest-
neighbor particles only, so particles remain in the same order.
These features require less calculation effort and a simpler
representation of results for the quasi-one-dimensional sys-
tem compared with fully two-dimensional systems. The
quasi-one-dimensional system has already been used to in-
vestigate the localized behavior of Lyapunov vectors [29,38],
the wavelike structure of Lyapunov vectors [18,19,21], and
the transition between quasi-one-dimensional and fully two-
dimensional systems [40].

The dynamics of Lyapunov vectors in many-hard-disk
systems is well established, and readers should refer to the
references, for example, Ref. [45], for more detailed discus-
sions. In many-hard-disk systems the dynamics is separated
into a free-flight part and a collision part, and the free-flight
part of the dynamics is integrable. This property allow us to
express the dynamical evolution as a simple multiplication of
time-evolutional matrices for the free-flight and the collision,
leading to a fast and more accurate numerical simulation
than for soft-core interaction models. For numerical calcula-
tions of the Lyapunov vectors shown in this paper, we use
the algorithm developed by Benettin et al. [41] and Shimada
and Nagashima [42] (also see Refs. [43,44]). This algorithm
is characterized by intermittent (e.g., after every collision)
reorthogonalization and renormalization of Lyapunov vec-
tors, preventing a divergence of the amplitude.

We use the notation oI'™(r)=[éI' (1”)(t) ,or (2")(1‘) ,
,5F1(\;')(t)] for the Lyapunov vector corresponding to the
nth Lyapunov exponent N at time 7. Here, 51‘](,")(1) is the
Lyapunov vector component contributed by the jth particle
in the nth Lyapunov exponent at time 7. To express the lo-
calized behavior of the Lyapunov vectors we introduce the
quantity y;”)(t) as

5F(n)(t)|2

() = ,J—; (1)

AR VRIGIE
k=1

which is the normalized amplitude of the Lyapunov vector
component for the jth particle for the nth Lyapunov exponent
A" at time r. Strongly localized behavior of the Lyapunov
vector occurs when only a few of the y;")(t), j=1,2,...,N
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FIG. 2. The normalized amplitude )/1(1) of the Lyapunov vector
particle component corresponding to the largest Lyapunov exponent
as a function of the collision number 7, and the particle index j in a
quasi-one-dimensional hard-disk system with d=10> and N=50. On
the base of this graph is a contour plot of yﬁ.” at the level 0.2.

contribute significantly, as in Fig. 2. Here a graph of the
normalized amplitude yﬁ” of the Lyapunov vector compo-
nents for the jth particle, corresponding to the largest
Lyapunov exponent A", are plotted as functions of the par-
ticle index j and the collision number n, (=t/7 with time ¢
and the mean free time 7). The system is quasi-one-
dimensional consisting of 50 hard disks with d=10° (the
density p~7.85X 107%). From this figure we recognize that
the significant components of the Lyapunov vector are con-
centrated at two nearest-neighbor particles. This is character-
istic of hard-disk systems at low density and for large
Lyapunov exponents in the linear region of the Lyapunov
localization spectrum [29,38].

We observe that such localized regions of the Lyapunov
vector move with time in discrete jumps or hops, in Fig. 2.
This characteristic hopping has already been shown in Ref.
[29] and that such hopping of the significant components of
y (t) is connected with particle collisions. However, not
every collision causes the localized region of the Lyapunov
vector to move. In this sense, particle collisions themselves
are not sufficient to explain the hopping movement of the
Lyapunov localization. In this paper for simplicity we con-
sider only the Lyapunov vector sT'") corresponding to the
largest Lyapunov exponent A",

III. HOPPING RATE OF LOCALIZED LYAPUNOV
VECTORS

An advantage of the quasi-one-dimensional system in in-
vestigations of Lyapunov localization is that the movement
of particles in the transverse direction are suppressed, and
roughly speaking, the particle number corresponds to the
particle’s position. Noting this we describe the hopping be-
havior of spatially localized Lyapunov vectors as the hop-
ping of particle indices whose yj(,”) defined by Eq. (1) have
large values.

As shown in Refs. [29,38] the particle indices with a large
value of 'yg.l) are a pair of nearest-neighbor particles in the
low density limit, and we can introduce the hopping distance
h as the change of particle indices. In this definition the
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FIG. 3. The normalized hopping rates Py(h)/Py(1) for quasi-
one-dimensional systems of different sizes at the same density (d
=10%) as a function of the hopping distance |h|. The number of
particles is N=25 (circles), 50 (triangles), and 75 (squares). The
graphs are log-log plots with error bars are given by
|Py(h)—Pn(=h)|/ Pp(1). The lines are fits of the numerical data to
functions based on Eq. (2) with power functions as the asymptotic
form of the hopping rate.

hopping distance h is an integer satisfying —[N/2]<h
<[N/2], where [x] is the integer part of the real number x. It
should also be noted that we take the particle index j to be
equivalent to the index j+N, because of periodic boundary
conditions, so a hopping distance h+N is equivalent to h.
More technical details of the calculation of the hopping dis-
tance h are given in Appendix A. Using this hopping distance
h, in numerical simulations, we count the number N7 (k) of
hops with hopping distance £ in a time-interval 7, and we
can define the hopping rate Py(h) as a function N;(h)/T as
T— 0, namely the average number of hops with a hopping
distance per unit time. For actual data shown in this paper,
we use the hopping rate Py(h)/Py(1)=lims_ N7(h)/N(1)
normalized by Py(1). From the reflection symmetry of the
quasi-one-dimensional system in the longitudinal direction,
the hopping rate Py(h) must be symmetric, namely Py(h)
=Py(—h). We use this hopping rate to quantitatively discuss
the hopping dynamics for localized Lyapunov vectors.

Figure 3 shows log-log plots of the normalized hopping
rates as a function of |h| for different numbers of particles.
Noting the symmetry property Py(—=h)=Py(h), we use
|Py(h)—Py(=h)|/Px(1) as error bars in Fig. 3. Clearly, from
Fig. 3, the hopping rate Py(|h|) decreases as |h| increases,
implying spatial correlation between the localized regions of
a Lyapunov vector, rather than random hopping.

The furn-up in the tail of the normalized hopping rate
Py(h)/ Py(1) in Fig. 3 can be explained as an effect of peri-
odic boundary conditions. Under periodic boundary condi-
tions the hopping distance 4+ jN for any integer j is observed
as the hopping distance % in the quasi-one-dimensional sys-
tem consisting of N hard disks. Therefore using the hopping
rate P,(h) in the thermodynamics limit (N—o at a fixed
density) the hopping rate Py(h) for a finite system should be
represented as
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TABLE 1. Fitting parameters for the function f() shown in Fig.
3 assuming that P..(h) «|h| for quasi-one-dimensional systems of
different numbers of particles N but the same density. The coeffi-
cients & and B are essentially independent of N.
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1 (n+1)-th brick

S
N a B 3

=
25 0.7220.04 1.670.03 2
50 0.79+0.02 1.72+0.01 <
75 0.75+0.02 1.71£0.01 @

Py(h) = 2 Pu(h+jN) (2)
j:-oo

for h=—[N/2],-[N/2]+1,...,[N/2]. The terms on the right-
hand side of Eq. (2) with j # 0 cause the turn-up in the tail of
the hopping rate Py(h) for a finite system. In this sense we
can explain the N-dependence of the hopping rate Py(h) us-
ing the distribution P.(%). To demonstrate this we fitted the
numerical data for Py(h)/Py(1) shown in Fig. 3 to the func-
tion f(h)= aE?=_2|h+ jN|7# assuming a power law decay of
P..(h) o |h|7# with fitting parameters @ and S, neglecting the
terms for |j| = 3. Here, the fits are a dotted line for N=25, a
broken line for N=50, and a solid line for N=75. Note that
these sets (a,B) of fitting parameters in Table I are almost
independent of the number of particles N. As shown in Fig.
3, these fitting lines nicely reproduce the values of the nu-
merical data, especially the furn-ups.

In Appendix A we show that the normalized hopping rate
Py(h)/Py(1) is almost density-independent at least for 10°
<d<10’ (that is, 7.85X 107°<p<7.85x 10™%). However,
as the density decreases there is a subtle increase in the nor-
malized hopping rate, associated with a decrease in the pa-
rameter (.

IV. BRICK ACCUMULATION MODEL

The hopping rate of the localized region of the Lyapunov
vector is spatially correlated. We explain this characteristic
using a simple one-dimensional model, which we call the
brick accumulation model. In Appendix B we give a full
derivation of the brick model, but here we give a brief out-
line of the argument. Considering the phase space perturba-
tion at low density p<<1, the change between collisions is
given by Egs. (B23) and (B24), that is

ST (1) ~ 7, 8B~ — 6T, (1)) 3)

to leading order in the time between collisions 7,. Here,
S82"-11 is independent of 7, and is connected to the
Lyapunov vector at 7!_, just after the (n—1)th collision. It
follows that after collision |8I';(r})|=]8T;,,(z})| so the con-
tributions from the two colliding particles j and j+1 are
equal. We introduce a brick height K;(n) for the Ith particle
after the nth collision and define the change between colli-
sion n—1 and collision n to be

Particle index /

FIG. 4. The brick accumulation model expressing the dynamics
of the amplitude of the Lyapunov vector components for each par-
ticle in a quasi-one-dimensional system.

1 or(t
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. 4
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We interpret the contribution from each collision as adding
an amount —AC;(n)In p to each of the In|6I'|’s of the collid-
ing particles. One of the colliding particles initial contribu-
tion will dominate the other, so we add the collisional change
to the dominant particle and then synchronize the contribu-
tion for the other particle. Thus the dynamics of the brick
model reduces to the following rule for the evolution of the
brick height K;(n):

. {max{/Cj(n— D= D} 41 if 1 e {jj+ 1)

ICZ(I’Z - 1) lfl ¢ {jvj+ 1},
()

namely AK(n)=max{C;(n—1),K;,(n=1)}+1-K(n-1) if
le{j,j+1}, and =0 otherwise.

A schematic illustration of the brick model is given in Fig.
4. It is a one-dimensional model with N sites in the horizon-
tal direction. The bricks are dropped at random and occupy a
pair of neighboring sites. Each brick has width 2 and height
1 and they accumulate at sites without overlap. The dynam-
ics of the brick model is described using the brick height
IC;(n) by Eq. (5). The total brick height /C;(n) takes on inte-
ger values and the colliding particles are j and j+ 1 where j is
chosen randomly.

The brick accumulation model is a one-dimensional ver-
sion of the so-called clock model [35-37], which has been
used to calculate the Lyapunov exponents for many-hard-
disk systems. In the clock model, the brick height KC;(n) is
called the clock value of the Ith particle after the nth colli-
sion, and the dynamics (5) is expressed as an adjustment of
the clock values of colliding particles. In the one-
dimensional case it is easy to visualize the accumulation of
bricks which is essential for the analytical approach to the
hopping rate discussed in Sec. V. The image of brick accu-
mulations also helps us to recognize the similarity of this
model to ballistic aggregation models, whose scaling proper-
ties have been studied analytically and numerically [46,47].

Using Egs. (4) and (5) we obtain the amplitude of the
Lyapunov vector of the /th particle as
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FIG. 5. Log-log plot of the normalized hopping rates
Py(h)/Py(1) for the brick model (circles) and the quasi-one-
dimensional system with d=10° (squares) as a function of the hop-
ping distance || for N=50. The error bars are given by |Py(h)
—Py(=h)|/Py(1). The broken line is the analytical expression for
the hopping rate discussed in Sec. V.

|61 (n,)| ~ | &T(0)lexp{— K,(n,)In p} (6)

after the n,th particle-particle collisions. From relation (6)
between the brick height and the Lyapunov vector, the am-
plitude of the localized Lyapunov vector components with
the highest brick height have much larger values than the
other components because of the huge factor —In p appearing
in the exponent of Eq. (6) when p<<1. Therefore, to a good
approximation, the normalized amplitude yg.") given by Eq.
(1) has nonzero components only for particles corresponding
to these largest amplitudes, as shown in Fig. 2. The combi-
nation of Egs. (5) and (6) also explains why the amplitudes
of the localized components of the Lyapunov vectors for
nearest-neighbor particles take almost the same value, thus
the normalized amplitude y(.") appears as a flat top in the
localized regions in Fig. 2. After all, the localized region of
the Lyapunov vector represented in Eq. (6) is given as the
site indices whose brick height K;(n,) takes the maximum
value after the nth brick is dropped, and such sites with the
highest brick height can be calculated using the brick model
dynamics (5) only, without referring to the hard-disk dynam-
ics. Thus we can calculate the hopping distance & for the
brick accumulation model (see Appendix A) and therefore
the hopping rate Py(h), similarly to the quasi-one-
dimensional hard-disk system.

Figure 5 shows the normalized hopping rates
Py(h)/ Py(1) for the brick model with 50 sites (circles) and
for a quasi-one-dimensional hard-disk system consisting of
50 hard disks and d=10° (squares). Agreement between the
brick model and the quasi-one-dimensional hard-disk system
for the normalized hopping rate Py(h)/Py(1) for |h|=1 is
satisfactory. Numerical simulations of quasi-one-dimensional
hard-disk systems show that the normalized hopping rate
Py(h)/ Py(1) increases very slightly as the density decreases
as shown in Appendix A, so the deviation of Py(h)/Py(1) in
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TABLE II. Particle number (N) dependences of the ratio
P(0)/Py(1) of the hopping rates at the hopping distances =0 and
1 in the quasi-one-dimensional hard-disk systems with d=10> and
in the brick accumulation model.

Hard-disk model Brick model

N Pn(0)/Pp(1) Pp(0)/Pp(1)
25 13.5 17.1
50 26.8 37.9
75 39.6 58.8
100 52.1 79.7

the tail in the brick model and the hard-disk system in Fig. 5
is a finite density effect.

So far we have discussed the hopping rate Py(h) for non-
zero hopping distances & # 0. Now we discuss the hopping
rate Py(0) for zero hopping distance 2=0. Table II shows the
ratio Py(0)/Py(1) for the hopping rates at h=0 and 1 in the
quasi-one-dimensional hard-disk system with =103 and the
brick accumulation model for N=25, 50, 75, and 100. As
shown in this table, the ratio Py(0)/Py(1) depends on the
number of particles N, and roughly speaking it is propor-
tional to N. To explain this linear dependence of
Pn(0)/Py(1) with respect to N, we note that in the brick
model the hopping distance 1 occurs only when a new brick
is dropped at one (and not both) of the sites with the highest
brick height, meaning that the hopping rate Py(1) should be
approximately inversely proportional to N. On the other
hand, the hopping distance 0 occurs when a new brick is
dropped at a site which does not have the highest nor the
second highest brick height, or is dropped at both the sites
which are currently the site of the highest brick height, there-
fore the hopping rate Py(0) should be independent of N.
These considerations for Py(0) and Py(1) explain why the
ratio Pp(0)/Py(1) is proportional to N. However, we need
more detailed considerations to explain the difference be-
tween the coefficient « in the relation Py(0)/Px(1)= kN be-
tween the quasi-one-dimensional hard-disk system and the
brick accumulation model.

Before finishing, we discuss one more property of the
brick accumulation model, which we will use in the next
section. Figure 6 is a graph of the sum E;V:lle(n) as a func-
tion of n. Note that this sum must increase at a speed of more
than 2 per dropped brick because accumulated bricks capture
spaces below them which cannot be occupied by further
dropped bricks. It is clear from this figure that this sum in-
creases linearly, and a fit of the data to the function
Eﬁ’zlle(n):§+ on with fitting parameters ¢ and w leads to
the values £=~0.00 and w=3.99 [50]. (Note that data points
in the main graph of Fig. 6 look exactly like this fit because
of the large scale. In the inset to Fig. 6 we show the graph of
Ejyzlle(n) as a function of n on a much smaller scale, to
show its fluctuating behavior.) Therefore, on average, each
dropped brick adds a contribution of 4 to the sum Ejy:JC i(n),
meaning that each brick occupies not only its own 2 spaces
but also captures 2 empty spaces below it.

Note that from Eq. (6) the brick height IC;(n) dominates
the exponential growth rate of the Lyapunov vector compo-
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FIG. 6. The sum of the total brick heights as a function of the
number n of dropped bricks in the brick model with N=50 in the n
interval [0, 20979999]. Inset: The same graph but enlarged in the n
interval [ 1000, 1050]. The broken line (which is almost on the data
points of the main graph) is a fit of numerical data to a linear
function.

nent amplitude. Using this feature of the brick heights, their
sum E;’:lle(n) is connected to the largest Lyapunov expo-
nent AV as

N
1] 1
AU~ — lim —| =3 K(n) |Inp, (7)
Nj:l

n—+0 NT

where the mean free time is 7 and the density is p in the limit
of low density. [See Appendix B for more details on Eq. (7).]
As a numerical check of the formula (7) we show in Fig. 7 a
graph of the largest Lyapunov exponent V) as a function of
the density p for a quasi-one-dimensional hard-disk system
and the brick accumulation model using the formula (7) with

1t o
o]
)
0.1} ,/@ ]
o
= /,,C'J
0.01} & ]
&
0.001 ' ]
Brick model ~ --------
,xCD Hard-disk model —&—
0.0001 A . . - :
0.00001 0.0001  0.001 0.01 0.1 1
Y

FIG. 7. The largest Lyapunov exponent A" as a function of
density p in a quasi-one-dimensional hard-disk system with N=50
as a log-log plot. The error bars are given by |)\(1)—)\(4N)\ which
must be zero by the conjugate pairing rule for Hamiltonian systems.
The broken line is the largest Lyapunov exponent given by the brick
accumulation model with N=50.
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N=50. To calculate the largest Lyapunov exponent from Eq.
(7) we used the relation E?’zlle(n)%4n as shown in Fig. 6
and the values of 7 and p for the quasi-one-dimensional sys-
tem whose Lyapunov exponents are plotted in Fig. 7, and the
data points are connected by a dashed line for ease of vis-
ibility. Figure 7 shows that Eq. (7) reproduces successfully
the values of the largest Lyapunov exponent for the quasi-
one-dimensional hard-disk systems, not only in the limit of
low density but also at relatively high density up to p<<0.3.
Note that a linear dependence of the sum E;V:,IC ;(n) of brick
heights with n is necessary to get a finite value of the largest
Lyapunov exponent AV from Eq. (7).

V. ANALYTICAL EXPRESSION FOR THE HOPPING RATE

In this section we discuss another approach. This is in-
spired by some of the characteristics of the brick accumula-
tion model discussed in Sec. IV, although we greatly simpli-
fied the brick model by omitting some other aspects. The
advantage of this approach is that we can get an analytical
expression for the hopping rate, while to a good approxima-
tion it still reproduces the hopping rate for hard-disk sys-
tems. Another important point in this approach is that it con-
nects the dynamics of the localized region of the Lyapunov
vectors with a static property, the probability distribution of
brick-height differences between nearest-neighbor sites.

In the brick accumulation model, a hop of the highest
brick site occurs when two (non-nearest-neighbor) sites have
the same brick height. Noting this characteristic we consider
the probability distribution P..(k) under the constraint that
the two sites w and w+h have the highest brick height. We
require that there is no other highest site between the two
highest sites u and u+h for |h|=2;

il h b
o |
Highest Highest
site site

|u+h|u-|h||,l+h|
20 41

| u |‘u_+1|‘u+2|
Particle index

FIG. 8. Schematic illustration for a brick-height configuration
(similar to Fig. 4 for the brick model) connecting two highest sites
(particle indices) u and w+h with hopping distance & where h=2.
Here, —k; is the brick-height difference of the sites u+/—1 and u
+1. The probability distribution for the configuration of brick-height
differences {k;}=(k;,....k,_;), is given by A(=k;)A(=ky)---A
(=kj-)A(ZIZ/k)) with the distribution A(k) of brick-height differ-
ences k between nearest-neighbor sites. The hopping rate P.(h) is
calculated as the sum of this probability distribution over possible
configurations of brick-heights {k;}.
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ICl(n) < ’C,u(n) [:’C/,L+h(n)]s
in
] m+lLu+2, o u+h-1 forh=2 ®)
C|u+h+Lu+h+3, . u—1 forh<-2.

Using this probability distribution P..(h), we can estimate the
hopping rate P.(h) in the thermodynamic limit as the one
proportional to P..(h): P..(h) P..(h). Then we can calculate
the hopping rate Py(h) for a finite size system using Eq. (2),
apart from a constant factor.

To calculate the probability distribution P..(h) we intro-
duce the distribution A(k) of brick-height differences k be-
tween nearest-neighbor sites. These two distribution func-
tions are connected by

P= 2 2 - X
ky ky Kipj-1

(k1=1) (ky+kr=1) _

I 1tk @ =1

X A(=k)A(=kp) - A=Ky ) A

Ihl-1
><< > kj). 9)
j=I

r
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In Eq. (9), —k; is a brick-height difference of nearest-
neighbor sites. The probability distribution for the specific
brick-height configuration {k;} is given by A(=k;)A
(—ky)-- -A(—k‘h‘_l)A(Z‘iﬂflkj), and the hopping rate P..(h) is
calculated as the sum of this probability distribution over all
possible configurations of {k;}, leading to Eq. (9). Figure 8 is
a schematic illustration of a brick-height configuration
{~k;} connecting two highest sites for 2=2. In Eq. (9), the
lower bounds of the sums on the right-hand side of Eq. (9)
come from condition (8). Note that from Eq. (9) the distri-
bution P..(h) is an even function of &, so P..(~h)=P.(h).

Now, for simplicity, we assume that the distribution func-
tion A(k) can be expressed as an exponential function

A(K) =W exp{- nlkl} (10)

with constants ¥V and 7 (>0). (We will discuss the validity
of this assumption later.) Inserting Eq. (10) into Eq. (9), and
replacing the sums over k; in Eq. (9) with the ones over k|
=k,+1, we obtain

+0oc
WA Y for || =2,
_ k=0
Pw(h) = < 4o 40 40 40 (l 1)
W\le E Yk 2 Ykzﬁ(kz) E Yk39(k3) . 2 Yk\h\—la(klhl—l) for |]’l| =3
b=0 =k ky=—ky—ky k\h\_1=—2|,~h_|._2kj
\ =

where Y is defined by
Y = exp{-27} (12)

and 6(x) is the Heaviside function taking the value 1 for x
>0 and the value 0 for x=<0. The summations appearing in
Eq. (11) can be carried out successively, and we obtain

- hhy

P.(h) = Wﬂﬂh ), (13)
where the function {)(k) can be written as

Q2)=1, (14)
QB)=1+Y, (15)
Q4)=1+3Y+Y?, (16)
QB)=(1+Y)(1+5Y+Y?), (17)
Q6)=1+10Y +20Y2+10Y> + Y*, (18)

Q7)) =(1+Y)(1+14Y +36Y2+ 14Y3 + YY),  (19)

and so on. Equation (13), with Egs. (14)—(19), etc., gives an
analytical expression for the hopping rate, for example, using
the relation P..(h)x P..(h).

The coefficients VW and 7 appearing in Eq. (10) can be
determined from the two sum rules:

> Ak =1, (20)
k=—o0
> kA = AK, (21)
k=—c0

where AKC is the mean value of the absolute value of the
brick height difference between nearest-neighbor sites. The
first condition (20) is the normalization of the probability
distribution A(k) which leads to
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-1
_explyi-1 (22)
exp{n}+1
Using Eq. (22) the second condition (21) gives
1++1+AK?
p=In} ——— ¢, (23)

AK

satisfying the inequality %> 0. Inserting Eq. (23) into Egs.
(12) and (22) we obtain

Y( = ) o
T\ 1+AK2

1+\1+AK?-AK
1+ 1+ A HAR

(25)

From Egs. (24) and (25), there is only one parameter AK
remaining to determine the hopping rate using Eq. (13).

To estimate the value of AXC, we use a property of the
brick accumulation model discussed at the end of Sec. IV.
There we showed that Ej-ille(n) ~4n. This implies that the
averaged brick-height difference between nearest-neighbor
sites is about 2, so that

AK =2. (26)

We use this value to calculate the hopping rate based on Eq.
(13). Notice that from the relation Ej-V:IIC_,«(n) ~(AK+2)n and
the formula (7) we obtain

Ak~ T\ o (27)
Inp
in the limit of low density. From the relation (27) between
the parameter AKC specifying the hopping rate and the largest
Lyapunov exponent AV, the hopping rate of the localized
region of the Lyapunov vectors is connected to the largest
Lyapunov exponent.

Before comparing the hopping rate based on the analytical
expression (13) with the ones for hard-disk systems and the
brick accumulation model, we note that this analytical ex-
pression for the hopping rate may not be appropriate for
small hopping distances |/4|. In particular, it does not give the
correct value of Py(1) because in the brick model the hop-
ping distance h==+1 does not appear from separated highest
sites with the same brick height, the assumption used to de-
rive Eq. (13). Therefore it is not appropriate to calculate the
hopping rate normalized by Py(1) from this analytical ex-
pression and to compare it with the numerical results. The
hopping rate Py(+2) from Eq. (13) may also be problematic,
because in the brick model the hopping distance h=+2 oc-
curs when four consecutive sites have the highest brick
height, while to derive Eq. (13) we assumed that h==+2 oc-
curs when nonconsecutive separate sites w and p+h have the
same highest brick height. Based on these considerations we
do not calculate the value Pp(x1) from the analytical ap-
proach in this section, and plot the hopping rate so that Py(5)
by Eq. (13) gives the same value as that from the brick
model.
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01}

AK)

0.01f

4
Ikl

FIG. 9. A log-linear plot of the distribution A(k) of brick-height
differences k between nearest-neighbor sites as a function of |k| in
the brick accumulation model with N=50. Here, A(k) is normalized
by Eilzv_ZNA(k)z 1. The distribution A(k) is an even function of k,
and the error bars in this graph are given by |A(k)— A(=k)|. The line
is an exponential function used to obtain the analytical expression
for the hopping rate given by Egs. (10) and (24)—(26).

In Fig. 5 for the normalized hopping rate Py(h)/Py(1) we
plotted the function W (/) = Py(h)Py(5)/[Py(5)Py(1)] using
the value Py(5)/Py(1) of the brick model with Py(h)
=P.(h)+P.(N-h) using the analytical expression P..(h)
given by Eq. (13) for |h|=2. Note W(5)=P\(5)/Py(1) so
that W(h) coincides with Py(h)/Py(1) of the brick model at
|n|=5. Here, the values of the hopping rate are given at in-
teger values of 4, but we connect them with a broken line for
ease of visibility. Figure 5 shows that the analytical expres-
sion (13) for the hopping rate reproduces the hopping rate for
the brick accumulation model as well as the quasi-one-
dimensional hard-disk system to a good approximation. It
may be noted that for this plot we used the first two domi-
nant terms on the right-hand side of Eq. (2), and part of the
small deviation of the hopping rate in the tail between the
brick model and the analytical expression should come from
the omission of higher order terms in Eq. (2).

We notice that the approach in this section is simple
enough to get an analytical expression for the hopping rate
but it is not completely consistent with the brick accumula-
tion model discussed in Sec. IV. Previously, we have men-
tioned the irrelevance of Eq. (13) as a description of a small
hopping rate in the brick model. Actually, in the approach of
this section we omitted the essential characteristic of the
bricks as components of the brick accumulation model, ex-
cept for the property (26), and treated the model components
as blocks (or half bricks). As another example, we show in
Fig. 9 the numerical result for the distribution A(k) of brick-
height differences k& between nearest-neighbor sites in the
brick accumulation model with N=50. Here, A(k) is normal-
ized by =}, A(k)=1, instead of Eq. (20), because we can-
not calculate A(k) in |k| — +c numerically. In this figure we
added the exponential distribution (10) using Eqgs. (24)—(26).
Figure 9 shows that the probability distribution A (k) does not
coincide with an exponential distribution (10), although it
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may be justified as a first approximation. [On the other hand,
the numerical evaluation of AKC from the distribution A(k) as
a numerical result in Fig. 9 gives the value 1.99, then Eq.
(26) is still justified.] On another point, in the brick model
the highest brick sites appear as a pair of nearest-neighbor
sites, but we did not take into account this characteristic in
the analytical approach in this section. Despite the omission
of characteristics of the brick accumulation model, the ana-
lytical approach in this section reproduces the hopping rate
for many-hard-disk systems reasonably well, and it suggests
that this approach still keeps enough of the essential charac-

teristics that describe the dynamics of the Lyapunov localiza-
tion.

VI. CONCLUSION AND REMARKS

We have discussed the dynamics of the spatially localized
region of the Lyapunov vector corresponding to the largest
Lyapunov exponent for a quasi-one-dimensional hard-disk
system. The dynamics of the localized region of the
Lyapunov vector is described by a hopping rate, and the
hopping rate decreases as the absolute value of hopping dis-
tance increases. We can explain this quantitatively in two
ways: a brick accumulation model; and an analytical ap-
proach. In the brick accumulation model, the hopping behav-
ior of the localized Lyapunov vectors was explained as a
change of the highest brick position. It was shown that using
this brick model we can calculate the largest Lyapunov ex-
ponent for quasi-one-dimensional hard-disk systems. On the
other hand, in the analytical approach the hopping rate was
calculated from probability distributions for brick height dif-
ferences between nearest-neighbor sites, via multiple sum-
mations over all possible configurations that connect two
separated highest sites. The result is related to the largest
Lyapunov exponent. Both of the approaches successfully re-
produced the hopping-distance dependence of the hopping
rate for the localized Lyapunov vectors of quasi-one-
dimensional hard-disk systems.

Before we began this work, there had been a view that the
origin of the hopping behavior of localized Lyapunov vectors
was

(Conjecture) The localized region of the Lyapunov vector
hops to the position of a new grazing collision.

This conjecture was suggested from the fact that a change
of Lyapunov vectors in particle collisions may be dominated
by the factor 1/(o-Ap) in the collision dynamics (see Ap-
pendix B), where o is the normalized collision vector and
Ap is the momentum difference of the colliding particles
before the collision. This argument suggests that if two par-
ticles collide at a small angle (a grazing collision, where
|o- Ap| is small), then the Lyapunov vector can change sig-
nificantly and the position of the localized region may move.
However, this scenario cannot be correct for the following
reasons.

(1) This conjecture implies that as the position at which a
grazing collision occurs is random, the hopping distance
should also be random. This contradicts our numerical result
that the hopping rate decreases with increasing the absolute
value of hopping distance, as shown in Fig. 3.
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FIG. 10. The distribution D(o-Ap) of the quantity o-Ap with
the normalized collision vector or and the momentum difference Ap
of colliding particles just before the collision; for the general case
(dashed line) and for the case (solid line) in which nonzero hopping
of a localized Lyapunov vector occurs. The system is a quasi-one-
dimensional system with d=103 and N=25.

(2) We show in Fig. 10 the distribution D(o - Ap) of o Ap
in general collisions (dashed line) and the distribution in col-
lisions causing hopping of the localized Lyapunov vector
(solid line) [51]. Tt is clear from Fig. 10 that the quantity
|o- Ap| is not smaller in collisions which lead to jumps of the
localized region of the Lyapunov vector.

We note that the hopping dynamics of the Lyapunov vec-
tor for the brick accumulation model described in Sec. IV is
independent of collision parameters. This also suggests that
the above conjecture for the origin of the hopping of the
localized region of the Lyapunov vector cannot be justified.
On the other hand, this collision parameter independence of
the hopping behavior in the brick model cannot explain why
the distribution D(o-Ap) for the hopping case is different
from the general case. This remains an open problem.

The fits of the hopping rate with distance in Fig. 3 suggest
a power law: P..(h) ~ |h|™® with 8~ 1.7. The value of 8 de-
creases weakly with decreasing density as shown in Table III
and this appears to be consistent with the brick model where
B=1.5 for N=1000. It is plausible that the value of 8 from
the brick accumulation model may represent the low density
limit.

The hopping rate of the localized region of a Lyapunov
vector, and the largest Lyapunov exponent, are well de-
scribed by the brick accumulation model. One may ask for a

TABLE III. Fitting parameters for the function f(h) shown in
Fig. 13 for quasi-one-dimensional systems of different system
lengths with N=50. The system length L, is related to the parameter
d as L,=NL,(1+d). Notice that the coefficient 8 decreases slightly
as the system length increases.

d @ B

103 0.79+0.02 1.72+0.01
104 0.80+0.02 1.69+0.01
10° 0.82+0.02 1.69+0.01
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3600460
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FIG. 11. The normalized amplitude yﬁ.l} of the Lyapunov vector
component srh corresponding to the largest Lyapunov exponent
A1 as a function of the collision number 7, and the particle index j
in a quasi-one-dimensional system with d=10* and N=50. Here,
the collision number interval shown in this graph is [k,k+68] with
k=3 600 448. On the base of this graph is a contour plot of yﬁl) at
the level 0.2. Three hops of the localized region of the Lyapunov
vector are visible in this time interval; the first two hops are sharp
and the last one is gradual.

more direct numerical check of the justification of the brick
accumulation model in quasi-one-dimensional hard-disk sys-
tems, by, for example, checking Eq. (6) or observing numeri-
cally an actual brick configuration such as that presented in
Fig. 4. However, such a check of the brick model is not
trivial for the following reasons. First, the brick accumula-
tion model is only justified in the limit of low density, but
numerical simulations have to be at some finite density. This
effect appears, for example, as gradual changes of the
Lyapunov vector component amplitudes, as shown in Fig. 11,
which do not appear in the brick accumulation model. Sec-
ond, even if we could simulate at an extremely low density
in which such finite density effects can be neglected (al-
though the case presented in this paper is not at such a low
density), the factor —In p in Eq. (6) may be too large for an
actual numerical calculation.

In order to introduce the hopping rate we used the prop-
erty of quasi-one-dimensional systems, that the order of par-
ticles is an invariant. In this sense, it is not straightforward to
generalize our argument to fully two- (or three-) dimensional
systems. An effective way to describe the dynamics for the
localized region of the Lyapunov vectors for higher spatial
dimensions remains an important future problem. It should
be noted that it is known that the clock model version of the
brick accumulation model itself can be easily generalized to
any spatial dimensional case, although in higher dimension
we do not have the concept of the accumulation of bricks, as
we did for the quasi-one-dimensional case.

Finally, the brick accumulation model (more generally the
clock model) used in this paper has been justified for hard-
disk (or hard-sphere) systems only (at least so far). However,
Lyapunov localization is observed not only in many-hard-
disk systems but also in a wide variety of other systems with
many degrees of freedom, such as the Kuramoto-Sivashinsky
model [22], a random matrix model [24], map systems
[23,25,48,49], and coupled nonlinear oscillators [27], etc. It
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is a challenge to develop approaches to the dynamics of
Lyapunov localization for this wider class of systems.
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APPENDIX A: HOPPING RATE OF A LOCALIZED
LYAPUNOV VECTOR

In this appendix we give the detailed definition of the
hopping rate for the localized region of the Lyapunov vec-
tors, which is used in this paper. As suggested in Refs.
[29,38], the normalized Lyapunov vectors corresponding to
the largest Lyapunov exponent have large components for
only two particles in the low density limit, and changes of
these large components are caused by particle collisions. Ap-
plying this characteristic of the Lyapunov vector to the quasi-
one-dimensional system with periodic boundary conditions,
we can introduce a hopping distance A" at the nth collision
as

h[n]=jn+1_jn_Nnint{M}‘ (Al)
N

Here {j,,j,+ 1} are the large components before the nth col-
lision and {j,,,j,.1+1} are the large components just after
the nth collision. The function nint{x} is the closest integer to
the real number x. We assume that changes in the position of
the localized region of the Lyapunov vector are negligible
during the free-flight interval, so {j,.,jn..1+1} can also be
interpreted as the set of the particle indices whose Lyapunov
vector components take large values just before the (n
+1)th collision. We count the number of times N(h) that we
see a hop of size & in a time-interval T where —[N/2]<h
<[N/2]. The normalized hopping rate py(h) can be intro-
duced as Py(h)/Py(1)=lim;_,., N(h) I N7(1).

However, in actual numerical simulations, the particle
density p is always finite, and large Lyapunov components of
more than two particles can often be seen, at least down to a
density p~ 107> which is the low density limit of the numeri-
cal simulations in this paper. This makes the above definition
(A1) of the hopping distance hln] impractical. To explain this
point concretely we show Fig. 11, which is a graph of the
normalized Lyapunov vector component amplitude yﬁl) de-
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fined by Eq. (1) as a function of the collision number n, and
the particle index j in a quasi-one-dimensional system with
N=50 and d=10* (namely a density p~7.85X 107°). In this
figure we can recognize three types of hops of the localized
region of the Lyapunov vector. The first two hops keep the
large Lyapunov vector components of almost two particles
sharp enough to apply the definition (A1) of the hopping
distance, but the third hop occurs gradually so that no clear
hopping time can be determined. Note that the localized re-
gion of Lyapunov vector component amplitudes in the three-
dimensional plot 11 always has a flat top with a width of
two-particles even for the third hop in Fig. 11.

For concrete calculations, we define the localized region
of the Lyapunov vector components as the particle indices j
for which ">0.2. (Here, we use the similarity between
particle positions and particle indices for the quasi-one-
dimensional system.) In Fig. 11, this localized region is ap-
proximately given by the region surrounded by the contour
lines (level 0.2) on the base of the graph. We introduce the
quantlty 1, as the number of particles satisfying the 1nequal—
ity y( >0.2 just before the nth collision. Note that 0=y Y n
<1 by definition (1) of y , 80 I, cannot be equal to nor
larger than 5. If [, is always 2 as in the low density limit,
then we can use the hopping distance definition (A1), but in
numerical simulations at finite density /,>?2 can happen as
shown in Fig. 11. The problem then is how do we define the
hopping distance 4"l at the nth collision, when 1,>2.

The definitions of the hopping distance for each case are
categorized as follows.

(Case (a): 1,=2—1,,,=2) Here only two particle indices
are in the localized region before and after the collision, and
they are always nearest-neighbors, so the hopping distance
nl" is given by Eq. (Al).

(Case (bl): 1,=2—1,,,=3) Here we assume that the lo-
calized regions of the Lyapunov vector are given by {j,,/,
+1}’ {jn+17jn+l+17jn+l+2}7 and jn+1=jn or jn+1=jn_l' We
take the value of the hopping distance to be 1 (=1) for A"
where jn+1=jn (jn+l=jn_ 1)

(Case (b2): 1,=3—1,,,=2) In this case we assume that
the localized regions of the Lyapunov vector are given by
{jnvjn"' 1 ’jn+2}’ {jn+1’jn+1+ 1}’ and jn+1=jn or jn+1=jn+ 1’
and the hopping distance is O in both cases.

(Case (b3): 1,=3—1,,,=3) In this case we assume that
the localized regions of the Lyapunov vector are given by
{jmjn+ 1 ’jn+2}s {in+l ’jn+1 +1 ’jn+l +2}’ and jn+l =jn+h[n]
with the hopping distance Al"). We take into account the case
A")=—1,0 or 1 only.

(Case (cl1): 1,=2—1,,,=4) In this case we assume that
the localized regions of the Lyapunov vector are given by
{jn ’jn+ l}’ {jn+l ’jn+l + 1}’ and {j;;+] vjy,,+1 + 1} SatiSf}’ing jr,1+l
=j, and |j/, = j,+1|=2. The hopping distance is defined by
Eq. (A1) using these j,,; and j,.

(Case (¢2):1,=4—1,,,=2) In this case we assume that
the localized regions of the Lyapunov vector are given by
{jn’jn+1}7 {]-,/1’]-’/1*_1}’ and {jn+1’jn+l+]} SatiSfying |]n_]r,1|
=2 and |j,—j,.i|<1. The hopping distance A"l is Al"
=jn+l_jn=_1’0 or .

(Case (¢3): 1,=4—1,,,=4) In this case we consider only
the case in which the localized regions of Lyapunov vector
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FIG. 12. Schematic illustrations of the hopping types for the
localized region of the Lyapunov vector in quasi-one-dimensional
systems at low density. The contours represent the level 'y(.1)=0,2.
(These are the contours on the base of Fig. 11.) The vertical dotted
line is collision number n at which the hopping distance of the
localized Lyapunov vector is to be determined. The seven illustra-
tions in this figure indicate: (a) the case of (1,,,1,,;)=(2,2), (b1) the
case of (,,1,,1)=(2,3), (b2) the case of (I,,l,,;)=(3,2), (b3) the
case of (1,,1,,1)=(3,3), (cl) the case of (I,,l,.1)=(2,4), (c2) the
case of (,,1,,1)=(4,2), and (c3) the case of (1,,,1,,,1)=(4,4), where
1, is the number of particles in the localized region of the Lyapunov
vector just before the nth collision. The numbers in the right-bottom
of each illustration give the possible values of the hopping distance.

are giVCH by {jn’jn+1}s {jrlz’j;fi_l}’ {jn+]9jn+l+1}s and
{jr,t+1’jr,1+l+1} satisfying jn+l=jn7 jr,1+1=j1,1’ and |jn_j1,1|>2'
The hopping distance takes the value O in this case.

(For each case above, the corresponding schematic illus-
tration is shown in Fig. 12.) Here, we use periodic boundary
conditions for the particle index, so that the localized regions
{N,1}, {N,1,2}, and {N-1,N,1} should be translated to
{0, 1}, {0, 1, 2}, and {-1,0,1}, respectively, in the above
definition of the hopping distance. In the examples shown
in Fig. 11, the first two hops of the localized Lyapunov
vector can be described as case (a), and the third hop
is described as cases (c1) and (c2). Note that asymmetric
definitions of hopping distances 4] between cases (c1) and
(c2) [and similarly between cases (bl) and (b2)] are required
so that we can interpret the hopping distance of the third
nonzero hop in Fig. 11 as only -2 in spite of it involving
both cases (cl) and (c2). Using the above
hopping distance we count the number N (k) of hops of
distance A in time interval 7, and introduce the normalized
hopping rate as Py(h)/Py(1)=lim;_ N (h)/N7(1) for
h=-[N/2],-[N/2]+1,...,[N/2]. Notice that there are pos-
sibilities apart from those shown above, but it is observed
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1N

0.1F

Pn(h)/Pn(1)

0.01}

FIG. 13. Log-log plots of the normalized hopping rates
Py(h)/Py(1) for a quasi-one-dimensional system of 50 hard disks
as a function of the hopping distance |A| at different densities, d
=10? (circles), 10* (triangles), and 10° (squares). The density is a
function of d given by p=mR?/[(1 +d)L%]. The error bars are given
by |Py(h)=Py(=h)|/ Py(1). The lines (solid line for d=103, broken
line for d=10%, and broken line interrupted by dots for d=10°) are
fitting the numerical data for Py(h)/Py(1) to the function f(h)
Eoz212-=_2|h+ jN|[# assuming that the decay of P.(h)|h|# with
fitting parameters « and S, and the values of the fitting parameters
a and B are given in Table III.

that in numerical simulations the probabilities of these are
extremely small (for example, more than 96% of all hops
could be categorized this way).

In Fig. 13 we show the normalized hopping rate
Py(h)/Py(1) in a quasi-one-dimensional system of 50 hard
disks. The hopping rate is almost density-independent in this
low density range, although it may be very slightly larger at
the lowest density for |#|=2,3,... . This slight density de-
pendence of the normalized hopping rate at low density is
also expressed as a slight decreasing of the parameter 3, as
shown in Table III, with density.

We also calculate the hopping rate for the brick accumu-
lation model explained in Sec. IV in a similar way. In the
brick accumulation model we can introduce the localized
region of the Lyapunov vectors as the site (particle) whose
brick height is highest. For the brick model, cases (b1), (b2),
and (b3) above cannot happen, and only cases (a), (c1), (c2),
and (c3) above are taken into account in the numerical cal-
culations. Note that in the brick model, case (a) above can
happen only when the hopping distance is —1, 0, or 1, and
Eq. (A1) alone is not enough to calculate the hopping dis-
tance. This is another reason to take into account the case
where [,,>?2 in the calculation of the hopping distance.

APPENDIX B: CLOCK MODEL FOR MANY-
HARD-PARTICLE SYSTEMS

Here we give an extension of the derivation of the clock
model for the Lyapunov vector dynamics in many-hard-
particle systems in the limit of low density. We also derive
the formula (7) for the largest Lyapunov exponent from the
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clock model. The one-dimensional version of the clock
model is the brick accumulation model used in this paper. In
particular, we clarify the assumptions needed to justify the
use of this model to discuss the Lyapunov localization. For
the basic idea of the clock model, see, for example, Refs.
[36,37]. However, note that our notation and assumptions are
a little different so that the derived clock model is consistent
with the discussions in this paper and able to be compared
with the numerical results of Ref. [29].

We consider a D-dimensional system with N hard disks
(or hard spheres, etc.) with identical radius R and mass M.
We assume that there is no external field so that the dynam-
ics is simply free-flights, and collisions between pairs of par-
ticles. The Lyapunov vector components are (dq;, dp;)" with
the transpose T, where dq; is the spatial component of the /th
particle, and dp, is the momentum component.

We take ¢, to be the time of the nth collision involving
particles j and k, and define 7,=(z,—1,_,)/M, so that the nth
free-flight time is given by 7,M. The free-flight part of dy-
namics of the Lyapunov vector is represented as

8q/(,) = oq,(t,_) + 7,0p/(1,_,), (B1)

(1) =p(1,_,). (B2)

Here, the superscript = refers to the limit of the quantity
before the nth collision (—) or after the nth collision (+).
The change in the Lyapunov vector in the collision between
particles j and k is represented as [45]

8q,(t7) = 5q,(1,) + O g, (1), (B3)

Sq,(t7) = dqu(t,) — O dg, (1)), (B4)

() = op (1) + Oep, (1) + QMag, (1), (BS)

;) = dpy(t,) - O dp, (1) — Q"og, (1) (BO)
Note that dg,(t;)=dg,(t,) and &p/(1;)=ap,(r,) for I e {j,k}.
We have used g, ;= 6q;— 64, op;= Py~ P, and 0" and
Ql"l are defined by

Ol = glglT, (B7)
o oA +U[n]Ap[n]r  apllghr
=" g oI AP ]
(B8)
with o =[q,(t))-q;(t)1/[lg.(t;)-q,()]] and  Ap!™

=p(t,)—p,(t,) and the D X D identity matrix /. Note that all
vectors in this appendix are column vectors, so, for example,
o"TApl s a scalar and o¥JAp!7" is a matrix. For later use
we note that

,(t;) + pi(t;) = (1) + pi(t;) (B9)

which can be derived from Egs. (B5) and (B6).
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We consider the low density case, in which the free-flight
time 7,M is large (so 7,5 1/p). This justifies our first ap-
proximation for the Lyapunov vector:

8q/t]) ~ T, pith)

where the term containing 7, is much larger than the other
term on the right-hand side of Eq. (B1). This asymptotic
relation (B10) leads to

oqy (1) ~ 7,y (1)

from the definition of &g, (1) and &p; (r,_,). Using the re-
lation (B11), Egs. (B5) and (B6) can be rewritten as

5Pj(t;) ~ 5]’;‘(1‘;_1) + ®[n]@7k,j(t;_1) + TnQ[n]@’k,j(t;q),
(B12)

(B10)

(B11)

D)) ~ dpi(eh_) - OWep, (eh_ ) — 7,0 ep, (25,
(B13)

where we have used Eq. (B2) to make all the time arguments
on the right-hand side (rhs) the same. Note that the spatial
part of the Lyapunov vector does not appear in these dynam-
ics and the first and second terms on the rhs of Egs. (B12)
and (B13) are negligible compared with the third term be-
cause 7, is very large, so we obtain

»(6) ~ 7,9, (53)), (B14)
pity) ~ - TnQ[n]5pk,j(t;—l)’ (B15)

which lead to
ap(6,) + p(t;) ~ 0. (B16)

On the other hand, for the dynamics given by Egs. (B3) and
(B4) for the spatial part of the Lyapunov vector we obtain

8q,(t,) ~ T Lap(6,_)) + ®[”]5pk,,-(f2_1)], (B17)

Sqi(t) ~ m[opirs_) - OMap, (h )], (B18)

using Egs. (B10) and (B11). Now we note
51’,‘(1‘;) + op(t,) B 6pk,j(t;—1) L 5Pk,j(l‘;—1)
2 2 2
(B19)

where we used Egs. (B2), (B9), and (B16). Similarly we
have

5I7j(tz_1) =

ity ~ %ﬂl) (B20)

Therefore Eqgs. (B17) and (B18) can be rewritten as
3,(y) ~ 7, RMap (1)), (B21)
o (1) ~ - TnR[n]épk,j(t;—l)’ (B22)

where R is defined by RIM=—(1/2)I+0"). The
asymptotic equations (B14), (B15), (B21), and (B22), give
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the Lyapunov vector dynamics in the limit of low density. It
should also be noted that the assumptions used to derive this
dynamics breaks some conservation laws in the original dy-
namics, for example, the quantity Zﬁﬁpl(t) is conserved in
the original dynamics (B2), (B5), and (B6) but this cannot be
guaranteed exactly in the low density dynamics (B14) and
(B15).

Now we consider the Lyapunov vector 8I" corresponding
to a positive Lyapunov exponent. The positivity of the
Lyapunov exponent means that the amplitude |SI'| of the
Lyapunov vector diverges exponentially in time. The dynam-
ics given by Egs. (B14), (B15), (B21), and (B22) shows that
the divergence of |8I'| must come from the Lyapunov vector
components corresponding to colliding particles, as the other
Lyapunov vector components diverge at most linearly. For
this reason we neglect the change of the Lyapunov vector
components for noncolliding particles. Under this assump-
tion the Lyapunov vector dynamics for the Lyapunov vector
component SI',=(dq,,dp,)" for the Ith particle is summa-
rized as

o (5}) ~ - o, (r}) ~ 7,680, (B23)
SUy(th) ~ oUy(¢r_,) for l & {j,k}, (B24)
where SE"~!1 is defined by
[n] (+F
5‘5[n—1] = (R &Jkd(tn—l) ) . (B25)
Q[n]‘spk,j(l:—l)

It is essential to note that the Lyapunov vector components
oI'(1,) and I',(z;) for the colliding particles have the same
amplitude, and SE"~! is independent of 7,,.

We assume that the ratio

_ ||

V=

[Pl

between the amplitudes of the spatial and momentum parts
of the Lyapunov vector for the /th particle are independent of
the particle index [ [52]. Reference [29] suggests that the
ratio v need not be of order 1 in general. From Eq. (B26) we
have

(B26)

1

|op)| = Vm|5rl|- (B27)

Using this assumption we estimate the magnitude of the vec-
tor 62" as

|5‘E[”_1]| = max{| 5]7.,'(52_1) 5pk(t:1——l)|}
> \/|R[n]e[n]|2 + |Q["]e["]|2
~ max{|8L;(r;_))|,| 60 (5;_ )|}

\/|R["]e["]|2 +| Ol
X 9
1+17

s

s

(B23)
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where el"] is defined by

pit,_)) - 5Pj(l;—1)

[l = B29
max{| (1, (- (B29)
and satisfies the inequality
o)+ ()
|e[n]| = |6pk( n—l)| |@/( n—l)l <2 (B30)

h max{|&p(7,_ ()|}

From Eq. (B28) we can estimate the magnitudes |SI'(7})|
and [oT(£))| through |8T(#])|=|6T (&) = 7,| 62"~1].

Now, we introduce the clock value K;(n) of the Ith par-
ticle just after the nth collision as

Kn-1)

. {maqun-lxKgn-1)y+1+A¢wﬂ for = or [ =k,
\n)~

where A®" is defined by

o] \/|’R[Vl] [n]|2 Q[n] [n]|
apll=- — ,
1+1°

(B34)

and where we have used Eqgs. (B23), (B28), and (B31), and
|6T;(0)| =8I (0)]. Our final assumption to derive the clock
model is that

lim A®M =0

p—0

(B35)

To justify the assumption (B35) note that the right-hand side
of Eq. (B34) for the quantity A® has a factor 1/1n p which
goes to zero in the limit as p—0, and s,, QJ, and R are
almost independent of the density p, and the magnitude of
the vector el is finite even in the limit p— 0 from the in-
equality (B30) [52]. Equations (B33) and (B35) lead to the
clock dynamics

max{/C;(n—1),K(n—=1)}+1 fori=jorl=k,
Kyn) ~

for [ & {j,k},
(B36)

Kin-1)

in the low density limit, which is closed by the clock value
KC,(n) only, except for determining the indices j and k of
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|5F1(l+)|

K/n) = (B31)

or equivalently, | (£)|=(1/ p)’cl(")|c$1" ,(0)] leading to Eq.
(6). Here p is the particle density whose value is 0<p<1,
and &I')(0) is the Lyapunov vector component for the
Ith particle at the initial time. We choose the initial
Lyapunov vector SI'(0) so that its components
oI'1(0), 8I'5(0), ..., 81'y_1(0) and OI'y(0) have the same or-
der of magnitude, and a larger clock value means larger mag-

We have already used the fact that the free-flight time
increases as the density p decreases. To write down the clock
value more meaningfully, we use the specific relation be-
tween the free-flight time and the density, namely that the
free-flight time 7,M is approximately inversely proportional
to the density p at low density;

T, ~ S,/p, (B32)

where s, is independent of the density. Using Eq. (B32), the
expression (B31) for the clock value K,(n) can be rewritten
as

for [ & {j,k}, (B33)

colliding particles. From Eq. (B36), the dynamics for the
clock model is expressed as (i) the clock value is changed
only when the corresponding particle collides, and (ii) the
clock values of colliding particles are tuned to the same
value given by 1 plus the larger of the two clock values of
the particles just before the collision.

In the quasi-one-dimensional system with periodic bound-
ary conditions the colliding particles can be taken to be j and
k=j+1 (note that index N+1 is equivalent to 1). Therefore
we obtain the dynamics (5) for the brick accumulation model
explained in Sec. IV as the one-dimensional version of the
clock model. Moreover, in the one-dimensional case, IC;(n)
can be interpreted as the brick height of the /-site just after
the nth brick is dropped.

Finally we derive formula (7) for the largest Lyapunov
exponent from the clock value C;(n). In the limit of low
density p<<1, the amplitude |ST'(r})| of the Lyapunov vector
can be approximated by

N 1 Iz[max](n)
RGN DIt () R E VO e
=1

noting that the sum XV |ST(¢)|* is dominated by the
Lyapunov vector component amplitude |8I',(£7)| with the

largest clock value Ctmax](7) = max{K,(n),K5(n), ..., Kyn)}
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at n, because of the huge factor 1/p. Here, «, is the number

of particles with the largest clock value Kmaxl(n), and we
have also used our assumption that |SI',(0)| is almost inde-
pendent of the particle index /. Now we assume the approxi-
mate relation

e L 2 )
1

B38

in the limit of large n. (We have checked this relation nu-
merically for the brick accumulation model.) Using the rela-
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tions (B37) and (B38), and t~ n7 we obtaine

A= lim — ln|5F(t)| ~— lim —K[max](n)ln p
t—+00 n—+o NT
N
- lim —Z K(n)In p (B39)
n—+0 ntN

for the Lyapunov exponent \ corresponding to the Lyapunov
vector SI". Therefore we obtain Eq. (7), which is independent
of the system shape and the number of spatial dimensions.
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