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We study the survival probability time distribution �SPTD� in dielectric cavities. In a circular dielectric
cavity the SPTD has an algebraic long time behavior, �t−2 in both the TM and TE cases, but shows different
short time behaviors due to the existence of the Brewster angle in the TE case where the short time behavior
is exponential. The SPTD for a stadium-shaped cavity decays exponentially, and the exponent shows a relation
of ��n−2, n is the refractive index, and the proportional coefficient is obtained from a simple model of the
steady probability distribution. We also discuss the SPTD for a quadrupolar deformed cavity and show that the
long time behavior can be algebraic or exponential depending on the location of islands.
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I. INTRODUCTION

Recently, lasing modes from dielectric microcavities have
attracted much attention due to the potential application to
optoelectric circuits and optical communications �1�. In par-
ticular, there was a lot of theoretical and experimental effort
to excite directional lasing modes in deformed microcavities
�2�. It is now well known that the lasing pattern has a very
close relationship with the internal ray dynamics given by
the boundary geometry of cavity. It is also reported that the
property of the openness of the dielectric cavity plays an
important role in the resonance pattern analysis �3,4�.

For a general open system, the survival probability time
distribution �SPTD� or its time derivative, the escape time
distribution, is a basic physical quantity. Many studies are
focused on the relation between the long time behavior of the
SPTD and the internal dynamics, and it is known that the
SPTD has algebraic and exponential decays in integrable and
chaotic systems, respectively �5–10�. In mixed systems, hav-
ing both integrable islands and a chaotic sea in phase space,
the SPTD has an algebraic long time behavior which origi-
nates from the slow escape mechanism due to the stickiness
of KAM �Kolmogorov-Arnold-Moser� tori �11�.

The property of openness of the dielectric cavity is differ-
ent from the open systems previously studied �5–10�. Rays
can escape through any boundary point, and partial escapes,
depending on the incident angle, are possible. This unique
property can be reflected on the long time behavior of the
SPTD.

In this paper, we study the SPTD in dielectric cavities of
various boundary geometries such as circle, stadium, and
quadrupole, which are typical examples of integrable, cha-
otic, and mixed systems, respectively. The SPTDs in these
dielectric cavities show basically a similar behavior to the
open cavity with a small hole on the cavity boundary, but the
exponents are different. In particular, we show that the er-
godic property cannot be applied for the stadium-shaped di-
electric cavity even in the small opening limit, n→�, n is
the refractive index.

The paper is organized as follows. In Sec. II the algebraic
long time behavior of the SPTD in the circular dielectric
cavity is derived analytically and confirmed numerically for

both TM and TE waves. It is shown in Sec. III that the SPTD
for a stadium-shaped cavity decays exponentially, and the
exponent � has �n−2 dependence and the proportional coef-
ficient can be understood from a simple model of the steady
probability distribution �SPD�. The SPTD in the quadrupole-
deformed dielectric cavity is discussed in Sec. IV and we
finally summarize the results in Sec. V.

II. CIRCULAR DIELECTRIC CAVITY—INTEGRABLE
SYSTEM

Many authors have studied the SPTD for the open billiard
with a small hole on boundary �5–8�. It is known that the
SPTD in a circular billiard decays algebraically, Psv�t�� t−1.
In this section we study the SPTD for the circular dielectric
cavity, and it will be shown that the SPTD still shows an
algebraic decay but the exponent is different.

For simplicity, we focus on the TM wave first and for the
TE wave we will mention only the differences later. In the
circular geometry, ray dynamics is integrable and rays in the
open area of the phase space, i.e., −1/n� p�1/n, p=sin �, �
being the incident angle, can partially escape from the cavity.
The formal expression of the SPTD in the circular dielectric
cavity is given by

Psv�t� = �
0

L

ds�
−pc

pc

dpI�s,p�R�p�N�t�, �1�

where L is the boundary length, and pc is the critical line for
total internal reflection, i.e., pc=sin �c=1/n, and R�p� is the
reflection coefficient for the TM wave �12�

R��� = �n cos � − cos �t

n cos � + cos �t
�2

, �2�

where n sin �=sin �t, and N�t� is the number of bounce on
the boundary. I�s , p� is the initial probability distribution.
Since N�t�= t /2 cos � in the circular geometry, if we take the
initial probability distribution as a delta function type, i.e.,
I�s , p�= �1/L���p− p0�, the SPTD would show a trivial expo-
nential behavior. We will take the uniform initial distribution,
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I�s , p�=n /2L, throughout this paper. When considering a unit
circle and a time scale as the length of ray trajectory, Eq. �1�
can be rewritten as

Psv�t� = n�
0

�c

d� cos � exp�− G���t� , �3�

where

G��� 	
1

cos �
ln�1 +

2 cos �t

n cos � − cos �t
� . �4�

Note that the rays near the critical line pc can survive for a
longer time and can dominate a long time tail behavior.
Therefore, we can expand G��� from �c by changing vari-
able, �=�c−�, as

G��� 
 	�1/2 + 
�3/2 + ¯ , �5�

where

	 =
2n�2�n2 − 1

n2 − 1
�6�

and


 = − 	� n2 − 6

4�n2 − 1
−

2

n� . �7�

Substituting the lowest term in Eq. �5� into Eq. �3�, we can
obtain the long time behavior of the SPTD as

Psv�t� �
2�n2 − 1

	2 t−2�1 − �1 + 	��ct�e−	��ct� �
2�n2 − 1

	2 t−2.

�8�

We emphasize that the SPTD for the circular dielectric cavity
decays as t−2 as shown in Eq. �8�, different from the open
billiard with a small hole where decays as t−1. This means
that the property of openness can change the exponent of the
algebraic decaying SPTD.

For the TE wave case the reflection coefficient is given by

RTE��� = �n cos �t − cos �

n cos �t + cos �
�2

, �9�

and the expansion of G��� and the SPTD at a long time are
the same as Eqs. �5� and �8� with different expansion coeffi-
cients, i.e.,

	TE =
2n3�2�n2 − 1

n2 − 1
= n2	 �10�

and


TE = −
	TE

4�n2 − 1
�8n4 + n2 + 6� . �11�

We note that the dependence of the SPTD on the refractive
index n in TM and TE waves is quite different, i.e., Psv�t�
�n2t−2 for the TM case, but Psv�t��n−2t−2 for the TE case.
The proportionality of n−2 of the TE case does not mean that
the circular cavity with a higher n is more leaky, since we

take into account of only the open region in the phase space,
−1/n� p�1/n �see Eq. �1��.

In order to perform a numerical calculation for the SPTD
in the circular cavity, we take 108 random initial points in the
open region of the phase space. We then trace each point
with a weight determined by R�p� when bouncing from the
boundary, and sum the weights between t and t+�, we take
�=1 in the calculations, for all points in the ensemble, and
finally normalize to be unit when t=0. Figure 1 shows the
numerical results of the SPTD in the circular cavity for the
TM and TE cases. It is clear that the SPTD for both cases
shows an algebraic long time behavior, �t−2, and the depen-
dence on n is correctly described by Eq. �8� which is indi-
cated by the solid lines for n=2 in Fig. 1.

A substantial difference between the TM and TE cases
appears in the short time behavior. As shown in Fig. 1�a� the
short time behavior of the TM SPTD is smoothly connected
to the t−2 long time tail, on the other hand, that of the TE
SPTD shows a rather abrupt transition to the algebraic long
time tail and the detail of the short time behavior seems to be
characterized by an exponential decay. This exponential
short time decay is clear in Fig. 2�a� and the exponent ��n�,
when fitted as exp�−��n�t�, appears as the solid dots in Fig.
2�b�. These exponents are well described by a simple ap-
proximation for the reflection coefficient RTE���. If we ex-
pand RTE��� at �=0 and take only the lowest term, then

Psv�t� � exp
− ln�n + 1

n − 1
�t� = exp�− ��n�t� . �12�

The solid line in Fig. 2�b� represents the relation

FIG. 1. �Color online� The SPTDs of the circular dielectric cav-
ity for �a� TM and �b� TE waves. Black circle, red square, green
diamond, blue triangle �up�, and brown triangle �down� are for n
=2, 4, 6, 8, and 10, respectively. These show t−2 has long time
behavior and a very good agreement with the solid lines which
represent the n=2 case in Eq. �8�.
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��n� = ln�n + 1

n − 1
� . �13�

Here we emphasize that although the lowest term of the ex-
pansion of Eq. �12� is the same for both the TM and TE
cases, only the TE case allows the exponential short time
decay. The reason for this is the existence of the Brewster
angle in the TE case, �B=arctan�1/n� where rays can escape
without reflection, i.e., R��B�=0. The rays with the incident
angle in the range of −�B����B dominate the short time
behavior, while the other parts, �B� �����c, mainly contrib-
ute to the long time algebraic tail.

It is important to know when the algebraic decay starts to
appear in both the TM and TE cases. In the TM case, the
main factor for the deviation from the t−2 decay comes from
the finite integral bound, and it corresponds to the terms
containing the upper bound �c in Eq. �8�. We then estimate
the transition time when the deviation from the t−2 decay is
about 10%, and the result is

tc �
1.38�n2 − 1�3/4

n�arcsin�1/n�
� n . �14�

In Fig. 1�a� the corresponding transition times are indicated
by arrows and show a good agreement with the numerical
calculations for various n.

Due to the existence of the Brewster angle, the transition
time for the TE SPTD can be determined in a different way.
As mentioned above, the TE SPTD shows a short time ex-
ponential behavior and a long time algebraic behavior.
Therefore, we can estimate the transition time by finding the
intersection time for both different behaviors. From Eq. �8�

with 	TE and Eq. �12�, for a large n we can get an implicit
equation for the transition time as

tc

n
exp�−

tc

n
� =

1

2n2 . �15�

The transition times for various refractive indices are indi-
cated by arrows in Fig. 1�b� and well represent the transition
times of the numerical results. The solution tc of the above
equation cannot be described by a simple power of n, but we
can show

tc�n� � n��n�, ��n� 
 1. �16�

If we take a logarithm of Eq. �15�, then we get

tc

n
− ln

tc

n
= ln 2n2, �17�

which generally has two solutions and the larger solution is
relevant. The point t0, at which the slopes of the two func-
tions in the left hand side of the above equation are identical,
should locate between the two solutions. By differentiating
the above equation, we get t0=n. Therefore,

tc 
 t0 = n . �18�

Even though both the TM and TE cases show the same t−2

long time decay in the circular cavity, the short time behavior
and the n dependence of the transition time are quite differ-
ent. We emphasize that these differences originate from the
existence of the Brewster angle in the TE case.

III. STADIUM-SHAPED DIELECTRIC CAVITY—CHAOTIC
SYSTEM

As an example of chaotic dielectric cavities, we take a
stadium-shaped one with parallel linear segments of a length
l and two semicircles of a radius R. The stadium-shaped
billiard has been a typical chaotic system in the research of
classical and quantum chaos. The escape property through a
small hole on the boundary of the stadium-shaped billiard
has been investigated by many authors �9�. They have shown
that the escape time distribution exponentially decays first
and later becomes algebraic, and the transition time tc in-
creases as the hole size decreases. The algebraic decay at
long times comes from the stickiness near the marginally
stable line in phase space corresponding to the bouncing ball
trajectories. On the other hand, in the stadium-shaped dielec-
tric cavity the ray trajectories of the bouncing ball type can-
not contribute to the long time behavior due to the property
of openness, i.e., rays with almost vertical incidence escape
easily and contribute to the short time behavior. As a result
the SPTD shows only exponential decay �see Figs. 4 and 5�.

The exponential decay in the dielectric chaotic cavity im-
plies the existence of the SPD, Ps�s , p� which is defined as
the spatial part of the survival probability distribution

P̃sv�s , p , t� �3�. With this SPD, we can express the SPTD as

Psv�t� = �
0

L

ds�
−1

1

dpP̃sv�s,p,t� � C exp�− �t� , �19�

where C is a constant and

FIG. 2. �Color online� �a� The exponential short time behavior
of the SPTDs for the TE case. The colors for different n is the same
as in Fig. 1. These can be fitted as exp�−��n�t� in a short time range.
�b� The exponents ��n�. The solid line represents the result of a
simple approximation of Eq. �13�.
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� =
�T�p��

�d�
=

1

�d��0

L

ds�
−1

1

dpPs�s,p�T�p� , �20�

where �d� is the average path length of segment ray trajec-
tories between two successive bounces, and the transmission
coefficient T�p� is given as T�p�=1−R�p�. In fact, the
expression of � has been derived from an approximation
on the time derivative of Psv�t�, i.e., dPsv�t� /dt

��T�p�� / �d��Psv�t�. One can obtain more accurate expres-
sion of � from the direct approximation on the Psv�t� �Ref.
�13�� as Psv�t�
�1−T�p��t/�d�=exp�ln�1− �T�p����t / �d���
which gives �=−�1/ �d��ln�1− �T�p���
1/ �d���T�p��
+1/2�T�p��2+ ¯ �. From this result, it is clear that Eq. �20�
would give a better result when �T�p���1. We note that in
usual dielectric cavity cases Eq. �20� is valid enough, i.e.,
�T�p���1, since the SPD structure shows, generally, low in-
tensity in the open region.

Note that Eq. �20� is satisfied in the exponential decay
region and cannot describe the nonexponential very short
time behavior. From Eq. �20�, if we know the SPD, we can
estimate the decay rate �. However, the structure of the SPD
is usually very complicated because it depends on the open-
ness as well as the boundary geometry of the cavity. Figure
3�a� shows the approximate of the SPD when n=2 which is

a snap shot of the P̃sv�s , p , t� captured at about t=12. The
partial escape property of the dielectric cavity allows for rays
to distribute on unstable manifold structure in the open re-
gion, −1/n� p�1/n.

Even though it is difficult to estimate the SPD in usual
cases, for the large n case, the small opening case, we can
simplify the SPD by assuming a uniform distribution over
the whole phase space except the open regions related to the
linear segments of the stadium boundary. Then, Ps�s , p�
=1/2�L−2l /n� in the ergodic region and Ps�s , p�=0 in the
open boxes ��� /2�R�s� �� /2�R+ l, �3� /2�R+ l�s
� �3� /2�R+2l, and −1/n� p�1/n�. The approximate of
the SPD for n=10 shown in Fig. 3�b� supports this assump-
tion. We note that this is a substantial difference from the
escape through a small hole on the boundary where the entire
uniform distribution is assumed due to the ergodic property
�5�. Based on the assumption of the partial ergodicity, we can
rewrite the decay rate as

� =
2�R

2��A/L��L − 2l/n� � dpT�p� , �21�

where we take �d�=�A /L �Ref. �14��, A=�R2+2Rl, and L
=2�R+2l being the area and boundary length of the sta-
dium, respectively, and the numerator of the coefficient
comes out from the s integration. The integral of the above
equation means the degree of openness and in the large n
limit decreases as �2��n−2 for both TM ��=1� and TE ��
=2� cases �see the Appendix�. Therefore, for the large n limit
the decay rate becomes

� �
2��R

A
n−2. �22�

Numerical results for the SPTD in the chaotic stadium-
shaped dielectric cavity are shown in Figs. 4 and 5 for the
TM and TE cases, respectively. We take two systems; one is
�R , l�= �1,1� and the other is �R , l�= �1,2�. In calculation, we
use a random ensemble of 104 initial points spread over the
whole phase space and trace the survival probability with
time, the time is scaled as the length of trajectory in the
spatial space as before. The exponential behavior of the
SPTD is clear even at long time limit in both the TM and TE
cases. This means that the sticky region locating on the cen-
ter of the open region in phase space does not contribute long
time decay due to its easy escape. The dependence of the
decay rate � on the refractive index n shows a very good
agreement with Eq. �22� for large refractive indices, in both
systems with different area A. This implies that even in the
small opening limit, n→�, we cannot use the ergodic prop-
erty over the whole phase space. Instead, we have to consider
structure of the SPD even in the small opening limit.

The expression of the decay rate in Eq. �20� can be im-
proved by the consideration of the fluctuation of the average
path length �d�. The decay rate then becomes

� = �
0

L

ds�
−1

1

dp
Ps�s,p�T�p�

d�s,p�
, �23�

where d�s , p� is the locally averaged path length at �s , p�.
This fluctuation effect would be minor in the dielectric cavity
case. However, in some special cases, e.g., uniform absorp-
tion �or escape� over the whole phase space, it would be
appreciable because the SPD still shows some pattern along

FIG. 3. �Color online� The steady probability distributions. �a�
n=2 case with system parameters �R , l�= �1,2� for the TM wave.
�b� n=10 case with system parameters �R , l�= �1,2� for the TM
wave. The black points indicate the rays traced from a random
ensemble with weights higher than 0.1 at about t=12 in n=2 case
and t=37 in n=10 case. The solid lines denote the critical line ±pc

for total internal reflection.
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unstable manifolds and the Ps�s , p� would be correlated with
d�s , p�. The importance of the fluctuation of the free path
length has been pointed out by Mortessagne et al. �14�.

IV. QUADRUPOLE-DEFORMED DIELECTRIC
CAVITY—MIXED SYSTEM

The escape property in generic mixed systems, showing a
mixed phase space portrait: integrable islands in a chaotic

sea, has been extensively studied. It is well known that the
long time behavior of the SPTD is algebraic due to the sticki-
ness of the KAM tori surrounding islands �11�,

Psv�t� � t−�. �24�

However, there is no rigorous theory expecting the value of
the exponent � which has been estimated based on numerical
calculations and seems to be nonuniversal.

In this section, we consider a quadrupolar dielectric cavity
which is the typical example of a deformed microcavity and
shows a mixed dynamics. The boundary equation is, in the
polar coordinates

r��� = 1 + � cos 2� , �25�

where � is the deformation parameter. Here, we present nu-
merical results of the SPTD and show that the long time
behavior of the SPTD is determined by whether islands are
located in the closed region, pc� �p��1, or not.

For n=2 case, we numerically calculate the SPTDs at two
deformation parameter values, �=0.1 and 0.2, which are
shown in Fig. 6. In the �=0.1 case, the SPTD shows an
algebraic decay, i.e., Psv�t�� t−0.2, which is consistent with
the previous studies on mixed systems. However, in the �
=0.2 case, the long time behavior of the SPTD is exponen-
tial, i.e., Psv�t��exp�−0.05t�. This clear difference of the
SPTD between �=0.1 and 0.2 cases can be explained by the
phase space portraits. Figure 7�a� shows the phase space por-
trait for �=0.1 case. There are many islands in the closed
region, pc� p�1, so the stickiness of the KAM tori delays
the ray escape and results in the algebraic tail. On the other
hand, as shown in Fig. 7�b� there is no island in the closed
region for �=0.2 case and all islands exist in the open region.
The rays trapped by the stickiness of the KAM tori thus
contribute to the short time escape behavior and the resulting
SPTD shows exponential long time decay. The decay rate of
the long time exponential behavior can be explained by the

FIG. 4. �Color online� The SPTD and the decay rates for the TM
wave. �a� The exponential SPTD for a stadium dielectric cavity with
�R , l�= �1,1�. Black, red, green, blue, and brown lines are for n=2,
4, 6, 8, and 10, respectively. �b� The decay rates with increasing n.
The black circle and red square represent results for system param-
eters �R , l�= �1,1� and �1,2�, respectively. The solid line shows n−2

behavior. The coefficient D is given as D=A /2�R.

FIG. 5. �Color online� The SPTD and the decay rates for the TE
wave. Details of the caption are the same as Fig. 4 except D
=A /4�R.

FIG. 6. �Color online� The SPTDs in the quadrupolar deformed
dielectric cavity. The SPTDs are algebraic in the �=0.1 cases while
exponential in the �=0.2 cases. The black and red lines denote the
case of the TM and TE waves, respectively.
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same way as the chaotic case, Eq. �20�, in the previous sec-
tion. Therefore, the position of the islands plays an important
role in understanding the SPTD of the mixed systems.

V. SUMMARY

We have investigated the SPTD in three dielectric cavities
showing different ray dynamics: circle �integrable�, stadium
�chaotic�, and quadrupole �mixed� shapes. In the circular di-
electric cavity the SPTD has an algebraic long time behavior,
�t−2 in both the TM and TE cases, but shows very different
short time behavior due to the existence of the Brewster
angle in the TE case where the exponential short time behav-
ior is shown. The SPTD for a stadium-shaped cavity decays

exponentially, and the exponent has a close relation to the
SPD. In the large n limit, the SPD can be approximated by
an assumption of a partial ergodicity, a uniform distribution
over a specific part of phase space, which gives a correct
description of the exponent in both the TM and TE cases. We
have also discussed the SPTD for the quadrupolar deformed
cavity and shown that the long time behavior can be alge-
braic or exponential, depending on the location of islands.
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APPENDIX

Here we present the analytical expression of the degree of
openness �see Eq. �21�� for the TM wave. The degree of
openness is defined by

I 	 �
−1/n

1/n

dpT�p� , �A1�

where T�p�=1−R�p�, R�p� is given in Eq. �2�. This integral
can be expressed by an analytical function as

I =
4

�n2 − 1�2
B�1

2
,
3

2
�F�−

3

2
,
1

2
;2;

1

n2�n2

+ B�1

2
,
5

2
�F�−

1

2
,
1

2
;3;

1

n2� −
40

15
n +

8

15

1

n
� � 2�n−2,

�A2�

where B�x ,y� is the beta function and F�	 ,
 ;� ;z� is the
Gauss hypergeometric function �15�.

For the TE wave, the only difference is the replacement of
R�p� by RTE�p� of Eq. �9�, and the result is

I � 4�n−2 �A3�

for the large n limit based on a numerical calculation.
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