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We study centrality in urban street patterns of different world cities represented as networks in geographical
space. The results indicate that a spatial analysis based on a set of four centrality indices allows an extended
visualization and characterization of the city structure. A hierarchical clustering analysis based on the distri-
butions of centrality has a certain capacity to distinguish different classes of cities. In particular, self-organized
cities exhibit scale-free properties similar to those found in nonspatial networks, while planned cities do not.
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A particular class of complex networks �1–3� is composed
of those embedded in real space—i.e., networks whose nodes
occupy a precise position in two- or three-dimensional Eu-
clidean space and whose edges are real physical connections.
With a few exceptions �4–6�, most of the works in the litera-
ture have focused on the characterization of the topological
�relational� properties of spatial networks, while the spatial
aspect has received less attention, when not neglected at all.
However, it is not surprising that the topology of spatial net-
works is strongly constrained by their geographical embed-
ding. For instance, the number of long-range connections
�4–6� and the number of edges that can be connected to a
single node �5� are limited by the spatial embedding. This is
particularly evident in planar networks �e.g., those networks
forming vertices whenever two edges cross� �7�, as urban
streets or ant networks of galleries �5�, and has important
consequences on the possibility to observe a small-world be-
havior or scale-free degree distributions �1–3�. Consequently,
spatial networks are different from relational networks, and
as such they need to be treated.

Centrality has remained a fundamental concept in net-
work analysis since its introduction in structural sociology
�8,9�. The network approach has also a long tradition in eco-
nomic geography and city planning, where it has been used
to investigate the territorial relationships among communica-
tion flows, population, wealth, and land uses �10�. However,
when dealing with urban street patterns, centrality has been
studied in relational networks only �11–13�, neglecting a fun-
damental aspect such as the geography. In such an approach,
known as the dual representation �12,13� or information city
network �14�, a city is transformed into a relational �topo-
logical� graph by mapping the streets onto the graph nodes
and the intersections between streets onto edges between the
nodes. In the present paper, we study centrality in urban
street patterns of different world cities represented as spatial
networks. In our approach, which is opposite to the dual one,
we work within a fully metric framework in which the dis-
tance has to be measured not just in topological terms
�steps�, like in the dual representation of a city �12–14� or in
social �9� and other complex systems �1�, but rather in prop-
erly spatial terms �meters, miles�. The results indicate that a
spatial analysis based on a set of different centrality mea-
sures �properly extended for spatial graphs� allows �1� a vi-

sual characterization of the structural properties of a city, �2�
the evidence that planned and self-organized cities belong to
two different classes, and �3� to find scale-free properties
similar to those found in the degree distributions of relational
�nonspatial� networks.

We have selected 18 one-square-mile samples of different
world cities from Ref. �15�, imported them in a GIS �Geo-
graphic Information System� environment and constructed
spatial graphs of street networks. In our approach, each ur-
ban street sample is turned into an undirected, valued graph
G, where intersections are nodes and streets are edges. We
denote by N the number of nodes and by K the number of
edges. The nodes are characterized by their position
�xi ,yi�i=1,. . .,N in the unit square. The obtained graphs can be
described by the adjacency matrix A, whose entry aij is equal
to 1 when there is an edge between i and j and 0 otherwise,
and by a matrix L, whose entry lij is the value associated to
the edge, in our case the length of the street connecting i and
j. The considered cities exhibit striking differences in terms
of cultural, social, economic, religious, and geographic con-
text and can be roughly divided into two large classes: �1�
patterns, such as Ahmedabad, Cairo, and Venice, grown
throughout a largely self-organized, fine-grained historical
process, out of the control of any central agency, and �2�
patterns, such as Los Angeles, Richmond, and San Francisco,
realized over a short period of time as the result of a single

TABLE I. Basic properties of the spatial graphs obtained from
18 one-square-mile samples of different world cities.

Case N K Case N K

1 Ahmedabad 2870 4387 10 Paris 335 494

2 Barcelona 210 323 11 Richmond 697 1086

3 Bologna 541 773 12 Savannah 584 958

4 Brasilia 179 230 13 Seoul 869 1307

5 Cairo 1496 2255 14 San Francisco 169 271

6 Los Angeles 240 340 15 Venice 1840 2407

7 London 488 730 16 Vienna 467 692

8 New Delhi 252 334 17 Washington 192 303

9 New York 248 419 18 Walnut Creek 169 197
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plan, usually exhibiting a regular grid like structure. The ba-
sic characteristics of the derived graphs are reported in Table
I. N and K assume widely different values, notwithstanding
the fact we have considered the same amount of land. The
edge value �i.e., the street length� distribution P�l� is single
peaked in self-organized cities, while it shows many peaks in
single planned cities, due to their grid patterns �16�. Other
characteristics of the same graphs, such as the fractal space
distribution of the nodes, meshedness coefficients, and
cycles, efficiency, and costs, have been investigated in Ref.
�17�.

For each of the 18 cities we have evaluated the 4 follow-
ing node centrality indices.

�1� Closeness centrality CC measures to which extent a
node i is near to all the other nodes along the shortest paths
and is defined as �9�

Ci
C =

N − 1

�
j�G;j�i

dij

, �1�

where dij is the shortest path length between i and j, defined,
in a valued graph, as the smallest sum of the edge length
l throughout all possible paths in the graph between i
and j.

�2� Betweenness centrality CB is based on the idea that a
node is central if it lies between many other nodes, in the
sense that it is traversed by many of the shortest paths con-
necting couples of nodes. The betweenness centrality of node
i is �9,18�

Ci
B =

1

�N − 1��N − 2� �
j,k�G,j�k�i

njk�i�/njk, �2�

where njk is the number of shortest paths between j and k,
and njk�i� is the number of shortest paths between j and k
that contain node i.

�3� Straightness centrality CS originates from the idea
that the efficiency in the communication between two
nodes i and j is equal to the inverse of the shortest path
lenght dij �19,20�. The straightness centrality of node i is
defined as

Ci
S =

1

N − 1 �
j�G,j�i

dij
Eucl/dij , �3�

where dij
Eucl is the Euclidean distance between nodes i

and j along a straight line, and we have adopted a normal-
ization recently proposed for geographic networks �21�.
This measure captures to which extent the connecting
route between nodes i and j deviates from the virtual straight
route.

�4� Information centrality CI relates the node centrality
to the ability of the network to respond to the deactivation
of the node �22,23�. The information centrality of node i
is defined as the relative drop in the network efficiency
E�G� caused by the removal from G of the edges incident
in i:

FIG. 1. Color-coded maps representing the
spatial distributions of node centrality in Venice.
The four indices �1� closeness CC, �2� between-
ness CB, �3� straightness CS, and �4� information
CI are visually compared over the spatial graph.
Different colors represent classes of nodes with
different values of centrality �the classes are de-
fined in terms of multiples of standard deviations
from the average, as reported in the color legend�.
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Ci
I =

�E

E
=

E�G� − E�G��
E�G�

, �4�

where the efficiency of a graph G is defined as �19,20�

E�G� =
1

N�N − 1� �
i,j�G,i�j

dij
Eucl/dij �5�

and where G� is the graph with N nodes and K−ki edges
obtained by removing from the original graph G the ki edges
incident in node i. An advantange of using the efficiency to
measure the performance of a graph is that E�G� is finite
even for disconnected graphs.

Spatial distribution of centralities. The spatial distribution
of node centralities can be visualized by means of color-
coded maps such as the one of Venice reported in Fig. 1. The
figures for the other cities can be downloaded from our web-
site �24�. A comparison with the spatial distribution of the
same measures in a pure connectivity network can be found
in Ref. �25�. As shown in Fig. 1, CC exhibits a strong trend to
group higher scores at the center of the image. This is both
due to the nature of the index and to the artificial boundaries
imposed by the one-square-mile map representation. The
spatial distribution of CB nicely captures the continuity of
prominent urban routes across a number of intersections,

changes in direction, and focal urban spots. In the case of
Venice the most popular walking paths and squares
�“campi”� and the Rialto bridge over the Canal Grande
emerge along the red nodes routes. In most of the cities
considered, CB is also able to identify the primary structure
of movement channels as different from that of secondary,
local routes �24�. The spatial distribution of CS depicts both
linear routes and focal areas in the urban system: CS takes
high values along the main axes, even higher at their inter-
sections. Finally CI exhibits a spatial distribution that is in
many cases similar to that of CB.

Statistical distribution of centralities. Notwithstanding the
similarities in the color maps, CI and CB exhibit different
statistical distributions. This is illustrated in Fig. 2, where we
report an example of the cumulative distributions for the two
categories of cities. Closeness, straightness �not shown in
figure�, and betweenness distributions are quite similar in
both self-organized and planned cities, despite the fact that
the diversity of the two cases in sociocultural and economic
terms could not be deeper. In particular, CB exhibits a single-
scale distribution �26� in self-organized and in planned cities,
the former having an exponential distribution, the latter hav-
ing a Gaussian distribution, as, respectively, shown in Figs.
2�a� and 2�b�. Conversely, the distribution of CI is single
scale for planned cities and broad scale for self-organized

FIG. 2. �Color online� Cumulative distributions of betweenness CB �a�, �b�, �c� and information CI �d�, �e�, �f� for two planned cities
�Los Angeles and Richmond�, two self-organized cities �Ahmedabad and Cairo�, and the model discussed in the text. The cumulative

distributions P�C� are defined by P�C�=�C
+� N�C��

N dC�, where N�C� is the number of nodes having centrality equal to C. P�CB� are single scale
in all cases: the dashed lines in panels �a� and �b� are, respectively, exponential, P�C�	exp�−C /s� �sAhm=0.016, sCai=0.022�, and Gaussian,
P�C�	exp�−x2 /2�2� ��LA=0.078, �Rich=0.049�, fits to the empirical distributions. Conversely, P�CI� differentiates self-organized
cities from planned ones: the dashed lines in the log-log plot of panel �d� indicate that the information centrality follows a power law
P�C�	C−� for the two self-organized cities ��Ahm=2.74, �Cai=2.63�, whereas the dashed lines in panel �e� indicate an exponential distri-
bution P�C�	exp�−C /s� for the two planned cities �sLA=0.007, sRich=0.002�. In panel �f�, P�CI� is exponential in the model with p=0 and
power law for p=0.2.
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cities: e.g., Los Angeles and Richmond are well fitted
by exponential curves �Fig. 2�d��, while Ahmedabad and
Cairo are fitted by power laws P�C�	C−� with exponents
�Ahm=2.74 and �Cai=2.63 �Fig. 2�e��. Among the self-
organized cities, Venice is the one with the smallest value of
the exponent: namely, �Ven=1.49. This is due to the particu-
lar environmental constraints that have shaped the historical
structure of the city. The identified power laws indicate a
highly uneven distribution of CI over networks of self-
organized cities. This can be considered as the analog, for
spatial networks of urban streets, of the power laws observed
in the degree and in the betweenness distributions of many
nonspatial complex networks from biology and technology
�1–3�.

To reproduce the empirical distributions we have consid-
ered the following model: N nodes are initially placed on a
rectangular grid; with a probability p each node is moved to
a random position in the unit square; for each node i, two
new edges �i , j� and �i ,k� are added, where j and k are the
two nearest nodes among those not yet connected to i.
The model interpolates from a regular grid, for p=0, to a
graph with randomly placed nodes, for p=1. The distribution
of CB in the model is single scale for any value of p.
In particular, for values of p in the range 0.1–0.3, P�CB� is
exponential as in self-organized cities. Conversely, P�CB� is
single scale for low values of p and follows a power law for
intermediate values of p. We have found that the centrality
distribution in planned cities is well reproduced by the model
with p	0 �or by triangular and square grids�, while self-
organized cities by the model with p	0.1–0.3. The distri-
butions obtained for N=900, p=0, and p=0.2 are reported in
Figs. 2�c� and 2�f�.

Inequalities in the distribution of centrality among the
nodes of the network can be quantified by evaluating the
Gini coefficient of the distribution. The Gini coefficient
is a measure used in economics and ecology to describe in-
equalities in the distribution of a given resource among the
individuals of a population. To compute the Gini coefficient
g of a given empirical distribution, one needs first to
define the so-called Lorenz curve of the ranked empirical
distribution, which is a curve that shows, for the bottom x%
of individuals in the population, the percentage y% of the

total size �resource� which they have. In the case of a
perfectly uniform distribution �in which every person has
the same size�, the bottom x% of individuals would always
have y=x% of the total size. Thus the Lorenz curve for a
uniform distribution is the straight line y=x: this line is usu-
ally called the line of perfect equality. On the other hand, a
distribution in which one single individual has all the
resources and everyone else has none produces a Lorenz
curve that is at y=0 for all x�100 and y=100 when
x=100: this is called the line of perfect inequality. Finally,
the Gini coeffiecient g is defined as the area between the
Lorenz curve of the empirical distribution and the line of
perfect equality, divided by the area between the line of
perfect equality and the line of perfect inequality �27�. The
coefficient g ranges from a minimum value of zero, when all
individuals are equal, to a maximum value of 1, in a
population in which every individual, except one, has a
size of zero. For each of the cities we have evaluated four
Gini coefficients gC, gB, gS, and gI, one for each of the
centrality measures. E.g., the Gini coefficient gI is 0.12
for New York, 0.19 for Richmond, and 0.23 for Cairo, thus
indicating that Cairo has a more heterogeneous information
centrality distribution than that of Richmond and New
York. In Fig. 3 we show the results of a hierarchical cluster-
ing analysis based on the homogeneity and heterogeneity
of the networks, as measured by the four Gini coefficients.
The iterative pairing of cities obtained captures some basic
classes of urban patterns: it is the case of the early associa-
tion of Barcelona and Washington or New York and Savan-
nah, all grid-iron planned cities as well as that of Bologna,
Wien, and Paris, all mostly medieval organic patterns, or
that of Ahmedabad and Cairo. Brasilia, Walnut Creek,
and New Delhi, in this respect, share a planned, large-scale
modernist formation. Venice is the last association, which
tells of the unique mix of fine-grained pattern and natural
constrains that have shaped the historical structure of the
city.

We have proposed a comparative analysis of different
centrality measures in spatial networks of urban streets. Each
centrality captures a different aspect of one place’s “being
central” in geographic space, and by the use of many cen-
trality measures it is possible to capture structural similarities
and dissimilarites across cities. Our work opens up to an

FIG. 3. Hierarchical tree based on gC, gB, gS,
and gI. The complete linkage method, based on
the largest distance between objects in different
clusters, has been applied. By choosing a maxi-
mum distance equal to 0.15 for two cities to be-
long to the same cluster, we find five clusters: a
first cluster from Barcelona to Los Angeles, a
second cluster from Ahmedabad to Seoul includ-
ing self-organized cities, a third cluster made up
by New York and Savannah, a fourth cluster from
Brasilia to New Delhi, and a fifth cluster with
only Venice.
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in-depth investigation of the correlation between the struc-
tural properties of the system and the relevant dynamics on
the system, like pedestrian and vehicular flows and retail
commerce vitality, all information traditionally associated

with spatial graphs. We expect that some of these factors are
more strictly correlated to some centrality indices than to
others, thus giving informed indications for strategies of ur-
ban planning and design.
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