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We report a Monte Carlo simulation study of the properties of highly asymmetric binary hard-sphere
mixtures. This system is treated within an effective fluid approximation in which the large particles interact
through a depletion potential �R. Roth et al., Phys. Rev. E 62 5360 �2000�� designed to capture the effects of
a virtual sea of small particles. We generalize this depletion potential to include the effects of explicit size
dispersity in the large particles and consider the case in which the particle diameters are distributed according
to a Schulz form having a degree of polydispersity 14%. The resulting alteration �with respect to the mono-
disperse limit� of the metastable fluid-fluid critical point parameters is determined for two values of the ratio of
the diameters of the small and large particles: q��s / �̄b=0.1 and q=0.05. We find that the inclusion of
polydispersity moves the critical point to lower reservoir volume fractions of the small particles and high
volume fractions of the large ones. The estimated critical point parameters are found to be in good agreement
with those predicted by a generalized corresponding states argument which provides a link to the known
critical adhesion parameter of the adhesive hard-sphere model. Finite-size scaling estimates of the cluster
percolation line in the one phase fluid region indicate that inclusion of polydispersity moves the critical point
deeper into the percolating regime. This suggests that phase separation is more likely to be preempted by
dynamical arrest in polydisperse systems.

DOI: 10.1103/PhysRevE.73.036115 PACS number�s�: 64.60.Fr, 82.70.Dd, 61.20.Gy

I. INTRODUCTION AND BACKGROUND

Highly asymmetric mixtures of hard spheres have long
served as a prototype model for systems of large colloidal
particles dispersed in a sea of smaller colloids. A key physi-
cal feature of such systems is the mediation by the small
particles of so-called depletion forces between the large ones
�1�. This force has its origin in entropic effects associated
with the dependence of the free volume of the small particles
on the degree of the clustering of the large ones. Although,
the typical range of the forces is rather limited �order of the
diameter of the small particles�, they can be very strong.

A longstanding issue in this context concerns the ability
of depletion forces to engender phase transitions in binary
hard-sphere mixtures. Biben and Hansen �2� addressed this
matter using the integral equation theory, and predicted that
for sufficient size asymmetry, depletion forces engender a
fluid-fluid spinodal instability. Other theoretical studies have
arrived at often conflicting conclusions in this regard �see
discussion in Ref. �3��, but experiments on colloidal systems
�eg., Ref. �5��, do apparently confirm a transition, although in
certain circumstances it is found to be metastable with re-
spect to a broad fluid-solid coexistence region.

Ideally one would like to settle the matter of the existence
of a fluid-fluid transition �as well as its stability or otherwise
with respect to the fluid-solid boundary�, by computer simu-
lation. Unfortunately, direct simulation studies of very asym-
metric additive mixtures are severely hampered by extremely
slow relaxation. Accordingly, all such studies to date have
been restricted to mixtures of relatively low asymmetries, for
which a fluid-fluid transition is less likely to be observable.
While recently developed algorithms �6,7� offer some hope
of future progress in accessing greater size asymmetries, to

our knowledge no direct evidence has �to date� been obtained
for the existence of a fluid-fluid phase separation in additive
hard-sphere mixtures.

In view of these difficulties, a fruitful alternative to simu-
lations of the full two-component mixture is to attempt to
map it onto an effective one-component system which can be
simulated more easily. This “effective fluid” approach was
taken by Dijkstra, van Roij, and Evans �3�, and by Almarza
and Enciso �4� who proposed a model depletion potential by
tracing out from the partition function the degrees of free-
dom associated with the small particles. The resulting inter-
particle potential for the large particles is parametrized by
the size ratio q=�s /�b between small and large particles, and
a reservoir volume fraction of the small particles �̃s.
Simulation-based free-energy measurements of the resulting
system yielded, for values of q�0.1, a fluid-fluid separation
that was metastable with respect to a broad solid-fluid coex-
istence region. Explicit simulations of the two-component
mixtures confirmed the accuracy of the model depletion po-
tential as far as the location of solid-fluid and solid-solid
transitions was concerned, but could not access the likely
region of fluid-fluid separation. Subsequent work by Roth,
Evans, and Dietrich �8� yielded a more accurate depletion
potential by fitting to accurate density functional theory
�DFT� predictions. However, to our knowledge, the latter
potential has, to date, not been used to study phase behavior.

Real colloidal fluids are polydisperse, that is their con-
stituent particles exhibit an essentially continuous range of
size, shape, or charge. Introducing polydispersity into model
fluids is known to alter fluid-fluid critical point parameters
�9,10� as well as freezing boundaries �11,12�. It is therefore
pertinent to enquire as to the effect of polydispersity on the
location of the metastable fluid-fluid transition of hard-
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sphere mixtures. Indeed this question has previously been
addressed in part by Warren �13� who applied the moment
free-energy method �14� to study a polydisperse version of
the equation of state of Boublik and Mansoori �15� for binary
hard-sphere mixtures. The results showed that for sufficiently
large size ratio and polydispersity of the large particles, a
fluid-fluid spinodal appears in the model. The transition was
predicted to become more stable with increasing degrees of
polydispersity.

Most other theoretical investigations of polydispersity in
hard-sphere mixtures �16–18� have focused on the form of
the depletion potential and did not explicitly consider the
consequences for phase equilibria. The sole study of phase
behavior to date �of which we are aware� is that of Fasolo
and Sollich �11� who applied the moment free-energy
method to the Asakura-Oosawa �AO� model �19�. This
model describes the limit of maximum nonadditivity of the
small particles and in contrast to additive mixtures, the
monodisperse AO model is known to exhibit a stable fluid-
fluid phase transition for size ratios q�0.5 �20,21�. The in-
troduction of size polydispersity to the large spheres �11� was
observed to disfavor both fluid-fluid and fluid-solid phase
separation, though the effect was larger for the latter transi-
tion. The net result was a lowering of the q value necessary
for an occurrence of stable fluid-fluid phase separation, and
an increase in the stability of this transition with respect to
freezing.

In the present work we apply specialized Monte Carlo
simulation techniques to an effective fluid model for additive
mixtures with a view to elucidating the effect of large par-
ticle �colloidal� polydispersity on the parameters of the fluid-
fluid critical point. Our results indicate that polydispersity
shifts the critical point to lower reservoir volume fractions �̃s
of the smaller particles, and to higher volume fractions �b of
the large ones. A determination of the percolation threshold
using finite-size scaling methods shows that the addition of
polydispersity moves the fluid-fluid critical point deeper into
the percolation region. We further find that accurate predic-
tions for the critical reservoir volume fraction �̃s

crit can be
obtained by matching the second virial coefficient of the
depletion potential to that of the adhesive hard-sphere model
at its �independently known� critical point.

II. MODELS

A. Depletion potentials

Two model depletion potentials are considered in this
work. The first, on which we shall focus primarily, is due to
Roth, Evans, and Dietrich �8�, and we shall refer to it as the
RED potential. It derives from DFT studies of hard-sphere
mixtures and takes the form

W = �
Rb + Rs

2Rs
W̄ �1�

Here Rb and Rs are the radii of the large and small spheres,

respectively. The scaled depletion potential W̄=W̄�x ,�s� is a
function of x=h /�s, the distance from contact measured in
units of the small sphere diameter, and the volume fraction

�s of the small spheres. The parameter � takes the value �
=2 for wall-sphere interactions and �=1 for sphere-sphere
interactions.

Between contact at x=0 and the location of the first maxi-
mum x0 the scaled depletion potential is expressed in terms
of a cubic polynomial:

�W̄�x,�s� = a��s� + b��s�x + c��s�x2 + d��s�x3, x � x0.

�2�

The coefficients a, b, c, and d were obtained by Roth et al.
by fitting to depletion potentials calculated within DFT. For
x�x0, they assume that the asymptotic regime already sets
in. For the interaction between two spheres �a different ex-
pression applies to the asymptotic behavior between a sphere
and a hard wall� this is

�W̄�x,�s� = �W̄asym�x,�s�, x � x0 �3�

where

�W̄asym�x,�s� =
Ap��s�

�s
−1��b + h�

exp�− a0��s��sx�

	 cos�a1��s��sx − 
p��s��, x � x0.

�4�

Here the denominator measures the separation between the
centers of the spheres in units of �s, and the prefactors a0��s�
and a1��s� can be calculated from the Percus-Yevick bulk
pair direct correlation function �8�. The amplitude Ap��s� and
phase 
p��s� are chosen such that the depletion potential and
its first derivative are continuous at x0. They are weakly de-
pendent on the size ratio. Figure 1 shows the form of the
potential for the size ratio q=0.1 at a selection of values of
�s.

The RED potential was tested in Ref. �8� by comparing
with computer simulation results for hard-sphere mixtures
and was found to perform well for volume fractions of the
small particles in the range 0��s�0.3. In the simulations to
be described below, we use a truncated version of the RED
potential, cutoff at x=3.0, and with no correction. Further-

FIG. 1. The form of the RED potential for q=0.1 at a selection
of values of �s.
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more we shall employ the potential at finite volume fractions
�b of the large particles, but assume that the potential re-
mains two-body in form, being parametrized by the reservoir
volume fraction of small particles �̃s, which plays a role
similar to a chemical potential. Clearly �̃s→�s in the limit
�b→0. We note that approximate expressions exist which
allows one to convert from �̃s to �s at finite �b �3�, at least in
the monodisperse case.

The second potential that we have studied, albeit to a
lesser extent and solely in the monodisperse context, is that
due to Götzelmann et al. �22,23�. In contrast to the DFT-
based RED potential, this was derived purely within the
framework of the Derjaguin approximation, although it also
is expressed as a series expansion. We shall employ it in the
truncated form studied by Dijkstra, van Roij, and Evans �3�,
and refer to as the DRE potential:

�Veff�rij� = −
1 + q

2q
�3�2�̃s + �9� + + 12�2��̄s

2 + �36�

+ 30�2��̃s
3�; − 1 � � � 0, �5�

where �=x−1.
Although both potentials have a qualitatively similar form

at short range, the DRE potential neglects the correct
damped oscillatory decay at larger particle separations. A
comparison of the two potentials for size ratio q=0.1 and
�̃s=0.3 is shown in Fig. 2.

B. Incorporating polydispersity

The key to incorporating polydispersity into the above
framework is to generalize the form of the depletion poten-
tial for the case of two interacting large particles of different
radii R1 and R2. This is readily achieved by an appeal to the
Derjaguin approximation �24,25�, which relates the depletion
force between two spheres of different radii �R1 and R2� to
the potential between two flat plates:

Fss = 2�
R1R2

R1 + R2
Uww�h� . �6�

The approximation also yields the force between a sphere �of
radius R� and a wall

Fsw = 2�RUww�h� . �7�

Clearly, if the two spheres in the first case have equal radii
�R1=R2�, then

Fss = �RUww�h� , �8�

giving the well-known result Fsw=2Fss.
Returning to the depletion potential of Eq. �1�, the above

considerations prompt one to write

W =
R1�R2�

R1� + R2�
W̄ , �9�

where

R1� =
R1 + R2

Rs
, �10�

R2� =
R2 + Rs

Rs
. �11�

It is readily verifiable that in the limiting cases R1→
 and
R1→R2, one recovers the expression of Roth et al. �8� �Eq.
�1�� with �=2 and �=1, respectively.

With regard to the effect of this generalization on the
parametrized form of the potential, we note first that the
quantity x remains unaffected because it is simply the
distance from contact in units of �s. However, in the
asymptotic part �Eq. �4��, the denominator �s

−1��b+h�
measuring the separation between the centers of the spheres
in �s units is given in the polydisperse case by
�s

−1���1+�2� /2+h�. Additionally, while in the monodisperse
limit the location of the first maximum of the potential �at
which the asymptotic behavior is presumed to set in� is given
by x0=�s

−1��s+�b�, in the polydisperse case one has instead
x0=�s

−1��s+ ��1+�2� /2�. Figure 3 gives some examples of
the influence of dissimilar particle sizes on the depletion po-
tential.

In the present work, we address the situation in which
the large particles exhibit a continuous variation of sizes. In
order to quantify the form of the polydispersity, we label
each particle by the value of its diameter �b. The system can
then be described in terms of a density distribution ���b�
measuring the number density of particles of each �b. Ex-
perimentally, the distribution of colloidal particles sizes in a
system is �in general� fixed by the synthesis of the fluid. To
reflect this situation in our simulations, we assign ���b� an
ad hoc prescribed functional form, which we choose to be of
the Schulz type �26� defined by the normalized distribution
function:

FIG. 2. Comparison of the RED and DRE potentials for
q=0.1 and �̃s=0.3.
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f��b� =
1

z!
� z + 1

�̄b
�z+1

�b
z exp�− � z + 1

�̄b
��b	 . �12�

Here z is a parameter which controls the width of the distri-
bution, while �̄b�1 sets the length scale. We have elected to
study the case z=50, for which the corresponding form of
f��b� is shown in Fig. 4. The associated degree of polydis-
persity is defined as the normalized standard deviation of the
size distribution:

� =

��b − �̄b�2�1/2

�̄b

�13�

For the Schulz distribution one finds �=1/�z+1. With
z=50, this formula yields �
14%. Note that for the compu-
tational convenience, lower and upper cutoffs were imposed
on the range of allowed particle sizes �b. These were chosen
such that 0.5��b�1.5.

The imposed density distribution is related to f��b� by

���b� = �b
0f��b� �14�

where �b
0 is the average number density of large particles.

Since f��b� is fixed, the form of ���b� is parametrized solely
by �b

0, variations of which correspond �at a given �̃s� to tra-
versing a “dilution line” in the full finite dimensional phase
diagram �27�. Although this parametrization provides the op-
erational basis for scanning the dilution line, we shall �in
accordance with convention� quote our results in terms of the
overall volume fraction of the large particles. The latter is
related to the density distribution via

�b = �
0


 �

6
�b

3���b�d�b. �15�

Finally in this section, we note that within the polydis-
perse context, the distribution of sizes of the large particles
implies that the size ratio q can only be defined in terms of
an average. Accordingly we take q��s / �̄b.

III. COMPUTATIONAL METHODS

Monte Carlo simulations were performed within the grand
canonical ensemble �GCE� using the methods described in
Refs. �10,28–30�. Here we briefly outline principal elements
of the strategy and refer the interested reader to those papers
for a fuller description.

Within the GCE framework, the density distribution ���b�
is obtained as an ensemble average over an instantaneously
fluctuating distribution. The form of ���b� is controlled by
the conjugate chemical potential distribution ���b�, which
was tuned �cf Ref. �30�� at all points in the phase diagram so
as to yield the desired Schulz shape f��� �Eqs. �12�� and
scale �b

0 ��14��. This tuning was achieved by joint use of the
nonequilibrium potential refinement method �29�, coupled
with a histogram extrapolation �31� in terms of ���b�.
It should be noted, however, that the DRE and RED deple-
tion potentials do not lend themselves to histogram extrapo-
lation with respect to the model parameter �̃s which controls
the form of the interaction potential. This is because �̃s does
not appear as an overall scale factor in the Hamiltonian, a
situation which contrasts, for example, to temperature re-
weighting in simpler potentials such as Lennard-Jonesium.
Consequently in order to scan the phase diagram with respect
to changes in �̃s, separate simulations were utilized in each
instance.

Our principal aim is a determination of the polydispersity-
induced shifts in the critical point parameters of the model
depletion potentials. To this end we have employed a crude
version of the finite-size scaling �FSS� analysis described in
Ref. �32�. The analysis involves scanning the range of �b

0

and �̃s until the observed probability distribution of the fluc-
tuating instantaneous volume fraction of large particles
p��b�, matches the independently known universal fixed
point form appropriate to the Ising universality class in the
FSS limit. Owing to the relatively large depth of the inter-
particle potential well �see Fig. 2� compared to, e.g., the
Lennard-Jones �LJ� potential, the acceptance rate for particle
insertions and deletions was found to be very low, resulting

FIG. 3. The form of the RED depletion potential for four com-
binations of the pair radii. In all cases we have set �s=0.1

FIG. 4. The imposed form of f��b�, corresponding to a Schulz
distribution �Eq. �12�� with z=50. The diameters �b of the large
particles are measured in units of �̄b=1
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in extended correlation time for the density fluctuations.
Consequently we were able neither to study a wide range of
system sizes nor obtain data of sufficient statistical quality to
permit a more sophisticated FSS analysis. Nevertheless it
transpires that our estimated uncertainties on the critical
point parameters are sufficient to resolve the polydispersity-
induced trends in the critical point parameters that we set out
to identify.

IV. SIMULATION RESULTS

Our results are divided into three sections. First we locate
the fluid-fluid critical point for both the RED and DRE po-
tentials in the monodisperse limit. Moving on to the polydis-
perse case, we determine the effect of the added polydisper-
sity on the critical point parameters. Finally, we use finite-
size scaling to estimate the locus of the cluster percolation
threshold in both the monodisperse and polydisperse cases.

A. Monodisperse limit

As outlined above, we have tuned the values of �̃s and �
until the measured probability distribution of the volume
fractions of the large particles matched �as far as possible
given the computational complexity of this problem� the uni-
versal Ising fixed point form. Figure 5 shows distributions
obtained in this way for the case of the RED potential with
q=0.1 at �̃s=0.3200 and �̃s=0.3190. Although the statistical
quality is not particularly good, comparison of the forms of
the distributions with that of the fixed point form indicates
that the given values of �̃s straddle criticality, permitting the
estimate �̃s

crit=0.3195�5�. This estimate for the RED poten-
tial critical point, together for that for q=0.05, and the cor-
responding estimates for the DRE potential are presented in
Table I.

With regard to the results of Table I, we note that for a
given potential form, the estimates of �b

crit appear rather in-

sensitive to the value of q. We further note that for a given q
there is a substantial shift in �̃s

crit between the two forms of
the depletion potential. The latter finding is perhaps not too
surprising given the significant difference in the contact
value and range of the well depth of the RED and DRE
potentials, as well as the rather radical truncation made by
the DRE potential, of the long ranged oscillatory part of the
interactions �cf. Fig. 2�. Indeed the sensitivity of phase be-
havior to the depletion potential well depth and range has
been emphasized by Germain et al. �33�, albeit in the context
of fluid-solid coexistence.

We also note significant discrepancies between our esti-
mates of the critical point and those of Dijkstra et al. �3� for
the DRE potential. Although no error bars are quoted in Ref.
�3�, it seem likely to us that this discrepancy is statistically
significant. Its source may be traceable to the use in �3� of
indirect free energy measurements to obtain the phase dia-
gram, in contrast to the generally more accurate direct grand
canonical FSS approach employed here. Interestingly, our
estimates for the critical �̃s values lie much closer than those
of Ref. �3� to the results of a computation using integral
equation theory of both the depletion potential and its phase
behavior �34�.

In Ref. �3� it was demonstrated via free-energy measure-
ments that the fluid-fluid critical point for the DRE potential
is metastable with respect to freezing. While we have not
attempted to perform a systematic study of the freezing tran-
sition in the present work, our simulations confirm the meta-
stability in so far as some runs were observed to freeze into
an fcc crystal structure. An example of the time evolution of
the density in such a run for the DRE potential is shown in
Fig. 6. Such freezing was also observed for the RED poten-
tial indicating that here the critical point is also metastable
with respect to crystallization. As an aside, we note that from
a computational point of view, our observation of freezing
within the grand canonical ensemble is somewhat remark-
able since the algorithm becomes very inefficient at crystal
densities. The key factor in achieving this in the present case
is the inclusion—alongside the standard insertions and
deletions—of particle displacement moves. Without the lat-
ter, the system was not observed to crystallize on simulation
time scales. Another apparent factor controlling the ease of

FIG. 5. Estimates of the order parameter distribution p��b� at
�̃s=0.3200 and �̃s=0.3190, for V= �5.2�̄�3. Representative error
bars are shown. Also included is the fixed point Ising magnetization
distribution. All distributions are scaled to unit norm and variance
via the nonuniversal scale factor a0.

TABLE I. Estimates of critical point parameters, obtained using
the methods described in the text. Values estimates from the data of
Ref. �3� are given in square brackets.

RED potential

q �̃s
crit �b

crit

0.1 0.3195�5� 0.274�10�
0.05 0.1765�5� 0.289�15�

DRE potential

q �̃s
crit �b

crit

0.1 0.255�15� 0.286�15�
�0.289� �0.223�

0.05 0.151�1� 0.271�15�
�0.165� �0.235�
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freezing appears to be whether the crystal lattice parameter is
commensurate with the choice of system box sizes. We fur-
ther note that our frozen structures do not attain the near-
close packing densities observed in Ref. �3�. This is due to
the presence of defects in the frozen configurations.

Notwithstanding the eventual relaxation to a crystalline
state, our systems were usually found to remain metastable
for a period of time sufficient for us to collect useful data in
the critical region. Unfortunately, the freezing became un-
manageable when we attempted to obtain data in the fluid-
fluid coexistence region. As noted by other authors �3,35� the
coexistence curve of depletion potentials appears to be rather
flat near the critical point. Thus even a modest excursion into
the two phase region results in high liquid densities, which in
our experience froze very rapidly.

B. Polydisperse case

Turning now to the polydisperse case, we have obtained
the critical point parameters in a manner similar to that em-
ployed in the monodisperse limit. Figure 7 shows the com-
parison of our estimates for the critical point distribution
p��b� for the RED potential in both the monodisperse and
polydisperse cases with q=0.1. Clearly the distribution for
the polydisperse case is substantially shifted to higher vol-
ume fractions compared to that for the monodisperse case.
Owing to the slow fluctuations of �b, the true average of
these distributions could not be determined to high precision.
However, the peak positions are rather insensitive to the fluc-
tuations, and on the basis of critical point universality one
expects that given sufficient statistics, the form of the distri-
butions should become symmetric. One can therefore esti-
mate �b

crit from the average of the peak positions. The results
of doing so are summarized in Table II, from which one
discovers that the principal influence of polydispersity on the
critical point parameters is a significant decrease in �̃s

crit with
respect to its monodisperse value, and a significant increase
in �b

crit. For the form and degree of polydispersity that we
have studied, the decrease in �̃s

crit is about 6%, while the
concomitant increase in �b

crit is about 17%.

The influence of polydispersity on the near critical point
phase behavior is further observable in terms of particle size
fractionation effects. Specifically, when fluctuations of the
instantaneous value volume fraction �b exceed their average
value, the distribution of particle sizes is shifted to larger
diameters; and conversely for fluctuations of �b to values
lower than the average. The scale of the effect is shown in
Fig. 8 for q=0.1 at the estimated critical point parameters.
The presence of such fractionation implies that the critical
point need not lie at the apex of the cloud curve that marks
the onset of phase separation �27�. Indeed we did observe
some evidence for a weak separation of cloud and shadow
curves at �̃s= �̃s

crit, although precise quantification of the ef-
fect was complicated by a noticibly increased tendency of
the polydisperse system to relax to a high density state fol-
lowing a fluctuation to high density. The nature of this relax-
ation closely resembled that observed in the monodisperse
case �cf. Fig. 6� and indeed visualization of the arrested con-
figurations revealed some evidence of crystalline order, al-
beit with a high concentration of defects. We caution, how-
ever, that these findings should not be interpreted as
providing strong evidence for a freezing of the polydisperse
system because it was not possible to ensure that the overall
density distribution remained on the dilution line during the
relaxation to the high density state.

C. Percolation threshold

Percolation is a necessary, though not a sufficient condi-
tion for gelation and dynamical arrest in colloidal systems.

FIG. 6. Time evolution of the system volume fraction near the
parameters of the metastable critical point. Eventually, the system
freezes spontaneously.

FIG. 7. Comparison of the distribution p��b� at the estimated
critical parameters in the monodisperse and polydisperse systems.
In both cases the size ratio q=0.1 and the system size is V= �6�̄�3.

TABLE II. Estimated critical point parameters for the model
polydisperse system described in Sec. IV B.

RED potential

q �̃s
crit �b

crit

0.1 0.300�1� 0.336�15�
0.05 0.1655�5� 0.345�5�
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Since gelation can affect the ability of experiments to ob-
serve equilibrium phase behavior in general, and specifically
fluid-fluid phase separation, it is important to determine the
location of the percolation line in the phase diagram and its
relationship to the fluid-fluid critical point. Additionally, it is
of interest to ask to what extent this relationship is affected
by polydispersity.

In order to locate the percolation threshold, it is necessary
to identify pairs of particles that are “bonded” and check for
the spanning of clusters of such particles. However, in con-
trast to lattice models or fluid systems such as the adhesive
hard-sphere model, the definition of a “bond” in systems
with continuous potentials is somewhat ambiguous. We
therefore adopt a criterion which derives from that used for
cluster identification in spin models. Specifically, we deter-
mine the interaction energy u between all pairs of particles
and assign a bond with probability pbond=1−exp��u�. Clus-
ters of bonded particles are then identified using the algo-
rithm of Hoshen and Kopelman �36�. In Ref. �37� Miller and
Frenkel identified the percolation threshold with those values
of the model parameters for which the proportion of configu-
rations containing a spanning cluster is 50%. However,
finite-size scaling arguments �38� show that better estimates
may be obtained by examining the system size dependence
of plots of the fraction of spanning clusters as a function of
�b. An example of such a plot is shown in Fig. 9 for the RED
potential in the monodisperse case for �̃s=0.28. Data are
shown for four system sizes, and indicate that there is a
well-defined intersection point at �b
0.21. This intersection
point provides a good measure of the percolation threshold in
the thermodynamic limit �38�. By contrast, application of the
50% criterion to data for a single system size can consider-
ably overestimate the percolation threshold.

Percolation lines were determined using this intersection
method for the monodisperse and polydisperse RED poten-
tial at q=0.1. They are shown in Fig. 10 together with our
estimates of the critical point parameters. One sees that in
both cases the critical point lies well within the percolation
regime, though more so for the polydisperse system than for
the monodisperse system.

V. LINKING TO THE ADHESIVE HARD-SPHERE MODEL

A simple yet general method for finding two potentials
that are “equivalent” in a corresponding states sense, is to
match their second virial coefficient B2 �37,39,40�:

B2 = − 2��
0




�e−�u�r� − 1�r2dr . �16�

Here we compare the value of B2 for the RED and DRE
depletion potentials in the monodisperse limit, with that of
the adhesive hard sphere �AHS� model �41�. The latter com-
prises hard particles which experience a finite attraction only
at contact, the strength of which is controlled via a “sticki-
ness” parameter �. The overall interaction can be written

FIG. 8. The normalized distribution of particle sizes for instan-
taneous volume fractions �b below �dashed line� and above �dotted
line� the average value, close to the critical point. Also shown �solid
line� is the overall Schulz “parent” distribution

FIG. 9. Fraction of percolating configurations as a function of
�b for the RED potential in the monodisperse limit. The potential
parameters are �̃s=0.28, q=0.1, and data are shown for four system
sizes.

FIG. 10. Percolation line for the RED potential �q=0.1� for both
the monodisperse and polydisperse cases, as determined by the
method described in the text. Statistical errors are comparable with
the symbol sizes; lines are guides to the eye. The system size in
both cases was L= �6�̄�3. Also shown are the estimated critical point
parameters �cf. Sec. II B�.
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e−�u�r� = 
�r − �� +
�

12�
��r − �� , �17�

with r the separation of particle centers and � the particle
diameter. The second virial coefficient follows as

B2
AHS =

2�

3
�3�1 −

1

4�
� . �18�

The AHS model exhibits a fluid-fluid phase transition, the
critical point of which has been estimated to occur �42�
at �c=0.1133�5�, �c=0.508�10�. This value of �c implies
that for the AHS model at criticality, B2

crit=−4.826v0 with
v0= �4/3���3. It is, therefore, of interest to assess whether,
via the matching of B2 values for the RED and DRE poten-
tials to that of the critical AHS model, reasonable predictions
can be made for the critical point parameters of the depletion
potentials. To this end we have numerically evaluated B2
across a range of �̃s values for each depletion potential and q
value of interest. By so doing we could determine the value
of �̃s for which B2 matched the value B2

crit=−4.826v0. Table
III shows the resulting predictions for �̃s

crit for two values of
q, together with our simulation estimates. Clearly, in each
instance, the agreement is remarkable.

One can attempt to extend the above approach to the poly-
disperse depletion potentials. To do so, we first obtain the
contribution to the second virial coefficient for interactions
between all pairs of species �i ,� j. The overall coefficient for
the mixture can then be approximated as a weighted average
of pairs �43�, where the weight factor is the probability of
interaction between a pair of particles of size i and size j. In
our case, this is given by the product of the corresponding
values of the normalized Schulz distribution �Eq. �12��:

B2 = �
0


 �
0




f��i�f�� j�B2��i,� j�d�id� j . �19�

Matching to B2
crit=−4.826v0 as before, one obtains for the

two q values studied, the predictions for �̃s
crit shown in Table

III. Here the agreement with the simulation estimates is less
impressive than in the monodisperse case. Although the ab-
solute value of the prediction still agrees to within about 3%
with the simulation estimate, and the sign of the
polydispersity-induced shift in �̃s

crit is correctly predicted, its
magnitude is underestimated by a factor of 2.

The larger relative discrepancy between the predicted and
measured �̃s

crit may point to a breakdown in the presence of
polydispersity of the assumed model invariance of the criti-
cal B2 value. Indeed one might expect such a failure because
the value of B2 is based solely on the pair potential and takes
no account of the ability of a polydisperse fluid to exploit
local size segregation in order to pack more effectively than
a corresponding monodisperse one. In order to address this
issue directly, one would require estimates of critical point
B2 values for a polydisperse version of the AHS model. To
our knowledge no simulation estimates of the liquid-gas
transition currently exist for a polydisperse AHS model. In-
deed, the matter is complicated by the fact that there is no
unique model for polydispersity in such a system. Very re-
cently, however, a number of physically reasonable models
for polydispersity in AHS system have been proposed by
Fantoni et al. �44�, who investigated the corresponding phase
behavior using the integral equation theory. From Ref. �44�,
one can deduce that the presence of polydispersity signifi-
cantly decreases the magnitude of B2 at the critical point
compared to the monodisperse limit. This trend in B2 is of
the correct sign and overall magnitude to push the predic-
tions for �̃s

crit for our depletion potentials closer to the simu-
lation estimates. Unfortunately since no data were reported
for exactly the same degree of polydispersity ��=14% � stud-
ied in the present work, no direct comparison of B2 values is
possible.

In an attempt to throw additional light �albeit indirectly�
on the discrepancy between the measured and predicted criti-
cal point parameters, we have studied the effect of introduc-
ing polydispersity on the critical point B2 value for the
Lennard-Jones fluid, which is a computationally more trac-
table system than the AHS model �45�. The corresponding
potential is

uij = �ij���ij

rij
�12

− ��ij

rij
�6	 �20�

with �ij =�i� j�, �ij = ��i+� j� /2 and rij = �ri−r j�. The potential
was cutoff for rij �2.5�ij and no tail corrections were ap-
plied. For the monodisperse limit, the critical temperature
occurs at Tc=1.1876�3� �32� and one finds B2=−6.621�0,
which lies within the range of “typical” critical point B2
values found in surveys of a wide range of model potentials
�39,40�. If, on the other hand, � is distributed according
to a Schulz form �Eq. �12�� with z=50, as used elsewhere
in this work, simulations yield a critical temperature of
Tc=1.384�1�, for which �using, Eq. �19��, one finds
B2=−5.759�0, which is significantly smaller in magnitude
than the monodisperse value.

If one now makes the �not unreasonable� assumption that
given the same form and degree of polydispersity, a compa-
rable fractional change of B2 will ensue in other interaction

TABLE III. Comparison of the simulation estimates of the criti-
cal point parameters with the predictions arising by matching the
second virial coefficient to that of the critical AHS model.

Monodisperse RED potential

q �̃s predicted �̃s simulation

0.1 0.320 0.3195�5�
0.05 0.177 0.1765�5�

Monodisperse DRE potential

q �̃s predicted �̃s simulation

0.1 0.256 0.255�15�
0.05 0.151 0.151�1�

Polydisperse RED potential

q �̃s predicted �̃s simulation

0.1 0.310 0.300�1�
0.05 0.172 0.1655�5�
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potentials, one can estimate the expected critical point value
of B2 for the polydisperse AHS model �and hence also the
polydisperse depletion potentials�, as B2=−4.826
	5.759/6.621
−4.2v0. The resulting predictions for the
critical reservoir volume fraction of the small particles are
�̃s

crit=0.304, for q=0.1, and �̃s
crit=0.169 for q=0.05, both of

which agree much better with our simulation results. Of
course in view of our assumptions, this accord may be for-
tuitous, but it is nevertheless suggestive that a more detailed
assessment of the effect of polydispersity on critical point B2
values in other systems �specifically the AHS model� would
be a worthwhile avenue for further study.

VI. CONCLUSIONS AND DISCUSSION

To summarize, we have determined the effect of introduc-
ing polydispersity on the fluid-fluid critical point parameters
of a model depletion potential for highly asymmetric addi-
tive hard-sphere mixtures. For the particular realization of
the polydispersity considered, the critical point is found to
shift �with respect to the monodisperse limit� to smaller val-
ues of the reservoir volume fraction of the small particles �̃s
and to larger values of the volume fraction of the large par-
ticle �b. It seems reasonable to assume that the direction of
the shifts should be a general trend, common to other func-
tional forms and degrees of polydispersity. Indeed the same
trend has also recently been observed in a study of colloidal
polydispersity in the AO model �11�.

Beyond this, our results show that the inclusion of poly-
dispersity pushes the whole fluid-fluid binodal deeper into
the percolating regime. Since colloidal fluids are known to
form a gel �46,47� for sufficiently high �̃s, it would seem that
the presence of polydispersity increases the likelihood that
direct observations of fluid-fluid phase coexistence is com-
plicated by dynamical arrest.

Additionally we demonstrated that excellent predictions
for the value of �̃s

crit follow from matching the second virial
coefficient B2 of depletion potentials to the critical B2 value
of the adhesive hard-sphere model. The quantitative accuracy
of the predictions is undoubtedly due in large part to the very
short ranged nature of the depletion potentials; similar stud-
ies comparing critical point B2 values for a range of other
potentials �39,40� did not find such a high degree of accu-
racy. Nevertheless our observation should prove generally
useful in reducing the effort required to locate criticality in
depletion potentials. It is intriguing however, that the accu-
racy of the predictions was reduced on incorporating poly-

dispersity, suggesting that �perhaps due to changes in pack-
ing ability due to local size segregation effects�, the inclusion
of polydispersity in a model does not leave B2 invariant at
the critical point. Comparisons of the critical B2 value for a
monodisperse and polydisperse LJ fluid confirmed a signifi-
cant difference in this regard. Moreover, the magnitude of
the effect was sufficient to account for the discrepancy in the
observed and predicted �̃s

crit for the polydisperse depletion
potential. Clearly, however, further work is called for in or-
der to elucidate this matter more fully.

Obviously knowledge of the shift in the critical point pa-
rameters is in itself insufficient to determine whether poly-
dispersity renders the fluid-fluid transition stable with respect
to fluid-solid coexistence. Although we did observe a spon-
taneous relaxation of the near critical polydisperse system to
a high density state showing some crystalline order, this find-
ing should be treated with caution because the system de-
parts from the dilution line during the formation of the new
state. It would thus be interesting in future work to try to
study explicitly the effects of polydispersity on the freezing
transition. As well as providing assessment of the overall
stability of the fluid-fluid critical point, freezing in polydis-
perse fluids is a matter of considerable interest in its own
right. Indeed recent theoretical calculations for the AO model
indicate an increasing richness of fluid-solid and solid-solid
phase behavior as the degree of polydispersity is increased
�11�. To tackle this computationally, however, is a consider-
able challenge, but one which might be met by extending to
polydisperse system computational methods which have
hitherto only be deployed in the monodisperse context
�48,49�.

Finally, we remark that while the present work has con-
sidered solely the case of polydispersity of the large par-
ticles, the converse situation of small particle polydispersity
is clearly of interest and practical relevance too. While there
have been several theoretical studies which have considered
this scenario �see, e.g., Refs. �17,50��, we know of no simu-
lation studies to date. An extension of the methods utilized
here to address this case would doubtless be a worthwhile
endeavor—one which we hope to undertake in future work.
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